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We analyze the question of possible quantum corrections in the entropic scenario of emergent gravity.

Using a fuzzy sphere as a natural quasiclassical approximation for the spherical holographic screen, we

analyze whether it is possible to observe such corrections to Newton’s law in principle. The main outcome

of our analysis is that without the complete knowledge of the quantum dynamics of the microscopic

degrees of freedom, any Plank-scale correction cannot be trusted. Some perturbative corrections might

produce reliable predictions well below the Plank scale.
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I. INTRODUCTION

The final form of quantum gravity (QG) is yet to
be found. Either of the two main candidates for such a
theory—(super)string theory and loop quantum gravity
(LQG)—despite much progress, still cannot be taken as
the final answer (the very existence of two seriously differ-
ent theories of QG means that the problem of the quanti-
zation of gravity is far from being settled). In this situation,
any effort in this direction should be welcomed. In particu-
lar, given a model for QG, it is very important to under-
stand how the classical limit of Einstein’s general relativity
(GR) emerges, as well as to learn how to calculate possible
quantum-gravitational corrections. Concerning the classi-
cal limit, the recently proposed entropic gravity [1] might
turn out to be quite important. In this model, E. Verlinde
proposes that gravity, instead of being a fundamental force,
has an emergent, entropic origin. Roughly speaking, one
can think of the gravitational force as being caused by the
change of the entropy of the system—a holographic screen
plus a test mass. Under some assumptions, this model
uniquely leads to the classical GR for quite general quan-
tum dynamics. E.g., in Ref. [2], it was shown that by using
this approach one can get Newton’s law in the framework
of LQG. Due to this universality, the question of quantum-
gravitational corrections becomes very important. The
hope is that this will eventually allow us to tell the differ-
ence between different models of QG. In this regard, the
following observation is of great importance [3]: indepen-
dently of specific details of the final theory of QG, the
quasiclassical regime—i.e. when the typical energy scale is
close to the Plank scale—should be described by a field
theory on some noncommutative space-time. Of course
this is true only if one can use unmodified GR all
the way up to the relevant scale. The more accurate con-
clusion seems to be that the gravity (or geometry) should
somehow be modified close to this scale. Noncommutative

deformation is a suggestive possible candidate for such a
modification. It should capture some nonperturbative ef-
fects of QG. The details of this noncommutativity do
depend on the QG model, i.e. on the quantum dynamics.
The naturalness of the noncommutativity as some QG
residue was explicitly demonstrated in the three-
dimensional case for the Ponzano-Regge model[4]. (See
also earlier papers [5,6] where similar conclusions were
reached for the case of particles coupled to three-
dimensional gravity.)
The main goal of our work is to analyze possible effects

of the underlying noncommutativity on the entropic grav-
ity. Ever since its publication, the entropic scenario has
generated a series of comments and criticisms. One of the
main objections is that the obtained results are a conse-
quence more of the dimensional analysis rather then some
fundamental physical reasons (this especially applies to
Newton’s law). This makes it very important to analyze
the process of the ‘‘interaction’’ of a test particle with the
holographic screen, i.e. how this particle becomes a part
of the screen. From our point of view, here one has one of
the major problems of the model: a well-defined smooth
holographic screen, e.g. a sphere, is an adequate model to
reproduce the GR limit and is too restrictive if one wants
to go beyond the classical approximation. Taking into
account the above observation about the universality
of noncommutativity in QG, we address this point by
considering a fuzzy sphere as a natural candidate for a
holographic screen, which ‘‘remembers’’ its quantum-
gravitational origin.
As the detailed answer to the above question on how a

test particle becomes a part of the screen depends on our
knowledge of the quantum dynamics of the microscopic
degrees of freedom, we will be interested in a less ambi-
tious problem: how does a test particle ‘‘see’’ the holo-
graphic screen (which is taken to be a fuzzy sphere)? As
the main tool of our analysis, we use some methods of
spectral geometry. Our main results are the following:
(1) To actually discuss quantum corrections close to the

Plank scale, one needs to know the details of the
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quantum dynamics. Any attempt to obtain such
corrections without knowing how the test particle
‘‘sees’’ the holographic screen will be destroyed by
the uncertainties due to our ignorance about this
process. On the other hand, away from the Plank
scale, some universal corrections might be well
defined, confirming their perturbative origin.

(2) A somewhat related and more important point is that
a test particle is a very important ingredient of the
whole construction. One cannot remove it from the
picture in principle. We will see that there is a
regime (though quite beyond any experimental
reach) when different test particles will see the
holographic screen quite differently. Hence, one
can speculate about a possible violation of the
equivalence principle by quantum gravity (in this
scenario).

The plan of the paper is as follows. In Sec. II we briefly
discuss Verlinde’s approach to entropic gravity, its consis-
tency and some possible corrections. After arguing that to
go beyond the classical limit one has to abandon the notion
of a smooth holographic screen in favor of a noncommu-
tative one, in Sec. III we introduce the fuzzy sphere and
review some properties of its Dirac operator. In Sec. IV, we
apply (the generalization of) Weyl’s theorem to calculate
the area of a fuzzy holographic screen as seen by a test
particle. We analyze possible corrections to the classical
area in the regimes of weak and full noncommutativity.
Section V contains a discussion and interpretation of the
obtained results. We conclude with a summary and some
final remarks.

II. CLASSICAL ENTROPIC GRAVITY
AND BEYOND

Here we briefly summarize the main steps and inputs
leading to the entropic scenario [1]. We stress the points
that need—from our point of view—more justification or
more careful analysis.

(1) One starts by assigning to any surface some entropy,
which scales as the area, A. In such a way, any
surface—not just black hole horizons—plays the
role of a ‘‘holographic screen.’’

(2) When a test particle (which is assumed to be ele-
mentary, i.e. pointlike) of massm approaches such a
holographic screen at a distance of the order of the
Compton wavelength, �m ¼ ℏ

mc , the entropy of the

screen is increased by �S ¼ 2�kB. To simulate a
more continuous change in entropy, one assumes
that when the particle is at a distance �x from the
screen, the change is given by

�S ¼ 2�kB
�x

�m

: (1)

One immediately sees tension between the first two
assumptions [7]: while in (1) entropy scales like the

area, according to Eq. (1) it scales as the distance.
Already this suggests that one should have a better
understanding of how exactly a test particle be-
comes a part of the holographic screen.

(3) The energy associated to the screen, ES, is given by
the total energy inside the screen. In the nonrelativ-
istic limit, ES ¼ Mc2, where M is the total mass
encircled by the surface.

(4) This energy is equally distributed between N quanta
of the surface, which leads to the temperature of the
screen,

ES ¼ 1

2
NkBT; (2)

where N ¼ A
l2P
and lP ¼

ffiffiffiffiffi
Gℏ
c3

q
is the Plank length.

(5) The last assumption is that the resulting entropic
force

F ¼ T
�S

�x
(3)

is gravity.
Combining assumptions (1)–(5), one immediately ar-

rives (for a spherically symmetric configuration) at
Newton’s law [1]. One of the most attractive features of
this scenario is its universality: independently of the actual
microscopic dynamics, as long as the fundamental theory
satisfies (1)–(5), it will lead to general relativity. This has
already been used as a possible way to get Newton’s law
from LQG [2].
We have already mentioned one potential tension be-

tween some of the assumptions (1)–(5). Another one was
raised by many critiques of the entropic scenario: with this
setup, Newton’s law is a mere consequence of the dimen-
sional analysis. This makes it crucial to check the emer-
gence of gravity in this way from some fundamental theory
or at least to go beyond the classical limit and try to
calculate quantum corrections. The major effort in this
direction has been based on calculating corrections to the
entropy and then using this quantum-corrected entropy in
the derivation of a corrected Newton’s law. Here we men-
tion just a couple of works, which are relevant for our
consideration. (For some other approaches see, e.g.
Refs. [8,9].)
In Ref. [7], LQG-inspired corrections were considered

in the form

S ¼ AkB
4l2P

� akB ln

�
A

l2P

�
þ bkB

�
A

l2P

�
3=2

; (4)

where a and b are some constants of order one. While the
first term in Eq. (4) is the usual Bekenstein entropy, the
others represent corrections. The logarithmic correction is
quite universal, while the volume correction is motivated
by LQG. The use of Eq. (4) leads to the following correc-
tions to Newton’s law:
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F ¼ �GMm

R2

�
1� a

l2P
�R2

þ 12b
ffiffiffiffi
�

p R

lP

�
: (5)

Due to the universality of the logarithmic correction in
Eq. (4), the first correction to Newton’s law is also quite
universal and follows from different models for quantum
corrections [10–12]. The volume correction to entropy was
advocated in Ref. [13] and it is interesting because it leads
to much stronger gravity at large distances, which has the
potential of explaining anomalous galactic rotational
curves [7], though a quick inspection shows that this is
the case for quite an unnatural value of the parameter b.1

The approach taken in Ref. [15] uses some specific
model to calculate corrections to entropy due to the non-
commutativity of space-time. One arrives at the corrected
Newton’s law,

F¼�GMm

R2

�
1þRe�R2=ð4�l2PÞffiffiffiffiffiffiffiffi

��
p

lP
þR2e�R2=ð2�l2PÞ

2�
ffiffiffiffi
�

p
l2P

�
: (6)

Note that in this case the corrections are exponentially

suppressed by R2

l2P
. This means that even the hypothetical

possibility to measure such corrections becomes even more
evasive.

We mention these two works because, from our point of
view, they are trying to address two very important issues
of the original entropic scenario: while Ref. [7] has some-
thing to say about the process of a test particle becoming a
part of the holographic screen, Ref. [15] considers non-
commutative space-time, which is more natural from the
quantum gravity point of view [3].

In this paper, we also take this ‘‘noncommutative’’ point
of view: we model our spherical holographic screen by a
fuzzy sphere SF [16] in place of a smooth S2. But instead of
considering corrections to entropy (which, anyway, is be-
yond our reach without knowing something about quantum
degrees of freedom), we ask the following question: how
does a test particle see this sphere? In particular, wewill try
to analyze the area of the holographic screen as seen by a
test particle. It should be clear that this is closely related to
the question of how a test particle ‘‘interacts’’ with the
screen, though the complete answer to this question once
again requires information about microscopic dynamics.

Before we discuss some properties of the fuzzy sphere
and its Dirac operator, we would like to give some
arguments on why we think a fuzzy sphere should be a
natural candidate for a spherical screen as well as why we
need its Dirac operator.
(1) As we have already stressed several times, the predic-

tion of the noncommutativity of the space-time at
some quasiclassical regime is model independent [3].

(2) For a spherically symmetric classical distribution of
a mass M, we should expect that some notion of
spherical symmetry is left even in this quasiclassical
regime. Recalling that a fuzzy sphere is essentially a
unique deformation of the commutative one such
that it carries the usual, undeformed action of SO(3),
we conclude that if a spherical holographic screen
should be deformed, a fuzzy sphere is the most
natural candidate for this.

(3) A fuzzy sphere has a natural, built-in discreteness,
which should be compared with the assumed dis-
creteness of a holographic screen.

(4) Using the same kind of arguments, it was speculated
(see e.g. Ref. [17]) that a fuzzy sphere can be quite
useful and natural in black hole physics.

(5) Why do we need a Dirac operator? Below we will
discuss this in more detail, and here we just give
some motivation. In our previous work [18], we
showed the effectiveness of a physically relevant
Dirac operator for calculations of such geometrical
characteristics as area and dimension in the case of
deformed geometries (in the example of the Horava-
Lifshitz deformation of GR). Here we would like
to adopt the same procedure for the calculation of
the ‘‘physical’’ area of a fuzzy sphere as seen by a
test particle.

III. FUZZY SPHERE AND ITS DIRAC OPERATOR

A fuzzy sphere [16] provides a very important example
of a noncommutative space, such that the commutative
isometry, SO(3), remains as a symmetry on the noncom-
mutative level. The algebra of the ðN þ 1Þ � ðN þ 1Þ
fuzzy sphere of radius R is generated by noncommutative
coordinates,

½xi;xj� ¼ i��ijkxk; (7)

where � ¼ 2Rffiffiffiffiffiffiffiffiffiffiffiffiffi
NðNþ2Þ

p . It is clear that Eq. (7) is invariant

under the usual SO(3) action, i.e. when xi transforms as a
vector. The presence of two parameters, R and N, allows
one to recover as special limits not only a commutative
sphere but also the Moyal and commutative planes [19].
It is clear from the definition that the noncommutative
coordinates, rescaled by �, are given by the (N þ 1)-
dimensional irreducible representation of the SU(2) gen-
erators, Li. Then one immediately recognizes R2 as the
value of the Casimir,

P
ixixi, in this ðN þ 1Þ � ðN þ 1Þ

1Though in Ref. [7] it is said that b is of order 1 or less, we can
see that it should be much less to pass the Solar System tests.
This is due to the huge factor R

lP
in Eq. (5). Even more strange

restrictions should be imposed on b if one wants to use Eq. (5) to
explain galactic rotational curves. As it was shown in Ref. [7],

one should take b ¼ lP
3

ffiffiffiffiffiffiffiffiffiffiffiffi
a0

16�GM

q
, where a0 ’ 1:2� 10�10 m=s2

[14]. Then b ¼ 10�36
ffiffiffiffi
1
M

q
, where M is in kilograms. So, b should

not only be tiny but should also nontrivially depend on mass, i.e.
not appear to be universal. So, unless one provides serious
arguments for such behavior of b, the last term in Eq. (5) should
be treated with great care if trusted at all.
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representation. This is why we still can speak of a well-
defined radius.

At this point, R and N are independent. Depending on
the model at hand, they might remain independent or there
could be some relation between them. The typical example
of the first situation is given by the different field theory
models on a fuzzy sphere (see, e.g. Ref. [20]). In this case,
N serves as a UV regulator to be removed at the end, while
keeping R fixed. In this way one can study the development
of UV divergencies as well as the appearance of the famous
UV/IR mixing [21]. The examples of the second type, i.e.
when N is not independent, should come from some fun-
damental physics, which does not contain additional free
parameters. E.g. in Ref. [17], it was argued that in the case
when a fuzzy sphere is used to model a black hole horizon,
N should be proportional to the area of the horizon, i.e. to
R2.2 This is what we adopt in this paper due to the obvious
analogy between horizons and holographic screens in en-
tropic gravity (see also the discussion in Sec. IVB).

To proceed with our goal, we will need a Dirac operator.
This is one of two of the most important operators in
noncommutative geometry (the second one being the chi-
rality operator). It is essential for the construction of the
differential and integral calculus. As such, it is subject to
several natural conditions (see Ref. [23] on the role of the
Dirac operator in noncommutative geometry). In the case
of a fuzzy sphere, we have one extra condition: because
this noncommutative space is rotationally invariant, it
would be quite desirable that the corresponding Dirac
operator respects this symmetry. There are essentially
two slightly different proposals for such an operator
[24,25] (see also Ref. [26] for the treatment of a more
general case of a q-deformed sphere, which reduces to that
in Ref. [24] in a special limit). In this paper, we will work
with the operator defined in Ref. [24],3

6D ¼ 1

R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NðN þ 2Þ
ðN þ 1Þ2

s �
ð�þ 1Þ � 1

2R2
f�;xiLig � �

R2
xiLi

�
;

(8)

where � ¼ Li � �i, � ¼ xi � �i, �i are the Pauli matri-
ces and the rest of the operators are understood as, e.g.,
xi ¼ xi � 1, etc. It is clear that Eq. (8) respects the SU(2)
symmetry of the fuzzy sphere. In addition, it anticommutes
with the natural chirality operator, which is given by a
linear function of � [24]. From the definition (8), it should
be clear, that the Dirac operator is acting, as in the com-
mutative case, on the space of the two-component spinors.

So, we still have the commutative relation between the
dimension of the space and the dimension of the spinor
bundle. This will be important in our further discussion.
Using the rotational invariance and the above-mentioned
fact that the xi’s are proportional to the Li’s, after some
standard algebra, one arrives at the spectrum of the Dirac
operator [24],

!j�¼� 1

R

�
jþ1

2

��
1� 1

NðNþ2Þ
��

jþ1

2

�
2�1

��1
2
; (9)

where the jðjþ 1Þ’s are the eigenvalues of the square of
the total angular momentum Ji

2, where Ji :¼ Li þ 1
2�i.

Then, from the fact that we are working with an (N þ 1)-
dimensional irreducible representation, it easy to see that
j 2 N or j 2 Nþ 1

2 depending on whether N is odd or

even and 0 � j � Nþ1
2 .4

IV. SPECTRAL AREA OFA FUZZY SPHERE

In this section, we show how the Dirac operator (8) with
the help of Weyl’s theorem can be used to calculate the
corrections to the area of a fuzzy sphere. We start with the
classical formulation of Weyl’s theorem for the case of
commutative geometry, and then we will argue that it still
makes sense to use this theorem (but now as the definition)
for the analysis of some properties of noncommutative or
other generalized geometries.
Weyl’s Theorem: Let � be the Laplace operator on a

closed Riemannian manifold M of dimension n. Let
N�ð!Þ be the number of eigenvalues of �, counting multi-
plicities, less then !, i.e. N�ð!Þ is the counting function

N�ð!Þ :¼ #f!kð�Þ:!kð�Þ � !g: (10)

Then

lim
!!1

N�ð!Þ
!

n
2

¼ VolðMÞ
ð4�Þn2�ðn2 þ 1Þ ; (11)

where VolðMÞ is the total volume of the manifold M.
Though the theorem is given in terms of the Laplace

operator, with the help of the Lichnerowicz formula, 6D2 ¼
�þ 1

4R,R being the curvature, it could be easily rewritten

in terms of the Dirac operator, 6D. In this case, one should
take care of the dimension of the spinor bundle, which is, in
the commutative case, equal to 2m, where n ¼ 2m or
n ¼ 2mþ 1. So, we can see that in the commutative case
Weyl’s theorem provides a way of simultaneously calculat-
ing both the volume and the dimension of a manifold. The
advantage of this method is in the fact that it is purely
algebraic, which allows for immediate generalizations to

2To get the standard area-entropy relation, one still has to use
Wheeler’s ‘‘it from bit’’ argument [22], i.e. that every elementary
area carries several bits of information. Of course, the funda-
mental theory should provide an explanation for this (e.g. it has a
more or less natural explanation in LQG).

3The other choices should not seriously change our conclu-
sions; see Sec. V.

4In Ref. [24], it was also argued that to have a correct
commutative limit, we should keep only the case of the even
N, but this will not be important for our calculations. Moreover,
we believe that if a fuzzy sphere should come from some theory
of quantum gravity, both representations should be allowed.
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the cases when the usual geometrical techniques do not
exist. Before we proceed with the application to the
fuzzy-sphere case, wewould like to give some justifications
of such an application.

At first sight, the naive application of Weyl’s theorem to
a geometry given by the finite matrix algebra (as in our
case) may not seem correct. Nevertheless, we will argue
that using this theorem—but now as the definition—still
makes sense even in this case. But now, as we will see, one
has to clearly distinguish between the formal mathematical
and applied physical approaches.

(i) The mathematically meaningful application of
Weyl’s theorem to finite matrix models seems quite
doubtful. This could be understood as follows:
when the spectrum is unbounded [in particular,
N�ð!Þ ! 1], the requirement that the right-hand
side of Eq. (11) makes sense (i.e. finite for compact
geometries) fixes uniquely the dimension n, which,
in turn, allows one to determine VolðMÞ. But for the
case of a finite model, the spectrum is finite, as in
Eq. (9), and N�ð!Þ is finite too. As a result, we do
not have any requirement that could fix either n or
VolðMÞ. Here it is crucial that ! can (and should)
be taken arbitrarily large. We will see how the situ-
ation changes in the presence of the physically
motivated cutoff.

(ii) Let us now use Weyl’s theorem as a physical tool to
measure the dimension and area of some (possibly
noncommutative) space. For this we are going to use
the experimental spectrum of the corresponding
Dirac operator. Clearly, this spectrum could be mea-
sured only up to some cutoff,!co. Typically, even in
the case of a finite model, this cutoff is below the
maximal eigenvalue of the Dirac operator. So, the
apparatus used to probe the geometry will not know
whether the spectrum is finite or not. Then we can
continue to use Weyl’s theorem, but now instead of
the mathematical limit, ! ! 1, we should take the
‘‘physical’’ one, ! � !co. (See further discussion
below.) Now, in general, both the volume and di-
mension will depend nontrivially on the cutoff and
without some further (physical) input it is impos-
sible to determine both of them. If we assume the
classical value for the dimension, as we will do in
this paper, then we can derive the cutoff-dependent
corrections to the classical volume. In Ref. [18],
this approach was successfully used to analyze
the UV/IR behavior of the spectral dimension in
the Hořava-Lifshitz models of gravity. (See also
Ref. [18], especially the concluding section, for
the discussion and physical interpretation of this
approach.)

After these comments, let us apply this approach to the
case of the fuzzy sphere. First of all, we would like to give
two arguments in favor of why we want to keep the

dimension of the fuzzy sphere equal to the classical one,
n ¼ 2. Firstly, as we commented after Eq. (8), the non-
commutative Dirac operator acts in the space of the two-
component spinors. This means that the passage between
the formulation of Weyl’s theorem in terms of the Laplace
operator � and the one in terms of the dirac operator 6D is
the same as in the case of n ¼ 2. Secondly, if we look at
this from the physical point of view, then during the
process of measuring the spectrum of 6D (or �), we are
already assuming that we are measuring the spectrum of
some operator defined on some two-dimensional surface.
We then treat any deviations from the commutative result
as the quantum-geometrical corrections to the area.
Keeping this in mind, let us proceed.
As a first step, we need to calculate the counting function

(10). For this, we need to calculate j as a function of !.
Inverting Eq. (9), we obtain�
jþ 1

2

�
2 ¼ ðN þ 1Þ2 � ½ðN þ 1Þ4 � 4!2R2NðN þ 2Þ�1=2

2
:

(12)

To choose the correct sign in Eq. (12), we note that

ðjþ 1
2Þ2 � ðNþ2Þ2

4 . This leads to the choice of the minus

sign. Then we have the maximal value of j corresponding
to a cutoff scale !co,�
jmaxþ1

2

�
2¼ðNþ1Þ2�½ðNþ1Þ4�4!2

coR
2NðNþ2Þ�1=2

2
:

(13)

Taking into account that the degeneracy of each eigen-
value is equal to (2jþ 1), we can write the counting
function as

Nj 6Djð!coÞ ¼ 2
Xjmax

ð2jþ 1Þ: (14)

The coefficient of 2 comes from the plus/minus sign
in Eq. (9). Taking (for definiteness) j to be half-integer,
i.e. N to be even (see the footnote 4), we obtain the
following exact expression for the counting function:

Nj 6Djð!coÞ¼2

�
jmaxþ1

2

�
2þ2

�
jmaxþ1

2

�

¼ðNþ1Þ2
�
1�

�
1�4!2

coR
2ðNþ2ÞN

ðNþ1Þ4
�1
2

�

þ ffiffiffi
2

p ðNþ1Þ
�
1�

�
1�4!2

coR
2ðNþ2ÞN

ðNþ1Þ4
�1
2

�1
2
:

(15)

A. Commutative Limit, N ! 1
Let us first use Eq. (15) to reproduce the commutative

result for the area of a sphere. This will later help us clarify
some points about the applicability of the method, as well
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as provide the example of the effectiveness of Weyl’s
theorem.

The commutative limit corresponds to sending the
dimension of the representation, N, to infinity, while keep-
ing !co finite. (In the end, it will also be sent to infinity or,
rather, made ‘‘big enough.’’) In this limit, we have�

jmax þ 1

2

�
2 ¼ R2!2

co: (16)

So, the counting function (15) becomes

Nj 6Djð!coÞ ¼ 2R2!2
co þ 2R!co: (17)

Now we would like to use Weyl’s theorem (11) in the form
suited for the Dirac operator, 6D (setting n ¼ 2),

lim
!co!1

Nj 6Djð!coÞ
!2

co

¼ 2AreaðMÞ
4��ð2Þ ; (18)

where the factor of 2 is the dimension of the spinors [see
the discussion after Eq. (11)]. Using Eqs. (17) and (18), one
immediately obtains the well-known result for the area of a
commutative sphere S2,

AreaðS2Þ ¼ 4�R2: (19)

What happens if—instead of the exact limit in Eq. (18)—
we take just a ‘‘physical’’ limit, i.e. take !co very large
but finite? How big should !co be so that we could
still conclude that the area is given, within experimental
uncertainty, by the formula (19)? From Eq. (17), we
have

Nj 6Djð!coÞ
!2

co

¼ 2R2 þ 2R

!co

: (20)

Then if !co � 1=R, or jmax � 1, the ‘‘physical’’ area
will be given exactly by Eq. (19). The second term in
Eq. (20), which is the correction to the commutative
answer, is nothing but the physical uncertainty in mea-
suring R using a test particle of mass m as a device.
Really, we have �R� �m ) �S� �mR or, assuming
that �m � 1

!co
, we get the needed correction (see also

the discussion at the end of the next section). This
should make it clear that our definition is a physical
one: the outcome really depends on what particle is used
to probe our screen. This will become even more im-
portant after we move to the discussion of possible
corrections.

B. Case of Weak Noncommutativity

Now we pass to the calculation of the noncommutative
corrections to the formula (19) for the case when non-
commutativity is not too strong. To begin with, we would
like to discuss the range of the applicability of our method.
From the previous section, we already know that the cutoff
scale, !co, should be much bigger then 1=R if we want to
see any correction to the commutative result (otherwise

any correction will just be masked by the experimental
error). But there is another bound on !co coming from the
fact that this cutoff should still be well below N=R. This
comes about due to the following reason: we still want the
fuzzy sphere, SF, to not be too fuzzy, i.e. N still should be
much bigger then 1. Then N=R is just the order of the
largest eigenvalue [see Eq. (9)], and to be in the regime of
corrections we need !co to be much smaller then this
largest eigenvalue. So, combining these reasons, we have
the following range for the cutoff, where we expect to see
corrections due to noncommutativity:

1 	 R!co 	 N: (21)

Assuming that Eq. (21) holds, we have the following
leading correction to the classical result (16):�
jmax þ 1

2

�
2 ¼ R2!2

co

�
1þ R2!2

co

N2
þO

�
1

N2
;
R2!2

co

N3

��
:

(22)

Using this result in Eq. (15), we arrive at the corrections to
Eq. (19),

AreaðSFÞ 
 4�R2

�
1þ R2!2

co

N2

�
: (23)

Let us analyze the result (23). First of all, we have to
make sure that the noncommutative correction is seen on
the background of the classical error; see Eq. (20) and the
discussion thereafter. This is equivalent to neglecting the
second term in Eq. (15). This means that while satisfying
Eq. (21), !co should also respect the following:

R2!2
co

N2
� 1

R!co

: (24)

Combined with Eq. (21), this puts quite unrealistic restric-
tions on the possibility to observe these noncommutative
corrections even in principle. To see this, we should answer
the following question: what are !co and N? We assume
that !co should be of the order of the inverse Compton
wavelength of the test particle, which is used to probe the
fuzzy sphere. This assumption seems very natural in view
of the fact that this particle is the ‘‘device’’ used to probe
the holographic screen in the entropic approach. As for N,
we make another natural assumption that this is the sameN
that is used in the formulation of the entropic scenario,
i.e. the number of quanta of area, N � A=l2P. Now, if we
require that the quantum corrections (23) are seen on top of
the classical ‘‘experimental’’ error (20), we immediately
see that this is equivalent to�

lP
�m

�
3 � R

lP
: (25)

It is clear that Eq. (25) could be satisfied only in the regime
of strong noncommutativity, which is well beyond the
assumed weak noncommutativity. So, we have to analyze
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the fully noncommutative model, i.e. Eq. (15), without
assuming Eq. (21).

C. Strong Noncommutativity

Because in this regime it is hard to expect that our model
will correctly describe quantum-gravitational effects, we
will just perform a qualitative analysis.5 For this, let us plot
the behavior of the area as seen by the particle, AF, versus
the cutoff scale, !co. The result is shown in Fig. 1. What
exactly does this picture mean?

First of all, one should not be deceived by a ‘‘big
enough’’ N: N ¼ 100 000 corresponds to a highly non-
commutative (i.e. quantum) regime. This is because for
this N, the radius of the screen (using our assumption,
N � A

l2P
) is just three orders below the Plank scale.

Secondly, where is the Plank scale, !P � 1
lP
, in this

figure? With the same assumptions as above, we can easily
see that

!P

!max

� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!maxR

p � 1ffiffiffiffi
N

p : (26)

So, even for such a highly quantum regime !P

!max
� 10�3, i.e.

the Plank scale is well below !max.
Thirdly, we can see in Fig. 2 that deviations from the

classical area (plus experimental error) defined by Eq. (20)
start at quite a high cutoff, which in this specific case
is well above the Planck scale. This is in complete agree-
ment with Eq. (21)—which could be rewritten as
1
N 	 !co

!max
	 1—and the conclusion at the end of the pre-

vious section that for this range noncommutative correc-
tions are not seen on the background of the experimental
uncertainty. So, we can say that even if a test particle could

probe the Plank scale6 it will see almost the classical area
(for this value of N). We can see that, due to Eq. (26), the
situation will drastically change if one goes deeper into
the quantum regime, i.e. smaller N. (See the discussion in
the next section.)
All of the above seems to indicate that there are no

significant corrections to the physical (i.e. as seen by a
test particle) area of the holographic screen due to the
noncommutativity of this screen. As a result, one might
conclude that the only corrections to Newton’s law in the
entropic scenario are due to the corrections to the entropy,
as in Eqs. (4)–(6). In the next section we will discuss
whether this is true or not.

V. DISCUSSION AND INTERPRETATION

Let us analyze what we have obtained. We will start by
confronting our results with the result (6), which was also
obtained in the noncommutative framework. Looking at
Eq. (6), we immediately notice that the only way to see any
sizable corrections is to approach the source mass M to a
distance of order of the Plank scale; otherwise, any such
correction will be exponentially suppressed. What is this
regime in our picture? It is not hard to see that it corre-
sponds to N � 1. But, according to Eq. (26), this is exactly
where the maximal cutoff scale !max is of order of the
Plank scale! Then it is pretty obvious that the quantum
corrections to the area will be very significant. E.g., if N ¼
100, the corrections in Eq. (6) will be suppressed by a
factor of the order of e�100, while by looking at Fig. 2
(which looks pretty much the same for N ¼ 100, but now
the Plank scale is around 0:2!max) we see that noncommu-
tative corrections to the area will be of order of 1%. In this

FIG. 1 (color online). The example of AF=A vs !co, where
A ¼ 4�R2, and !max is determined from Eq. (13) and
N ¼ 100 000.

FIG. 2 (color online). Noncommutative area [normalized
to Aph, the classical ‘‘physical’’ area, which includes the

‘‘experimental’’ error (20)] as a function of the cutoff scale. A
significant deviation is seen well below the cutoff.

5This still should make sense because, as we mentioned
before, noncommutativity is a nonperturbative residue of QG,
so it should capture QG effects up to �m � lP.

6One can imagine using as a test particle the so-called max-
imon [27], i.e. a speculated elementary particle such that its
Compton wavelength is equal to its gravitational radius.
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regard, it is important to understand that to see these
corrections one needs a test particle that can probe the
Plank scale. But while Eq. (6) produces corrections only
within the Plank distance of the source, the noncommuta-
tive corrections to area are nonzero even away from the
origin. This leads to the conclusion that these noncommu-
tative corrections can completely shadow the effects due to
the corrections to the entropy [given by Eq. (6)].

Let us now look at Eq. (5). This type of corrections looks
much more reliable. Namely, let us consider the first cor-
rection [due to the logarithmic term in Eq. (4)]. It is pretty
obvious from our analysis that there exists some range
where this term will clearly dominate any correction to
the area. This is because this term behaves as 1=N and does
not depend on the Compton wavelength of a test particle.
So, when the test particle has a large Compton wavelength
compared to the Plank scale [but still small enough to
probe such distances, i.e. �m 	 R; see Eq. (21) and the
discussion after Eq. (20)], one will have sizable corrections
to Newton’s law while having almost negligible correc-
tions to the area [see Fig. 2 and Eq. (26)]. However, closer
to the Plank scale this will be completely masked by the
area correction. This could be interpreted in the following
way: it is well known that the same corrections also come
from perturbative quantum gravity [10,11], so it is reason-
able to believe that they should be trusted well above the
Plank scale. Closer to the Plank scale perturbative calcu-
lations would clearly fail, and this is where noncommuta-
tive effects, which are nonperturbative traces of QG, will
start to matter.7

This consideration brings our attention to the very im-
portant point of the nontrivial dependence of the possible
corrections on a test particle. A test particle now becomes
the essential part of the definition of gravity. It is needed
not just to reveal already-existing gravity (in the form of
curvature of space-time as in GR), but to ‘‘produce’’ it by
changing the entropy of the holographic screen, which
leads to the entropic force. By looking at the holographic
screen from the point of view of noncommutative geome-
try, it makes this special role of a test particle even more
obvious: now, the same holographic screen will look differ-
ent for different test particles. This looks quite like the
violation of the equivalence principle by the quantum-
gravitational effects. In our approach, this is reflected in
the result that the area corrections depend on the physical
cutoff, which is a function of the mass of a test particle,
!co �m.

Before we close this section, we would like to support
the assumption made at the very beginning: the cutoff
scale is always below the ‘‘end’’ of the spectrum. Using
considerations such as those in Ref. [28], one can argue
that the cutoff scale should be less than or equal to the
Plank scale. But we have seen that the Plank scale is
always below the maximal eigenvalue (at least in our
model). Thus, from the point of view of any experiment
(i.e. from the operational point of view) one could never
tell whether the spectrum is finite or not. What one can
only do is to measure possible deviations in geometrical
quantities based on the deviation of the observed part of
the spectrum from the classical one.

VI. SUMMARYAND CONCLUSIONS

In this paper we analyzed the possible effects of non-
commutativity in the entropic scenario by using a fuzzy
sphere as a holographic screen. In contrast with the other
efforts in this direction, which deal with the corrections to
entropy (and, as a consequence, to the apparent gravita-
tional force), we concentrated our attention on the question
of the interaction of a test particle and a holographic
screen. That this is very important follows from the special
role played by a test particle in the entopic scenario, which
is rather different from its role in GR, based on the equiva-
lence principle.8

In the absence of the necessary apparatus to directly
study the process during which a test particle ‘‘becomes
a part of the screen,’’ we made an attempt to study how this
screen is seen by the particle. For this we adopted the
model of a noncommutative screen that, as we argued,
should capture some nonperturbative QG effects. As the
main tool, we used the generalization of Weyl’s theorem,
which has proven to be quite efficient in the study of
deformed geometries.
The main conclusion of this paper could be formulated

as follows:
While perturbative corrections [such as the second term

in Eq. (5)] can be trusted well below the Plank scale (in
conformity with their universal model independence), nei-
ther correction should be trusted close to the Plank scale. In
particular, it seems that the corrections given by Eq. (6)
will be washed away by the uncertainties due to our

7It is worth remembering that Eq. (20) was calculated for a
very specific choice of the Dirac operator. As a result, the
absence of 1=N corrections in Eq. (23) is very much accidental.
Other choices of the Dirac operator might easily produce these
corrections, leading to a much stronger deviation from the
classical area. In this case, even the term in Newton’s law due
to the logarithmic correction could be overshadowed by the area
corrections.

8To demonstrate a very special role of a test particle in this
scenario as well as the importance of the knowledge of the
microscopic dynamics of the interaction of the particle with a
screen, we could imagine the following Gedankenexperiment.
Let us consider a test particle with some Compton wavelength
�m. Typically, there will be several holographic screens on this
length (in our case the number of the screens can be estimated as
�mR
l2P

, which is huge away from the Plank scale). Then the

question is to the entropy of which of these screens does this
test particle contribute? We can answer this question only if we
know the details of the microscopic dynamics of the screen-
particle system.
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ignorance about the details of the interaction between a
screen and a test particle.

Our discussion opens up the way to speculations
about the possible violations of the equivalence princi-
ple. But this could happen only on the Plank scale, so it
is hard to believe in any possibility of experimental
confrontation.

To conclude, our study showed that no effects of non-
commutativity (which encodes at least some nonperturba-
tive QG effects) will be seen below the Plank scale, but

when one approaches this scale they will start to dominate

over the perturbative corrections. To get further control

over these effects, one needs to use the full quantum

gravity in the form of strings, loops or any other theory.
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