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We consider planar massless scalar waves impinging upon a Kerr black hole, for general angles of

incidence. We compute the absorption cross section via the partial wave approach, and present a gallery of

results. In the low-frequency regime, we show that the cross section approaches the horizon area; in the

high-frequency regime, we show that the cross section approaches the geodesic capture cross section.

In the aligned case, we extend the complex angular momentum method to obtain a ‘‘sinc’’ approximation,

which relates the regular high-frequency oscillations in the cross section to the properties of the polar null

orbit. In the nonaligned case, we show, via a semianalytic approximation, that the reduction in symmetry

generates a richer, less regular absorption cross section. We separate the absorption cross section into

corotating and counterrotating contributions, showing that the absorption is larger for counterrotating

waves, as expected.
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I. INTRODUCTION

Black holes (BHs) [1] are among the most intriguing
predictions of general relativity (GR) [2]. In electrovac-
uum, BHs are described by the Kerr-Newman family of
solutions, which are governed by just three parameters:
mass, spin and electric charge. The no-hair theorem [3]
implies that black holes cannot support additional degrees
of freedom, which suggests that in essence black holes
are rather simple objects, even if their astrophysical envi-
ronments are likely to be extremely complex.

BHs are believed to populate the galaxies [4].
Accumulated evidence that supermassive rotating BHs
reside at the center of active galactic nuclei has had a
profound impact [5]. Some of these rotating BHs are ex-
pected to be spinning very close to their upper rotating
limit [6–8], and so the phenomenology around rotating
BHs is of major importance to astrophysics. This motivates
careful study of the nature and observational consequences
of the Kerr metric, which describes a rotating BH in GR.
An improved understanding of the Kerr BH will also help
us to understand more complicated structures, such as
rotating BHs in modified theories of gravity [9–12].

One aspect of Kerr phenomenology is the absorption and
scattering of particles by BHs. Particles are described by
(quantum and fluid) field theories, and so the absorption and
scattering of particles is naturally related to the absorption
and scattering of fields, which may have spin, mass and
charge. Spinless (i.e. scalar) fields are particularly impor-
tant, both as a particle model (e.g., for pseudoscalar mesons)

and as a first model for bosonic fields with spin (e.g., the
electromagnetic field). In theories that seek to go beyond the
Standard Model, light scalar bosons may play important
roles; for instance, in axiverse models [13,14] and in scalar
field dark matter models [15]. The discovery of a Higgs-like
particle by the ATLAS and CMS Collaborations has given
extra motivation to the study of scalar fields [16].
The absorption and scattering cross sections of planar

waves by black holes have been extensively studied.
Recently, a unified picture of the scattering of massless
planar waves by Schwarzschild BHs was presented [17].
This builds upon the work of many authors in investigating
the absorption cross section of planar waves by the
Schwarzschild black hole [18–22]. Various studies have
also been made considering charged black holes as central
scatterers [23–26]. Despite their physical relevance, rotat-
ing BHs have received less attention in the literature, with
several notable exceptions [27–29]. Absorption and scat-
tering cross sections by acoustic BH analogues have also
been recently investigated [30–33].
In this work, we analyze the absorption cross section of

a planar massless scalar wave impinging upon a Kerr BH,
giving emphasis to the general case in which the direction of
incidence is not aligned with the axis of rotation. The paper
is ordered as follows. In Sec. II we describe the separation of
variables for the massless scalar field in the Kerr spacetime
in Boyer-Lindquist coordinates, and the physical boundary
conditions for planar wave scattering. In Sec. III we give
expressions for the absorption cross section in the Kerr
spacetime, and identify the co- and counterrotating contri-
butions. We describe the low- and high-frequency regimes,
and present an asymptotic formula for the absorption cross
section arising from the complex angular momentum
method. In Sec. IV we present a selection of numerical
results, considering different values of the incident angle,
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and of the BH rotation parameter. We conclude with a
discussion in Sec. V. Throughout, we use natural units
(c ¼ G ¼ ℏ ¼ 1), and the metric signature (þ, �, �, �).

II. SCALAR FIELD IN THE KERR SPACETIME

In the standard Boyer-Lindquist coordinate system (t, r,
�, ’), the Kerr BH is described by the line element [34]

ds2 ¼
�
1� 2Mr

�2

�
dt2 þ 4Marsin 2�

�2
dtd’� �2

�
dr2

� �2d�2 �
�
r2 þ a2 þ 2Mra2sin 2�

�2

�
sin 2�d’2;

(1)

in which � ¼ r2 � 2Mrþ a2 and �2 ¼ r2 þ a2cos 2�
[35]. From the asymptotic behavior, one may infer that
M> 0 is the mass of the Kerr BH and a � 0 its angular
momentum per unit mass (a ¼ J=M). Here we restrict
ourselves to the regime in which the Kerr metric describes
a BH spacetime, i.e., a � M. For a <M the Kerr BH has
two distinct horizons. The inner (Cauchy) horizon is at

r� ¼ M�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 � a2

p
and the outer (event) horizon is at

rþ ¼ Mþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 � a2

p
. If a ¼ M we have an extreme Kerr

BH with an event horizon at rþ ¼ r� ¼ M. The case
a >M corresponds to a naked singularity.

A massless scalar field�ðx�Þ in a curved background is
governed by

1ffiffiffiffiffiffiffi�g
p @�ð ffiffiffiffiffiffiffi�g

p
g��@��Þ ¼ 0; (2)

where g�� are the covariant metric components of the Kerr

spacetime, g the metric determinant and g�� are the con-
travariant metric components. Here we shall be interested
in monochromatic wavelike solutions of Eq. (2), which
can be obtained by separation of variables [37,38], so that
we may write

� ¼ U!lmðrÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p S!lmð�Þeim’�i!t: (3)

The functions S!lmð�Þ are the standard oblate spheroidal
harmonics [39], which will be normalized according to

2�
Z

d� sin �jS!lmð�Þj2 ¼ 1: (4)

The radial functions U!lmðrÞ obey the following differen-
tial equation:

�
� d2

dx2
þ V!lmðxÞ

�
U!lmðxÞ ¼ !2U!lmðxÞ; (5)

with an effective potential given by

V!lmðxÞ ¼ � 1

ðr2 þ a2Þ2 ½m
2a2 � 4Mma!rþ

� �ð�lm þ!2a2Þ� þ �
�þ 2rðr�MÞ

ðr2 þ a2Þ3

� 3r2�2

ðr2 þ a2Þ4 : (6)

In Eq. (5) we made use of the tortoise coordinate x of the
Kerr spacetime, defined through

dx ¼ r2 þ a2

�
dr: (7)

The constants �lm are the eigenvalues of the oblate
spheroidal harmonics (cf., e.g., Ref. [36]). The indepen-
dent solutions of Eq. (5) are usually labeled as in, up, out
and down (see, e.g., Ref. [40]). Here we will be interested
in the in modes, since they characterize purely incoming
waves from the past null infinity, obeying the following
boundary conditions:

U!lmðxÞ �
(
A!lmRI þR!lmR

�
I ðx=M ! 1Þ;

T !lmRII ðx=M ! �1Þ: (8)

The functions RI and RII are given by

RI ¼ e�i!x
XN
j¼0

Aj
1
rj

; (9)

RII ¼ e�i ~!x
XN
j¼0

ðr� rþÞjAj
rþ ; (10)

where ~! � !�ma=ð2MrþÞ, and the coefficients Aj
1 and

Aj
rþ are obtained by requiring that the functions RI and

RII are solutions of the differential equation (5) far from
the BH and close to the outer horizon, respectively. The
coefficients R!lm and T !lm are related to the reflection
and transmission coefficients, respectively, and obey the
following relation:

��������
R!lm

A!lm

��������
2¼ 1� ~!

!

��������
T !lm

A!lm

��������
2

: (11)

When ! ~!< 0, it follows that jR!lmj2 > jA!lmj2, due to
a phenomenon known as superradiance [41].

III. ABSORPTION CROSS SECTION

The partial absorption cross section of an asymptotic
plane scalar wave propagating in the direction n ¼
ðsin�; 0; cos�Þ is given by [28,29]

�lm ¼ 4�2

!2
jS!lmð�Þj2�!lm; (12)

where the transmission factors are
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�!lm ¼ 1�
��������
Rin

!lm

Ain
!lm

��������
2

; (13)

and the total absorption cross section is

� ¼ X1
l¼0

Xl
m¼�l

�lm: (14)

The cross section is invariant under � ! �� �. When the
direction of incidence is parallel to the spin axis of the BH
(� ¼ 0), we have �lm ¼ 0 for m � 0. When the direction
of incidence lies in the equatorial plane of the BH
(� ¼ 90 deg ) we have �lm ¼ 0 for odd values of lþm,
because S!lmð�=2Þ ¼ 0 in this case. The total absorption
cross section can be decomposed in the following way:

� ¼ �þ þ ��; (15)

where

�� ¼ 1

2

X1
l¼0

�l0 þ
X1
l¼1

Xl
m¼1

�l;�m: (16)

In this way we may separate the absorption cross section
into corotating (�þ) and counterrotating (��) contributions.

A. Low-frequency regime

In the low-frequency regime, it has been shown that the
absorption cross section for stationary BHs equals the area
of the BH event horizon [42,43]. This result is quite general
and does not depend on the direction of the incident wave.
We have checked our numerical results in this limit,
computing numerically the absorption cross section for
low values of !. Sample values for the area of the horizon
are presented in Table I. In Sec. IV we compare the low-
frequency limits of the absorption cross section with the
numerical results for the quantity (14), obtaining excellent
agreement.

B. High-frequency regime

At high frequencies, under the eikonal approximation,
the wave propagates along null geodesics which pass
orthogonally through the initial wavefront. Hence, an
analysis of absorption can be made by computing the
capture cross section of null geodesics impinging on a
Kerr BH from infinity. Calculations of the capture cross
section may be found in Refs. [1,44]. Below, we develop a

complementary approach which emphasises the geometrical
aspects of the calculation.

1. Capture cross section

Figure 1 illustrates the scenario: a planar wavefront
impinges upon a rotating black hole, at an angle of inci-
dence �. The capture cross section �geo is the area of

the ‘‘locus of absorption’’ which is traced on the incident
planar surface. We may write

�geo ¼
Z �

��

1

2
b2cð	; �Þd	; (17)

where 	 an angle defined on the planar surface, measured
from the rotation axis in a corotating sense. Here, bcð	; �Þ
is the ‘‘critical’’ impact parameter, which corresponds to
the marginal case of a null geodesic that asymptotically
approaches a constant-radius photon orbit.
For a Schwarzschild black hole, the constant-radius

photon orbit occurs at r ¼ 3M (the ‘‘light-ring’’), and the
set of such orbits defines a surface known as the photon
sphere. In the Kerr case, the radius of the null orbit depends
on the azimuthal angular momentum. Figure 2 shows that
the set of all constant-radius null orbits defines a ‘‘photon
orbit zone.’’ Each point in this zone is associated with a
constant-radius null geodesic, which is the asymptote of a
null ray encroaching from spatial infinity [45].
To find bcð	; �Þ we solve the geodesic equations which

are obtained with Hamilton-Jacobi methods. Geodesics on
Kerr are governed by four first-order equations, and three
constants of motion: energy E, azimuthal angular momen-
tum Lz and Carter constant Q. The first step is to establish
the relationship between the constants of motion and the

TABLE I. Low- and high-frequency limits of the absorption
cross section for the different choices of a exhibited in the plots
of the Sec. IV. The high-frequency results presented here are for
on-axis incident null geodesics.

a½M� 0.00 0.30 0.60 0.90 0.99

�ð! 	 0Þ [�M2] 16.000 15.631 14.400 11.487 9.128

�ð!M 
 1Þ [�M2] 27.000 26.726 25.855 24.168 23.409

bc

FIG. 1 (color online). Illustrating a planar wave impinging
upon a Kerr black hole. The left plot shows a segment of planar
wave impinging upon a black hole at angle of incidence �
(where � is angle between the black-hole rotation axis and the
direction of incidence). The right plot shows the locus of
absorption, corresponding to that part of the wavefront which
is absorbed in the geometric-optics limit. The locus is described
by bcð	Þ, where 	 is the angle between a point on the surface
and the projection of the BH rotation axis, and bc is the critical
impact parameter.
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values of b and 	 for the null ray passing orthogonally
through the planar wavefront. Without loss of generality,
let us assume that the wave is impinging along the

 ¼ 0 direction. We may introduce an ‘‘impact vector’’
b with Cartesian components b ¼ ½b cos� cos	; b sin	;
�b sin� sin	�. This corresponds to a ray with the follow-
ing constants of motion:

L̂z � Lz=E ¼ b sin	 sin�; (18)

Q̂ � Q=E2 ¼ b2cos 2	þ ðb2sin 2	� a2Þcos 2�: (19)

The next step is to find the critical radius and impact
parameter, rc and bc, for the direction 	, by solving

RðrcÞ ¼ 0;
@RðrcÞ
@r

¼ 0; (20)

where

RðrÞ ¼ ððr2 þ a2Þ � aL̂zÞ2 � �ððL̂z � aÞ2 þ Q̂Þ: (21)

By solving Eq. (20) we get a pair of values
ðrcð	; �Þ; bcð	; �ÞÞ, corresponding to the radius of the

photon orbit and the critical impact parameter for a null
ray that passes through the incident wavefront at an
angle 	 relative to the rotation axis, as shown in Fig. 1.
The capture cross section is computed by inserting bcð	; �Þ
into Eq. (17).
Figure 3 shows the geodesic capture cross section as a

function of angle of incidence � for a variety of black-hole
spins a. Some values for the capture cross section in the
special case of on-axis incidence (� ¼ 0) are presented
below in Table I. These values will be compared with the
numerical results for the absorption cross section exhibited
in Sec. IV.

2. Sinc approximation

In the 1970s, Sanchez [19] found that, at high frequen-
cies, the absorption cross section for a Schwarzschild BH
oscillates around the geometric capture cross section with a

peak-to-peak interval of �! ¼ 1=
ffiffiffiffiffiffi
27

p
M. In one sense,

oscillations arise from the contributions of successive par-
tial waves to Eq. (14). In a complementary sense, as
recently shown in Refs. [46,47] using complex angular
momentum methods, the oscillations are related to the
properties of the unstable photon orbit. For a scalar field
absorbed by a spherically symmetric BH, it was shown
that [46]

�=�geo � 1� 8��e���sincð2�!=�Þ; (22)

where � � �=�, with � the frequency of the null orbit,
and � the associated Lyapunov exponent. In the
Schwarzschild case, �geo ¼ �b2c is the geodesic capture

cross section and � ¼ 1=ð ffiffiffiffiffiffi
27

p
MÞ ¼ 1=bc with � ¼ 1.

The oscillatory term arises from a (high-frequency ap-
proximation to a) sum over Regge poles. Regge poles are

horizon

ergoregion

photon orbit
zone

a 0.8M

2 4

3

1

1

3

FIG. 2 (color online). Schematic illustration of a slice of a Kerr
black hole. Here, M ¼ 1, a=M ¼ 0:8 and the event horizon
(black) and ergoregion (red) are shown as solid lines. The photon
orbit zone, marked in beige, is spanned by the family of
constant-radius null geodesics, shown as dotted lines. Special
cases include the polar orbit, which runs from pole to pole (and
precesses around the black hole), shown as a dashed line at
r=M 	 2:67; and the co- and counterrotating equatorial orbits
marked by blue dots at r=M 	 1:81 and 3.82, respectively.

 23

 24

 25

 26

 27

 28

 0  10  20  30  40  50  60  70  80  90

σ/
(π

M
²)

γ  (deg)

a/M = 0.0
a/M = 0.3

a/M = 0.6
a/M = 0.9

a/M = 0.99

FIG. 3 (color online). Geodesic capture cross section � as a
function of angle of incidence �, where � ¼ 0 corresponds to
incidence along the black hole’s axis of rotation (and � is
symmetric under � ! �� �). The geodesic capture cross
section is the high-frequency asymptote for the planar wave
absorption cross section.
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characteristic resonances of the spacetime closely related
to the quasinormal modes [48–50]. The idea that oscilla-
tions in absorption cross sections provide information
about the properties of the null orbits is an intriguing
one, which surely deserves further investigation in non-
spherically symmetric cases, such as Kerr.

In Sec. IV we show that oscillations around the capture
cross section are also present in the Kerr context, and, for
general angles of incidence, these oscillations exhibit a
richer spectrum. The oscillations arise from the superposi-
tion of partial contributions which now depend on azimu-
thal number m as well as on l. From the complementary
viewpoint, these oscillations are related to the spectrum of
Regge poles, which also depend on both l and m.

In the special case in which the plane wave is incident
along the axis of rotation (� ¼ 0 or �), a slightly modified
version of Eq. (22) is still valid, even though the BH itself
is not spherically symmetric. One subtlety is that we need
to take account of the spheroidal harmonics in Eq. (12).
Progress can be madewith an asymptotic relation, obtained
using the WKB techniques of Ref. [49]:

jS!l0ð� ¼ 0Þj2 ¼ 1

4�2

@A

@L
: (23)

Here L ¼ lþ 1=2 and A is the angular eigenvalue of the
spheroidal equation for m ¼ 0. We may then use the
following expansion:

A

L2
¼ 1� 1

2
�2 þ 1

32
�4 þ 5

8192
�8 þOð�12Þ; (24)

which is valid in the regime � � a!=L < 1. It follows that

2�2jS!l0ð� ¼ 0Þj2 ¼ L� �4L
32 þ � � � , and the subdomi-

nant term is very small near the Regge pole, and may be
neglected. The other steps in the derivation of Ref. [46]
follow through unchanged, and we arrive at

�=�geo � 1� 8��e���

�2b2c
sincð2�!=�Þ; (25)

where again � ¼ �=�. In the on-axis case, bc, � and �
can be written in closed form; the relevant expressions are
found in Eqs. (18), (22), and (24), respectively, of
Ref. [48]. Note that now bc � 1=�, for a � 0. In Fig. 4
we plot a selection of results obtained through Eq. (25),
and compare with numerically determined cross sections.

3. Semianalytic approximation

In the high-frequency regime, the behavior of the trans-
mission factors are closely linked to the properties of null
orbits, via

�!lm � ½1þ exp ð�2�ð!��LÞ=�Þ��1; (26)

[cf. Eq. (15) in Ref. [46]]. Here �ða=M;�Þ and
�ða=M;�Þ are, respectively, the orbital frequency and
Lyapunov exponent associated with a null orbit with an-
gular momentum ratio � � m=L. Accurate semianalytic

approximations for � and � are given in Ref. [49]: see
Eqs. (2.35), (2.36) and Eq. (2.40).
Figure 5 shows the transmission factors �!lm as a func-

tion of frequency M!, for the case l ¼ 5, a ¼ 0:9M, and
�l � m � l. It shows that Eq. (26) provides an excellent
approximation for estimating the transmission factors.

IV. NUMERICAL RESULTS

In this section we present our numerical results for the
scalar absorption cross section of the Kerr BH. We give
particular attention to the off-axis absorption cross section,
i.e., the � � 0 cases, which exhibit many distinct features
when compared to the spherically symmetric case.
As for the numerical precision, we have considered the

summation inEqs. (9) and (10) until the next termcontributes

 16
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 22

 24

 26

 28

 30

 32

 34

 36

 0  0.2  0.4  0.6  0.8  1  1.2  1.4

σ 
/ (

πM
2 )

ωM

a/M = 0.0
a/M = 0.5
a/M = 0.7
a/M = 0.9

a/M = 0.99

FIG. 4 (color online). The sinc approximation for on-axis
incidence (� ¼ 0). The solid lines show the numerically deter-
mined cross section (cf. Fig. 6), and the dashed lines show the
sinc approximation, Eq. (25), for a range of a=M and !M.
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 0.5  1  1.5  2

T
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r 
Γ ω

lm

ωM

a/M = 0.9

l = 5

m = -5 m = +5

FIG. 5 (color online). Transmission factors �!lm for angular
multipoles l ¼ 5 and �l � m � l. The solid lines show numeri-
cal solutions of Eq. (13), and the dashed lines show the semi-
analytic approximation, Eq. (26).
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less than 10�3 of the total value. Thismakes the computation
more efficient, as we do not need to integrate to very large
radii in order to obtain convergent results. In our case, the
maximum radius r1 is typically r1=rþ � 102 and the nu-
merical outer horizon rh is such that ðrh=rþ � 1Þ � 10�2.
The numerical upper limit in the l summation in

Eq. (14), lmax, should be considered carefully, in order to
properly compute the total absorption cross section. The
convergence of Eq. (14) depends strongly on the value of
the wave frequency !. For higher values of ! one should
take higher values of lmax. For the results presented here,
which are in the frequency range 0<!M< 1:4, we per-
formed the summation until lmax ¼ 8. Additional terms
coming from l > 8 would contribute less than 10�6 of
the total value, being unnoticeable in the data plots pre-
sented here. Our results were checked using independent
codes, which increases their reliability.
In Fig. 6 we show the total on-axis absorption cross

section for a=M ¼ 0:00 (Schwarzschild case), 0.60, and
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 10

 15

 20

 25

 30

 35

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1  1.1  1.2  1.3  1.4

σ/
(π

M
²)

ωM

a/M = 0.0
a/M= 0.6

a/M= 0.99

FIG. 6 (color online). On-axis (� ¼ 0) absorption cross sec-
tion for a=M ¼ 0:00, 0.60 and 0.99. The horizontal lines repre-
sent the high-frequency limits. We see that the general pattern of
the on-axis absorption cross section, even for rapidly rotating
BHs, is similar to the case of spherical (a ¼ 0) BHs.
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FIG. 7 (color online). Off-axis absorption cross section for a=M ¼ 0:30, 0.60, 0.90 and 0.99. For comparison, we also exhibit the on-
axis case (� ¼ 0), and its high-frequency limit (horizontal lines). We see that the oscillation pattern for the off-axis cases differs
considerably from the regular one exhibited in the on-axis case.
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0.99. In the on-axis case, as the frequency is increased,
the absorption cross section increases from the area of
the event horizon and then oscillates regularly around the
high-frequency limit given by the capture cross section of
null geodesics (see Fig. 3), which is represented by hori-
zontal lines in Fig. 6.

In Fig. 4 we compare the numerically determined cross
section with the ‘‘sinc approximation’’ of Eq. (25). We see
that the agreement is excellent in the moderate-to-large
!M regime, which confirms the validity of Eq. (25).

In Fig. 7 we show the absorption cross section for a
range of rotation parameters (a=M ¼ 0:30, 0.60, 0.90, and
0.99) and incidence angles (� ¼ 0, 30, 60, and 90 deg). We
see that, as we move away from the on-axis case (� ¼ 0),
by increasing the incidence angle �, and increasing the
rotating parameter a, the absorption cross section starts to
differ considerably from the regular behavior shown in
Fig. 6. In the high-frequency regime, � oscillates in an
irregular way around the geodesic capture cross section.
This irregular oscillatory behavior arises as a consequence
of breaking the azimuthal degeneracy, so that the trans-
mission factor becomes strongly dependent onm, as shown

in Fig. 5. In other words, there is a coupling between the
BH rotation and the azimuthal number m, which may be
interpreted as the result of frame dragging [27].
The azimuthal number m may be positive, which corre-

sponds to corotating modes, or negative, which corresponds
to counterrotating modes. In order to see their contribution
separately, we computed the absorption cross sections, �þ
and ��, as defined in Eq. (16). The results are shown in
Fig. 8. When we split the absorption cross section into co-
(�þ) and counterrotating (��) contributions, we see that the
oscillating pattern becomes more regular. Furthermore, we
see that the counterrotating contributions for the total ab-
sorption cross section are larger than the corotating ones.
This agreeswith the null geodesic analysis, where the critical
radius for retrograde orbits is larger than that for prograde
orbits [1].We note that�þ and�� move further apart as the
rotation rate increases. The difference between the co- and
counterrotating absorption cross sections is more pro-
nounced for � ¼ 90 deg, as a consequence of the increased
importance of frame dragging in the equatorial plane.
In Fig. 9 we show the main partial contributions for

the total absorption cross section for fixed values of jmj,
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varying l, according to Eq. (12). We see from Fig. 9 that
corotating (m> 0) and counterrotating (m< 0) contribu-
tions to the partial absorption cross section with the same
value of jmj become equal after a certain value of the

frequency. This occurs when both partial waves are
completely absorbed, i.e. jRin

!lm=A
in
!lmj2 ¼ 0, and the

sign of m in Eq. (12) becomes irrelevant. The approximate
value of the frequency at which absorption becomes sig-
nificant is determined by�L, where� is the frequency of
the corresponding null orbit, which depends on both m=L
and a=M (see Sec. III B 3).
Due to superradiance [41], the reflection coefficient can

actually exceed unity for some values of ð!;mÞ. See, for
instance, Ref. [36], where the reflection coefficient is
computed for different values of a. For these values, as
can be seen in Fig. 10, the transmission factor and partial
absorption cross section are negative, although the total
absorption cross section remains positive. We recall that
there is no superradiance for m ¼ 0, and that it is most
evident for the l ¼ m ¼ 1 mode.

V. CONCLUSION

We have numerically computed the absorption cross
section of plane massless scalar waves incident upon
Kerr BHs, for general angles of incidence, revealing the
effect of black-hole rotation. In the special case of on-axis
incidence, we showed that the absorption cross sections are
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well described by a simple sinc approximation. Our result
was obtained by extending the complex angular momen-
tum method of Ref. [46]. In the general case of arbitrary
incidence, we showed that the absorption cross section of
a Kerr BH exhibits an irregular oscillation pattern, which
is in contrast to the regular oscillations shown by a
Schwarzschild BH. We have taken steps to explain this
effect in terms of the coupling between the azimuthal
angular momentum of the field and the angular momentum
of the BH. In Sec. III B 3 we gave a semianalytic approxi-
mation to relate the transmission of partial waves to the
properties of the null photon orbits. To explore the cou-
pling, we have compared the corotating (m> 0) and coun-
terrotating (m< 0) contributions to the absorption cross
section. We have shown that, due to superradiance in
the Kerr spacetime, the partial absorption cross section
becomes negative for some values of ð!;mÞ.

Some of the features observed in the scalar absorption
by Kerr BH have also been observed in the absorption of
sound waves by the draining bathtub: an (inexact) analogue
of Kerr BH in (2þ 1) dimensions [33] which is amenable
to a full analysis using the complex angular momentum
approach [32]. The results presented here represent a

significant step towards understanding the absorption by
axially symmetric BHs, for waves impinging at general
angles. Possible themes for future work could include (i) an
extension of the complex angular momentum approach of
Sec. III B 2 to waves impinging at arbitrary angles of
incidence, which would require careful asymptotic analy-
sis of the spheroidal harmonics, and (ii) analysis of higher-
spin (e.g. Dirac [28], electromagnetic, or gravitational)
planar waves, where there will be an additional coupling
between black-hole rotation and the spin of the field.
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