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We analyze quantized scalar, spinor, and photon fields in a mechanically rigid cavity that is accelerated in

Minkowski spacetime, in a recently introduced perturbative small-acceleration formalism that allows the

velocities to become relativistic, with a view to applications in relativistic quantum information. A scalar

field is analyzed with both Dirichlet and Neumann boundary conditions, and a photon field under perfect

conductor boundary conditions is shown to decompose into Dirichlet-like and Neumann-like polarization

modes. The Dirac spinor is analyzed with a nonvanishing mass and with dimensions transverse to the

acceleration, and the MIT bag boundary condition is shown to exclude zero modes. Unitarity of time

evolution holds for smooth accelerations but fails for discontinuous accelerations in spacetime dimensions

(3þ 1) and higher. As an application, the experimental desktop mode-mixing scenario proposed for a scalar

field by Bruschi et al. [New. J. Phys. 15, 073052 (2013)] is shown to apply also to the photon field.
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I. INTRODUCTION

A relativistic quantum field is affected by the kinematics
of the spacetime in which the field lives. Well-known
examples are the Hawking and Unruh effects, associated
with black holes and accelerated observers [1–3], the dy-
namical (or nonstationary) Casimir effect (DCE) [4–7],
associated with moving boundaries, and cosmological par-
ticle creation [8,9]. Similar effects have been predicted to
occur in condensed matter laboratory systems, where the
prospects of experimental verification may be significantly
better [10]. The effects could be potentially harnessed to
serve quantum information tasks, with current and near-
foreseeable technology, including quantum communica-
tion between satellites [11].

In this paper we consider a quantum field confined in a
cavity that moves in Minkowski spacetime. The cavity is
assumed to be mechanically rigid, as seen in its instanta-
neous rest frame, and the acceleration is assumed to be
small in magnitude, compared with the inverse linear
dimensions of the cavity. Under these assumptions the
evolution of a scalar field in the cavity can be solved in a
recently developed formalism that treats the acceleration
perturbatively but allows the velocities, the travel times,
and the travel distances to remain arbitrary, and in particu-
lar allows the velocities to become relativistic [12–14]. For
acceleration with constant direction, the notion of a rela-
tivistic rigid body can be implemented to all orders in the
perturbative expansion, and for acceleration with varying
direction, the formalism has been developed to first order
in the acceleration without relativistic ambiguities [13].

While this small acceleration formalism overlaps in part
with situations covered by the small distance approximations
often considered in the DCE literature [6,7], and by other

approximation schemes [15,16], its novelty is in the ability to
accommodate relativistic velocities in a systematic fashion.
Applications to quantum information tasks in relativistic or
potentially relativistic contexts have been analyzed in
[12–14,17–23]. In particular, the formalism is applicable to
a cavity whose motion is implemented by superconducting
quantum interference device (SQUID) circuits without me-
chanically moving parts [23]. A generalization to massless
fermions in a (1þ 1)-dimensional cavity is given in [17].
The main purpose of this paper is to adapt the analysis of

a scalar field in the cavity to the electromagnetic field, with
perfect conductor boundary conditions at the cavity walls.
The interest of this question arises from the traditional
prime suspect role of the electromagnetic field in experi-
mental scenarios that involve acceleration effects [4–7],
including the recent experiments in which acceleration is
simulated by SQUID circuits [24]. We find that the elec-
tromagnetic field decomposes into two sets of polarization
modes, one similar to a Dirichlet scalar field and the other
similar to a Neumann scalar field. The results for the
evolution of the electromagnetic field hence follow in a
straightforward fashion from those for the Dirichlet scalar
field, found in [12,13], and those for the Neumann scalar
field, which we provide in this paper. In particular, our
results confirm that the experimental scenario of a cavity
accelerated on a desktop, proposed and analyzed for a
scalar field in [13], applies also to the photon field.
A second purpose is to address a Dirac spinor at a general-

ity that covers a (3þ 1)-dimensional cavity, generalising the
case of a massless (1þ 1) field analyzed in [17]. This ques-
tion is motivated by the prospect of simulating acceleration
effects for fermions in solid state analogue systems [25–27].
After finding the general family of boundary conditions that
ensures a vanishing probability current through thewalls, we
specialize to theMIT bag boundary condition [28,29], which
arises when the cavity field is matched to a highly massive
field in the exterior and the exterior mass is taken to infinity.
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We find that the MIT bag boundary condition leads to a
charge conjugation symmetric spectrumwithout zeromodes,
independently of the fieldmass or of effects from dimensions
transverse to the acceleration. We also present the explicit
Fourier transform formulas for the Bogoliubov coefficients
in the case when the acceleration varies smoothly in time,
generalising the scalar field formulas given in [13]. We use
the insights gathered about the fermionic Bogoliubov trans-
formations to comment on the implications for quantum
information purposes, such as discussed in [17,18,21].

A third purpose is to examine whether the time evolution
of the cavity field is implementable as a unitary trans-
formation in the Fock space. (We thank Pablo Barberis-
Blostein and Ivette Fuentes for drawing our attention to this
question.) As the potential failure of unitarity is governed by
the deep ultraviolet regime of the theory, the issue here is
whether any predictions computed from the formalism
are sensitive to the idealizations made in the ultraviolet.
Comfortingly, we find that the evolution is unitary whenever
the acceleration varies smoothly in time. In the limit of
discontinuous acceleration, unitarity however fails in space-
time dimensions (3þ 1) and higher.

A fourth purpose is to give a proper justification to certain
technical properties that have been stated and utilized in
earlier papers [12–14,17–23]. In particular, we explain how
the direction of the acceleration comes to be encoded in the
Bogoliubov coefficient formulas.

We begin in Sec. II by recalling the Dirichlet scalar
field analysis that was outlined in [12], establishing
the notation for the rest of the paper. The Neumann scalar
field is addressed in Sec. III. The electromagnetic field
is addressed in Secs. IV and V, and the Dirac field in
Sec. VI. Unitarity of the evolution is analyzed in
Sec. VII, with auxiliary asymptotic estimates deferred to
the Appendix. The results are summarized and discussed
in Sec. VIII.

Our metric signature is mostly plus, and we use units in
which c ¼ ℏ ¼ 1.

II. (1þ 1) DIRICHLET SCALAR FIELD

In this section we address a real scalar field of strictly
positive mass in (1þ 1)-dimensional Minkowski space-
time, with Dirichlet boundary conditions at the cavity
walls. While the core results can be found in earlier short
format papers [12–14,19], our purpose here is to be suffi-
ciently self-contained to allow a direct comparison to the
Maxwell field analysis in Sec. V.

A. Inertial cavity

Let � be a real scalar field of mass �> 0 in (1þ 1)-
dimensional Minkowski spacetime, satisfying the Klein-
Gordon equation

ð�hþ�2Þ� ¼ 0; (2.1)

where h is the scalar Laplacian. The field is confined in a
cavity that may move but maintains a prescribed length
L > 0 in its instantaneous rest frame. The field is assumed
to satisfy Dirichlet boundary conditions at the cavity walls.
When the cavity is inertial, we may introduce Minkowski

coordinates ðt; zÞ in which the metric reads

ds2 ¼ �dt2 þ dz2; (2.2)

and the walls are, respectively, at z ¼ z0 and z ¼ z1 :¼
z0 þ L, dragged along the timelike Killing vector @t. z0
could be set to zero without loss of generality, but leaving
z0 unspecified for the moment will be useful for matching to
accelerated motion below.
The Klein-Gordon inner product takes the form

ð�1; �2Þ ¼ �i
Z z1

z0

�1@
$
t�2dz; (2.3)

where the overline denotes complex conjugation (we adopt
the conventions of [30] in which the inner product is anti-
linear in the second argument). A standard basis of field
modes that are of positive frequency with respect to @t and
orthonormal in the Klein-Gordon inner product (2.3) is

�M
n ðt; zÞ :¼ 1ffiffiffiffiffiffiffiffiffiffi

!nL
p sin

�
n�ðz� z0Þ

L

�
e�i!nt; (2.4a)

!n :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ ð�n=LÞ2

q
; (2.4b)

where n ¼ 1; 2; . . . . The phase in (2.4a) has been chosen so
that @z�

M
n jz¼z0 > 0 at t ¼ 0.

B. Uniformly accelerated cavity

When the cavity is uniformly accelerated, in the sense
of being dragged along a boost Killing vector, we may
introduce Rindler coordinates ð�;�Þ [31] in which

ds2 ¼ ��2d�2 þ d�2; (2.5)

with �1<�<1 and 0<�<1, and the cavity walls
are, respectively, at � ¼ �0 > 0 and � ¼ �1 :¼ �0 þ L.
The boost Killing vector is @�. It is convenient to parame-

trize the geometry of the accelerated cavity by the pair
ðh; LÞ, where the dimensionless parameter h lies in the
interval 0< h< 2, such that

�0 ¼
�
1

h
� 1

2

�
L; (2.6a)

�1 ¼
�
1

h
þ 1

2

�
L: (2.6b)

The proper acceleration at the center of the cavity, at
� ¼ ð�0 þ �1Þ=2, equals h=L. Note that the proper accel-
eration is not uniform within the cavity: each worldline of
constant � has proper acceleration 1=�, and the proper
accelerations at the cavity walls are hence, respectively,
1=�0 and 1=�1. The upper bound on h comes from the
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condition that the proper acceleration at both cavity walls
remain finite.

The Klein-Gordon inner product takes the form

ð�1; �2Þ ¼ �i
Z �1

�0

�1@
$
��2�

�1d�: (2.7)

By separation of variables [31], we find that a basis of field
modes that are of positive frequency with respect to @� and

orthonormal in the Klein-Gordon inner product (2.7) is

�R
n ð�;�Þ ¼ fnð�Þe�i�n�; (2.8a)

fnð�Þ :¼ Nn½I�i�n
ð��0ÞIi�n

ð��Þ
� Ii�n

ð��0ÞI�i�n
ð��Þ�; (2.8b)

where n ¼ 1; 2; . . . , I is the modified Bessel function of the
first kind [32], the eigenfrequencies �n are determined by
the boundary condition �R

n ð�;�1Þ ¼ 0 and are ordered so
that 0<�1 � �2 � � � � , and Nn is a normalization
constant. We shall return to the phase choice of Nn in
subsection II C.

Note that both � and �n are dimensionless. As the
proper time at the center of the cavity equals L�=h, the
angular frequency of �R

n with respect to this proper time is
h�n=L.

C. Matching

Consider now a cavity whose motion turns instantane-
ously from inertial to uniform acceleration, so that the wall
velocities are continuous but the proper accelerations have
a finite discontinuity. We take the inertial segment to be as
in subsection II A for t � 0 and the uniformly accelerated
segment to be as in subsection II B for � � 0.

To begin with, suppose that the acceleration is towards
increasing z. The transformation relating the Minkowski
and Rindler coordinates is then [31]

t ¼ � sinh�; (2.9a)

z ¼ � cosh�; (2.9b)

and the cavity wall loci at t ¼ 0 in the two coordinate
systems are related by z0 ¼ �0 and z1 ¼ �1, as shown in
Fig. 1.

We write the Bogoliubov transformation from the
Minkowski modes to the Rindler modes as

�R
m ¼ X

n

ðo�mn�
M
n þ o�mn�

M
n Þ: (2.10)

From (2.10) and the orthonormality of the Minkowski
modes, we have [30]

o�mn ¼ ð�R
m;�

M
n Þ; (2.11a)

o�mn ¼ �ð�R
m;�

M
n Þ; (2.11b)

where the inner products may be evaluated by (2.3) at t ¼ 0
or equivalently by (2.7) at � ¼ 0. While these inner prod-
ucts do not appear to have expressions in terms of known

functions, they can be given perturbative small h expan-
sions [12]. As small h means small acceleration, in the
leading order�R

n must be equal to�M
n up to a phase factor,

and we fix this factor to unity by choosing the phase of
Nn in (2.8) so that @��

R
n j�¼�0

> 0 at � ¼ 0. The sub-

leading terms in �R
n can then be written as a power series

in h, with the help of uniform asymptotic expansions of
the modified Bessel functions in (2.8) [32,33]. We find that
ðh�nÞ=ðL!nÞ ¼ 1þOðh2Þ, and the expressions for the
Bogoliubov coefficients to linear order in h are given in
equations (7) in [12] and can be rearranged to read

o�nn ¼ 1þOðh2Þ; (2.12a)

o�mn ¼�2mnð�1þð�1ÞmþnÞ
L4ð!m�!nÞ3 ffiffiffiffiffiffiffiffiffiffiffiffiffi

!m!n
p hþOðh2Þ; ðform�nÞ

(2.12b)

o�mn ¼ �2mnð1�ð�1ÞmþnÞ
L4ð!mþ!nÞ3 ffiffiffiffiffiffiffiffiffiffiffiffiffi

!m!n
p hþOðh2Þ: (2.12c)

The expansion (2.12) holds as h ! 0 for fixedm and n, but
the size of the error terms depends on m and n, and the
expansion is hence not uniform in the indices of the
Bogoliubov coefficients. It can however be verified [12]
that when the h2 terms are included in (2.12), these
expansions satisfy the Bogoliubov identities [30] perturba-
tively to order h2, which provides an internal consistency
check on the perturbative formalism. (We note in passing
that formula (7a) in [12] contains a typographic error in
that the h2 contribution to o�nn given therein should con-

tain the additional term þ 7
16

M4

�6n6
h2.)

z0 z1
z

t

FIG. 1 (color online). Matching an inertial cavity to a uni-
formly accelerating cavity in (1þ 1)-dimensional Minkowski
space, in the global Minkowski coordinates ðt; zÞ. For t � 0 the
cavity is inertial, following the orbits of the time translation
Killing vector @t: the world lines of the walls are, respectively,
z ¼ z0 and z ¼ z1, where 0< z0 < z1. For t � 0 the cavity is
uniformly accelerated towards increasing z, in the sense that
it follows the orbits of the boost Killing vector z@t þ t@z: the

world lines of the walls are, respectively, z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z20 þ t2

q
and

z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z21 þ t2

q
.
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Finally, recall that above we have assumed the accelera-
tion to be towards increasing z. For acceleration towards
decreasing z, we may proceed similarly, introducing the
leftward Rindler coordinates ð~�; ~�Þ by

t ¼ ~� sinh ~�; (2.13a)

z ¼ �~� cosh ~�; (2.13b)

in which the metric is as in (2.5) but with tildes. The loci of
the cavity walls at t ¼ 0 are now related by ~�0 ¼ �z1
and ~�1 ¼ �z0 ¼ �z1 þ L, where z1 < 0. The only differ-
ence in the analysis is that the phases of the new Rindler
modes must still be matched to those of the Minkowski
modes �M

n (2.4a), which were already fixed above. Since
a left-right reflection changes �M

n (2.4a) by the factor
ð�1Þnþ1, the formulas for o�mn and o�mn in leftward
acceleration are obtained from those in rightward accel-
eration by keeping h positive and inserting the phase
factors ð�1Þmþn. To linear order in h, this can be imple-
mented by taking the formulas (2.12) to hold for both signs
of h, with positive (respectively, negative) h denoting
acceleration towards increasing (decreasing) z. We have
verified that this implementation holds also when the h2

contributions are included in (2.12).

D. Time-dependent acceleration

For cavity motion in which the acceleration is piecewise
constant in time, we can compose inertial and uniformly
accelerated segments by the above Minkowski-to-Rindler
transformation and its inverse [12]. For motion in which
the acceleration is not necessarily piecewise constant in
time, we can pass to the limit in which the constant
acceleration segments have vanishing duration [13].

To establish the notation, let � denote the proper time
and að�Þ the proper acceleration at the center of the cavity,
such that positive (negative) að�Þ means acceleration
towards increasing (decreasing) z in the global
Minkowski coordinates. Let the acceleration vanish in the
initial inertial region � � �0 and in the final inertial region
� � �f. To linear order in the acceleration, the Bogoliubov

coefficient matrices ðs�; s�Þ between the initial and final
inertial regions have then the expressions [13]

s�nn ¼ ei!nð�f��0Þ; (2.14a)

s�mn ¼ iLð!m �!nÞ�̂mnðMÞei!mð�f��0Þ

�
Z �f

�0

e�ið!m�!nÞð���0Það�Þd� ðfor m � nÞ
(2.14b)

s�mn ¼ iLð!m þ!nÞ�̂mnðMÞei!mð�f��0Þ

�
Z �f

�0

e�ið!mþ!nÞð���0Það�Þd�; (2.14c)

where �̂mnðMÞ and �̂mnðMÞ are the coefficients of h in the
expansions (2.12) of o�mn and o�mn, and we have indicated
explicitly that these coefficients depend on � and L
only through the dimensionless combination M :¼ �L.
To linear order in the acceleration, the Bogoliubov coef-
ficients are hence obtained by Fourier transforming the
acceleration.

III. (1þ 1) NEUMANN SCALAR FIELD

In this section we adapt the analysis of Sec. II to a scalar
field with Neumann boundary conditions at the cavity
walls. To avoid cluttering the notation, we shall suppress
in the field modes and the Bogoliubov coefficients an
explicit index that would distinguish the Dirichlet and
Neumann boundary conditions.
For the inertial cavity, a standard basis of field modes

that are of positive frequency with respect to @t and
orthonormal in the Klein-Gordon inner product (2.3) is

�M
n ðt;zÞ :¼

8>>><
>>>:

1ffiffiffiffiffiffiffiffiffiffiffiffi
2!0L

p e�i!0t ðn¼0Þ;
1ffiffiffiffiffiffiffiffiffiffi
!nL

p cos

�
n�ðz�z0Þ

L

�
e�i!nt; ðn¼1;2; . . .Þ

(3.1)

where n ¼ 0; 1; 2; . . . and !n is given by (2.4b). The phase
has been chosen so that �M

n jz¼z0 > 0 at t ¼ 0.

For the uniformly accelerated cavity, a basis of
field modes that are of positive frequency with respect
to @� and orthonormal in the Klein-Gordon inner

product (2.3) is

�R
n ð�;�Þ ¼ fnð�Þe�i�n�; (3.2a)

fnð�Þ :¼ Nn½I0�i�n
ð��0ÞIi�n

ð��Þ
� I0i�n

ð��0ÞI�i�n
ð��Þ�; (3.2b)

where n ¼ 0; 1; 2; . . . , the prime denotes derivative with
respect to the argument, the eigenfrequencies �n are
determined by the boundary condition @��

R
n j�¼�1

¼ 0

and are ordered so that 0<�0 � �1 � � � � , and Nn is a
normalization constant. The angular frequency of �R

n

with respect to the proper time at the center of the
cavity is h�n=L.
Matching the inertial segment at t � 0 to a uniformly

accelerated segment at � � 0 is done as in subsection II C.
When the acceleration is towards increasing z, we relate
the Minkowski and Rindler coordinates by (2.9) and
choose the phase of the normalization constant Nn so
that �R

n ð0; �0Þ> 0. We again find that ðh�nÞ=ðL!nÞ ¼
1þOðh2Þ, and the expressions for the Bogoliubov coef-
ficients to linear order in h read
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o�nn ¼ 1þOðh2Þ; (3.3a)

o�mn ¼

8>>><
>>>:
ð!m!n ��2Þð�1þ ð�1ÞmþnÞ

L2ð!m �!nÞ3 ffiffiffiffiffiffiffiffiffiffiffiffiffi
!m!n

p hþOðh2Þ for m> 0; n > 0 and m � n;

ð!m!n ��2Þð�1þ ð�1ÞmþnÞffiffiffi
2

p
L2ð!m �!nÞ3 ffiffiffiffiffiffiffiffiffiffiffiffiffi

!m!n
p hþOðh2Þ for m> n ¼ 0 or n > m ¼ 0;

(3.3b)

o�mn ¼

8>>><
>>>:
ð!m!n þ�2Þð1� ð�1ÞmþnÞ

L2ð!m þ!nÞ3 ffiffiffiffiffiffiffiffiffiffiffiffiffi
!m!n

p hþOðh2Þ for m> 0 and n > 0;

ð!m!n þ�2Þð1� ð�1ÞmþnÞffiffiffi
2

p
L2ð!m þ!nÞ3 ffiffiffiffiffiffiffiffiffiffiffiffiffi

!m!n
p hþOðh2Þ for m> n ¼ 0 or n > m ¼ 0:

(3.3c)

As with the Dirichlet boundary condition, the small h
expansion is not uniform in the indices of the
Bogoliubov coefficients, but we have again verified that
when the h2 terms are included in (3.3), these expansions
satisfy the Bogoliubov identities [30] perturbatively to
order h2, which provides an internal consistency check
on the formalism.

To accommodate both directions of acceleration, we
proceed as with the Dirichlet boundary conditions.
Taking positive (respectively, negative) h to denote accel-
eration towards increasing (decreasing) z, we find that
the formulas (3.3) hold for both signs of h, and they
continue to hold for both signs of h also when the h2 terms
are included.

Finally, cavity motion with time-dependent acceleration
can be handled as with the Dirichlet conditions. To linear
order in the acceleration, the Bogoliubov coefficient
matrices ðs�; s�Þ between initial and final inertial regions

are given by (2.14), where �̂mnðMÞ and �̂mnðMÞ are now
the coefficients of h in the expansions (3.3), and we have
indicated explicitly that these coefficients depend on �
and L only through the dimensionless combination
M :¼ �L.

IV. CURVED SPACETIME MAXWELL FIELD IN
A STATIC PERFECT CONDUCTOR CAVITY

In this section we write down the action of the Maxwell
field in a (3þ 1)-dimensional static but possibly curved
spacetime, in a static cavity with perfect conductor
boundary conditions. The main issue is to adapt the gauge
choice both to the staticity [34] and to the boundary
conditions [35].

A. Gauge choice

We consider a static (3þ 1)-dimensional spacetime,
working in coordinates ðt; x1; x2; x3Þ in which the metric
reads

ds2 ¼ �N2dt2 þ hijdx
idxj; (4.1)

where the latin indices i; j; . . . from the middle of the
alphabet take values in f1; 2; 3g, N > 0, hij is positive

definite, and neither N nor hij depends on t. The timelike

hypersurface-orthogonal Killing vector is @t, and it is
orthogonal to the hypersurfaces of constant t. We postpone
issues of spatial boundary conditions to subsection IVB.
The Maxwell action reads

S ¼ � 1

4

Z
d4x

ffiffiffiffiffiffiffi�g
p

FabF
ab; (4.2)

where Fab ¼ @aAb � @bAa, Aa is the electromagnetic
potential, the spacetime indices a; b; . . . are raised and
lowered with the metric gab (4.1) and g ¼ det ðgabÞ.
Following Dirac’s procedure [36,37], the action can be
put in the Hamiltonian form

S¼
Z

dtd3x

�
�i _AiþA0@i�

i� N

2
ffiffiffi
h

p �i�
i� 1

4
N

ffiffiffi
h

p
FijF

ij

�
;

(4.3)

where Fij ¼ @iAj � @jAi, the overdot denotes derivative

with respect to t, the spatial indices are raised and lowered
with hij and its inverse hij, and h ¼ det ðhijÞ.
Variation of (4.3) with respect to �i and Ai gives the

dynamical field equations

_Ai ¼ Nffiffiffi
h

p �i þ @iA0; (4.4a)

_�i ¼ @jðN
ffiffiffi
h

p
FjiÞ ¼ ffiffiffi

h
p rjðNFjiÞ; (4.4b)

where r denotes the covariant derivative with respect to
hij. Variation with respect to A0 gives the constraint

@i�
i ¼ 0; (4.5)

which is preserved in time by (4.4). In Dirac’s terminology,
ðAi; �

iÞ is a canonically conjugate pair of dynamical
variables, while A0 is a Lagrange multiplier that enforces
the first class constraint (4.5). The Hamiltonian gauge
transformations read

	A0 ¼ _�; (4.6a)

	Ai ¼ @i�; (4.6b)

	�i ¼ 0; (4.6c)
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where the function� is the generator of the transformation.
These transformations clearly leave the Hamiltonian
action (4.3) invariant.

We adopt the Coulomb gauge

ri

�
Ai

N

�
¼ 0; (4.7a)

A0 ¼ 0: (4.7b)

The choice (4.7a) can be accomplished on an initial hyper-
surface of constant t by the gauge transformation (4.6b) by
solving an elliptic equation for�. The choice (4.7b) for the
Lagrange multiplier A0 then preserves (4.7a) under the
time evolution (4.4), using the constraint (4.5).

After the inverse Legendre transform into a Lagrangian
formalism in which Ai satisfies the gauge condition (4.7a),
the action becomes

S ¼
Z

dtd3x

� ffiffiffi
h

p
2N

_Ai
_Ai � 1

4
N

ffiffiffi
h

p
FijF

ij

�
: (4.8)

The field equation reads

€Ai ¼ NrjðNFjiÞ; (4.9)

and the conserved inner product is

ðAð1Þ; Að2ÞÞ ¼ �i
Z

d3x

ffiffiffi
h

p
N

ðAð1ÞÞi@
$
tA

i
ð2Þ: (4.10)

B. Cavity boundary conditions

We consider a cavity whose walls follow orbits of the
Killing vector @t. The cavity is hence static with respect
to @t.

We require Ai to be orthogonal to the cavity walls. This
implies the conventional perfect conductor boundary con-
dition that the electric field be orthogonal to the walls and
the magnetic field be parallel to the walls [35]. This bound-
ary condition annihilates the spatial boundary terms in
the variation of the action (4.8) so that the equation of
motion (4.9) is obtained. It also annihilates the boundary
terms that arise when the conservation of the inner
product (4.10) is verified. The boundary condition is hence
consistent with the dynamics.

V. MAXWELL FIELD IN AN
ACCELERATED CAVITY

In this section we discuss the Maxwell field in (3þ 1)-
dimensional Minkowski spacetime, in a rigid rectangular
cavity that is accelerated in one of its principal directions.
Subsections VA, VB, and VC address the case of uniform
acceleration in the gauge-fixed formalism of Sec. IV. Time-
dependent acceleration is addressed in subsection VD.

A. Cavity configuration

We consider a rectangular cavity with edge lengths
ðLx; Ly; LzÞ, in uniform acceleration in the z direction. In

adapted Rindler coordinates ð�;�; x; yÞ, the metric reads

ds2 ¼ ��2d�2 þ d�2 þ dx2 þ dy2; (5.1)

and the cavity worldtube is at

0 � x � Lx; (5.2a)

0 � y � Ly; (5.2b)

�0 � � � �1; (5.2c)

where �0 > 0 and �1 ¼ �0 þ Lz. We may parametrize �0

and �1 as in (2.6) with L ! Lz, so that the dimensionless
parameter h satisfies 0< h< 2 and the proper acceleration
at the center of the cavity equals h=Lz.
We follow the gauge-fixed formalism of Sec. IVand seek

solutions to the field equation (4.9) with the perfect con-
ductor boundary conditions by separation of variables. We
find that the field modes that are of positive frequency with
respect to @� and orthonormal in the inner product (4.10)

fall into two qualitatively different polarization classes.

B. First polarization

The modes in the first polarization class are labeled by a
pair of nonnegative integers ðm; nÞ, at least one of which is
nonzero, and take the form

Ax ¼ ky cos ðkxxÞ sin ðkyyÞgð�;�Þ; (5.3a)

Ay ¼ �kx sin ðkxxÞ cos ðkyyÞgð�;�Þ; (5.3b)

A� ¼ 0; (5.3c)

where

gð�;�Þ :¼ ½I�i�ðk?�0ÞIi�ðk?�Þ
� Ii�ðk?�0ÞI�i�ðk?�Þ�e�i��; (5.4)

with kx ¼ �m=Lx, ky ¼ �n=Ly, k? ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y

q
and the

eigenfrequencies � for each ðm; nÞ are determined by the
boundary condition that Ax and Ay vanish at � ¼ �1.

To avoid cluttering the notation, we have left the modes
unnormalized.
To discuss the small acceleration limit, we introduce the

coordinates ðt; ~z; x; yÞ by � ¼ ht=Lz and � ¼ �0 þ ~z, in
which the h ! 0 limit of the metric (5.1) is ds2 ¼ �dt2 þ
d~z2 þ dx2 þ dy2 and the cavity becomes in this limit static
with respect to the Minkowski time translation Killing
vector @t at 0 � ~z � Lz. The solutions (5.3) reduce to

Ax ¼ ky cos ðkxxÞ sin ðkyyÞ~gðt; ~zÞ; (5.5a)

Ay ¼ �kx sin ðkxxÞ cos ðkyyÞ~gðt; ~zÞ; (5.5b)

A~z ¼ 0; (5.5c)

where
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~gðt; ~zÞ :¼ sin ðkz~zÞe�i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2xþk2yþk2z

p
t; (5.6)

with kz ¼ �p=Lz with p ¼ 1; 2; . . . . (The special case of
m ¼ 0 in (5.5) was considered in [38].)

Comparing (5.3) and (5.5) to (2.4) and (2.8) shows that
the modes for fixed ðm; nÞ are equivalent to the (1þ 1)-
dimensional Dirichlet scalar field discussed in Sec. II with
� ¼ k?. The Bogoliubov transformation between an iner-
tial cavity and a uniformly accelerated cavity can be read
off directly from the results given in Sec. II.

C. Second polarization

The modes in the second polarization class are labeled
by a pair of positive integers ðm; nÞ and take the form

Ax ¼ kx cos ðkxxÞ sin ðkyyÞ�uð�;�Þ; (5.7a)

Ay ¼ ky sin ðkxxÞ cos ðkyyÞ�uð�;�Þ; (5.7b)

A� ¼ k? sin ðkxxÞ sin ðkyyÞ�vð�;�Þ; (5.7c)

where

uð�;�Þ :¼ ½I0�i�ðk?�0ÞI0i�ðk?�Þ
� I0i�ðk?�0ÞI0�i�ðk?�Þ�e�i��; (5.8a)

vð�;�Þ :¼ ½I0�i�ðk?�0ÞIi�ðk?�Þ
� I0i�ðk?�0ÞI�i�ðk?�Þ�e�i��; (5.8b)

and again kx ¼ �m=Lx, ky ¼ �n=Ly, k? ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y

q
and

the eigenfrequencies � for each ðm; nÞ are determined by
the boundary condition that Ax and Ay vanish at � ¼ �1.

In the small acceleration limit, the solutions (5.7) reduce to

Ax ¼ �kxkz cos ðkxxÞ sin ðkyyÞ~uðt; ~zÞ; (5.9a)

Ay ¼ �kykz sin ðkxxÞ cos ðkyyÞ~uðt; ~zÞ; (5.9b)

A~z ¼ k2? sin ðkxxÞ sin ðkyyÞ~vðt; ~zÞ; (5.9c)

where

~uðt; ~zÞ :¼ sin ðkz~zÞe�i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2xþk2yþk2z

p
t; (5.10a)

~vðt; ~zÞ :¼ cos ðkz~zÞe�i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2xþk2yþk2z

p
t; (5.10b)

with kz ¼ �p=Lz with p ¼ 0; 1; 2; . . . .
Comparing (5.7) and (5.9) to (3.1) and (3.2) shows that

the eigenfrequencies for fixed ðm; nÞ are those of the
(1þ 1)-dimensional Neumann scalar field discussed in
Sec. III with � ¼ k?. The Bogoliubov transformation
between the inertial cavity and a uniformly accelerated
cavity requires a further analysis because of the contribu-
tions from Ax and Ay to the inner product (4.10).

The outcome of this analysis is that for fixed ðm; nÞ, the
Bogoliubov coefficients are obtained from those of the
(1þ 1)-dimensional Neumann scalar field of Sec. III
with � ¼ k? via the replacement o� ! �o�. To linear
order in h, the Bogoliubov coefficients can hence be read
off from (3.3) with the replacement o� ! �o�.

D. Time-dependent acceleration

Given the above results about the two polarization
classes, a cavity with time-dependent acceleration in the
z direction can be handled with the (1þ 1) scalar field
results of Secs. II and III. To linear order in the accelera-
tion, the Bogoliubov coefficient matrices between initial
and final inertial regions are given by (2.14), where

�̂mnðMÞ and �̂mnðMÞ for the first (second) polarization
class are obtained from the Dirichlet (Neumann) scalar
field expressions of Sec. II (III) with � ¼ k?, with an
additional minus sign for the beta-coefficients in the
second polarization class.

VI. (1þ 1) MASSIVE DIRAC SPINOR

In this section we address a massive Dirac spinor in
(1þ 1)-dimensional Minkowski spacetime, generalising
the massless spinor analysis of [17] to strictly positive
mass. A spinor in (3þ 1)-dimensional Minkowski space-
time reduces to the (1þ 1)-dimensional case by a Fourier
decomposition in the dimensions transverse to the accel-
eration, with the transverse momenta making a strictly
positive contribution to the effective (1þ 1)-dimensional
mass.

A. Inertial cavity

In the (1þ 1)-dimensional Minkowski metric (2.2), the
massive Dirac equation takes the form [39]

i@tc ¼ ð�i�3@z þ��Þc ; (6.1)

where the Hermitian matrices �3 and � anticommute and
square to the identity. We assume the mass � to be strictly
positive. In the present (1þ 1) setting, we may work with
two-component spinors and introduce a spinor basis

ðUþ; U�Þ that is orthonormal, in the sense of Uy
þU� ¼

Uy�Uþ ¼ 0 and Uy
þUþ ¼ Uy�U� ¼ 1, and satisfies

�3U� ¼ �U�; �U� ¼ U�: (6.2)

An example of an explicit representation would be
�3 ¼ ð01 1

0Þ, � ¼ ð10 0
�1Þ, Uþ ¼ 1ffiffi

2
p ð11Þ and U� ¼ 1ffiffi

2
p ð 1

�1Þ.
We introduce a cavity with walls at z ¼ z0 and z ¼ z1 ¼

z0 þ L as in Sec. II. The inner product reads

ðc ð1Þ; c ð2ÞÞ ¼
Z z1

z0

dzc y
ð1Þc ð2Þ; (6.3)

where we have adopted the convention in which the
fermion inner product is antilinear in the first argument.
We consider boundary conditions that ensure the vanish-

ing of the probability current independently at each wall,

c y
ð1Þ�3c ð2Þjz¼z0 ¼ 0 ¼ c y

ð1Þ�3c ð2Þjz¼z1 ; (6.4)

where c ð1Þ and c ð2Þ are any two eigenfunctions of the

Dirac Hamiltonian that appears on the right-hand side
of (6.1). An analysis of the deficiency indices [40–42]
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shows that the allowed boundary conditions are parame-
trized by a U(1) at z ¼ z0 and another U(1) at z ¼ z1.

Separating the variables, and assuming the eigenvalue!
of the Dirac Hamiltonian to satisfy j!j>�, the linearly
independent solutions to the differential equation (6.1) can
be written as

cþ;k :¼ ½cos ð�kÞUþ þ sin ð�kÞU��eikz�i!kt; (6.5a)

c�;k :¼ ½sin ð�kÞUþ þ cos ð�kÞU��e�ikz�i!kt; (6.5b)

where k 2 R n f0g, !k :¼ sgnðkÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ k2

p
and �k ¼ 1

2 �
arctan ð�=kÞ. cþ;k is a right-mover and c�;k is a

left-mover, and the sign of the frequency is the sign of k.
Imposing (6.4) at z ¼ z0 leads to the linear combination

c ¼ �þ;ke
�ikz0cþ;k þ��;ke

ikz0c�;k; (6.6a)

�
;k :¼ e�i
�=4 cos ð�k � �0Þ � ei
�=4 sin ð�k þ �0Þ;
(6.6b)

where the parameter �0 2 Rmod� specifies the boundary
condition at z ¼ z0 and 
 2 fþ;�g. Imposing (6.4) at z ¼
z1 leads to an expression similar to (6.6) with z0 ! z1 and
�0 ! �1, and the parameter �1 2 Rmod� specifies the
boundary condition at z ¼ z1. For given �0 and �1, the
eigenmodes with j!j>� are hence obtained by imposing
both of these boundary conditions, and the existence of any
additional eigenmodes in the range j!j � � can then be
examined using (6.4) [42].

From here on we specialize to the MIT bag boundary
condition [28,29], which arises as a limit when the cavity
field is matched to a field of a different mass in the
exterior of the cavity and the exterior mass is taken to
infinity. This is analogous to the way in which the
Dirichlet boundary condition is singled out in nonrelativ-
istic quantum mechanics in the limit of a potential wall
whose height is taken to infinity [43]. In our notation, the
MIT bag boundary condition reads ð1� i��3Þc jz¼z0 ¼
0¼ð1þ i��3Þc jz¼z1 . This implies �0¼0 and �1¼�=2.

We find that the normalized eigenfunctions read

c k ¼ Nkðe�i�ke�ikz0cþ;k þ iei�keikz0c�;kÞ; (6.7a)

Nk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

!2
k

2Lð!2
k þ ð�=LÞÞ

s
; (6.7b)

where k takes the discrete positive and negative values that
satisfy the transcendental equation

tan ðkLÞ
kL

¼ � 1

�L
: (6.8)

We have chosen the phase in c k (6.7) so that when z ¼ z0
and t ¼ 0, c k is a positive multiple of Uþ þ iU�. The
positive and negative eigenfrequencies appear symmetri-
cally in the spectrum, and all the eigenfrequencies satisfy
j!j>�.

In the massless limit, the modes (6.7) reduce to

c n ¼ ½Uþei!̂nðz�z0Þ þ iU�e�i!̂nðz�z0Þ�ffiffiffiffiffiffi
2L

p e�i!̂nt; (6.9)

where !̂n :¼ �ðnþ 1
2Þ=L with n 2 Z. The positive and

negative frequencies appear symmetrically in the spectrum
and there is no zero mode. Among the massless boundary
conditions classified in [17], (6.9) is the case s ¼ 1=2 and
� ¼ �=2.

B. Accelerated cavity

Wewrite the (1þ 1)-dimensional Rindler metric (2.5) as

ds2 ¼ �ðe0�Þ2d�2 þ ðe1�Þ2d�2; (6.10)

where the nonvanishing components of the co-dyad e
A
a are

e
0
� ¼ � and e

1
� ¼ 1. The underlined indices are internal

Lorentz indices, raised and lowered with the internal
Lorentz metric. The nonvanishing components of the
corresponding dyad eaA are

e�0 ¼ 1=�; e�1 ¼ 1: (6.11)

In the dyad (6.11), the massive Dirac equation takes the
form [30,44–46]

i@�c ¼
�
�i�3

�
�@� þ 1

2

�
þ���

�
c : (6.12)

We introduce a cavity as in Sec. II, with walls at � ¼ �0

and � ¼ �1 as given by (2.6) with 0< h< 2. The inner
product reads

ðc ð1Þ; c ð2ÞÞ ¼
Z �1

�0

d�c y
ð1Þc ð2Þ: (6.13)

We adopt boundary conditions that ensure vanishing of the
probability current through each wall. These boundary
conditions read as in (6.4) but with z ! �.
Separating the variables, we find that the linearly inde-

pendent solutions to (6.12) are

�þ;� :¼ ½Ii��1
2
ð��ÞUþ þ iIi�þ1

2
ð��ÞU��e�i��;

(6.14a)

��;� :¼ ½I�i�þ1
2
ð��ÞUþ þ iI�i��1

2
ð��ÞU��e�i��;

(6.14b)

where � 2 R. The condition of a vanishing probability
current at � ¼ �0 leads to the linear combination

c ¼ ½CI�i��1
2
ð��0Þ �DI�i�þ1

2
ð��0Þ��þ;�

þ ½DIi��1
2
ð��0Þ � CIi�þ1

2
ð��0Þ���;�; (6.15)

with the coefficients

C :¼ 1þ B0 tanh ð��0Þ; (6.16a)

D :¼ B0 þ tanh ð��0Þ; (6.16b)
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where the complex number B0 of unit modulus is the
parameter that specifies the boundary condition at
� ¼ �0. The condition of a vanishing probability current
at � ¼ �1 leads to a similar expression with �0 ! �1 and
B0 ! B1, where the complex number B1 of unit modulus
is the parameter that specifies the boundary condition at
� ¼ �1.

We again specialize to the MIT bag boundary condition,
which now reads ð1� i��3Þc j�¼�0

¼ 0 ¼ ð1þ i��3Þ
c j�¼�1

. This implies B0 ¼ 1 and B1 ¼ �1. The normal-

ized eigenfunctions read

c� ¼ N�f½I�i��1
2
ð��0Þ � I�i�þ1

2
ð��0Þ��þ;�

þ ½Ii��1
2
ð��0Þ � Ii�þ1

2
ð��0Þ���;�g; (6.17)

where � takes the discrete real values that satisfy

P�Pþ þ �P� �Pþ ¼ 0; (6.18)

where

P� :¼ I�i��1
2
ð��0Þ � I�i�þ1

2
ð��0Þ; (6.19a)

Pþ :¼ I�i��1
2
ð��1Þ þ I�i�þ1

2
ð��1Þ; (6.19b)

and N� is a normalization constant. As (6.18) is invariant
under � ! ��, the positive and negative eigenfrequen-
cies appear symmetrically in the spectrum.

In the massless limit, the modes (6.17) reduce to those
given [17] with s ¼ 1=2 and � ¼ �=2. The symmetry
between the positive and negative frequencies hence per-
sists in the massless limit, and the massless field has no
zero mode.

C. Matching

We match an inertial cavity at t � 0 to an accelerated
cavity at � � 0 across the hypersurface t ¼ 0 as in
subsection II C. We assume to begin with that the accel-
eration is towards increasing z, so that the Minkowski and
Rindler coordinates are related by (2.9). It follows that the
time and space orientations of the dyad (6.11) agree with
those of the Minkowski coordinates ðt; zÞ. We may hence
write the Bogoliubov transformation from the Minkowski
modes (6.7) to the Rindler modes (6.17) as

�� ¼ X
k

oA�kc k; (6.20)

where the Bogoliubov coefficient matrix oA ¼ ðoA�kÞ is
given by

oA�k ¼ ðc k;��Þ; (6.21)

and the inner product in (6.21) is evaluated on the surface
t ¼ 0. By the orthonormality of the Minkowski modes and
the orthonormality of the Rindler modes, oA is unitary.

At small h, matching the Rindler modes (6.17) with the
Minkowski modes (6.7) shows that the leading term in �
must be proportional to 1=h. The order of the Bessel
functions has hence a phase that approaches ��=2 as
h ! 0, which is a regime of subtlety in the uniform
asymptotic expansions of Bessel functions for large com-
plex order [47]. We therefore expand the Rindler modes in
h starting directly from the Bessel differential equation that
leads to the solutions (6.14), writing � ¼ ��1=hþ�0 þ
�1hþ � � � and � ¼ ðL=hÞð1þ hvÞ, where the new
dimensionless spatial coordinate v has been chosen so
that � ¼ �0 at v ¼ � 1

2 and � ¼ �1 at v ¼ 1
2 . We find

that the eigenvalues of � have the form

�k ¼ Lh�1!kð1þOðh2ÞÞ; (6.22)

where the index k takes the discrete positive and negative
values that satisfy (6.8). Choosing the phase of N� so that
the phases of the Rindler modes (6.17) match those of
the Minkowski modes (6.7) at t ¼ 0, we find that the
Bogoliubov coefficients to linear order in h read

oA�kk
¼1þOðh2Þ; (6.23a)

oA�kl
¼ 2ðð�1Þnkþnl�1ÞjkljC2

kC
2
l ðCkþClÞðCkClþ�2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

L2!2
kþ�L

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2!2

l þ�L
q

ðCk�ClÞ3ðCkCl��2Þ3
�hþOðh2Þ for k� l; (6.23b)

where Ck :¼ !k þ k and nk 2 Z is such that the map
k � nk indexes the consecutive solutions to (6.14) by
consecutive integers. As a consistency check, we note
that the order h term in (6.23) is anti-Hermitian, as it
must be by unitarity of oA. As another consistency check,
we note that in the massless limit (6.23) reduces to the
expressions given in [17] with s ¼ 1=2.
Suppose then that the acceleration is towards decreasing z.

We introduce the leftward Rindler coordinates ð~�; ~�Þ
by (2.13) and the compatible dyad ~eaA whose nonvanishing

components are

~e
~�
0 ¼ 1=~�; ~e

~�
1 ¼ �1: (6.24)

The time and space orientations of this dyad agree with
those of the Minkowski coordinates ðt; zÞ. Because of the
minus sign in (6.24), the Dirac equation reads as in (6.12)
but with tildes on the coordinates and with the replacement
�3 ! ��3. It follows that the separation of variables
proceeds as in subsection VIB but with Uþ and U�
interchanged.
With the MIT bag boundary conditions, it is hence seen

from (6.5), (6.7), and (6.8) that the leftward acceleration
Bogoliubov coefficients are obtained from the rightward
ones by keeping h positive but inserting in oA�kl

the phase

factors exp ½ið2�k � kLÞ� exp ½ið2�l � lLÞ� ¼ ð�1Þnkþnl .
It follows that the formulas (6.23) cover both directions

SCALAR, SPINOR, AND PHOTON FIELDS UNDER . . . PHYSICAL REVIEW D 88, 064028 (2013)

064028-9



of acceleration provided positive (respectively, negative)
values of h are taken to indicate acceleration towards
increasing (decreasing) z. We have verified that the same
holds also when the h2 terms are included in (6.23).

D. Time-dependent acceleration

Time-dependent acceleration for the spinor field can be
handled as for the bosonic fields. For acceleration that is
piecewise constant in time, the above Minkowski-to-
Rindler transformation and its inverse can be used to
compose inertial and uniformly accelerated segments.
For motion in which the acceleration is not necessarily
piecewise constant, we can pass to the limit: proceeding
as in [13], we find that to linear order in the acceleration
the Bogoliubov coefficient matrix between an initial iner-
tial region at � � �0 and a final inertial region at � � �f
reads

sA�kk
¼ ei!kð�f��0Þ; (6.25a)

sA�kl
¼ iLð!k �!lÞÂ�klðMÞei!kð�f��0Þ

�
Z �f

�0

e�ið!k�!lÞð���0Það�Þd� ðfor k � lÞ;
(6.25b)

where Â�klðMÞ denotes the coefficient of h in the expansion

(6.23), and we have indicated explicitly the dependence of
this coefficient on � and L through the dimensionless
combination M :¼ �L.

E. Applications in quantum information

Let us now consider the implications of the MIT bag
boundary conditions and the extension to massive Dirac
spinors for quantum information tasks. Since the aim of
this paper lies in the analysis of different boundary con-
ditions and masses of the field excitations we are not
introducing a detailed description of quantum information
theory with modes of quantum fields. For a recent inves-
tigation of the description and issues of fermionic density
operator constructions for quantum information purposes
see [48].

Instead, we shall discuss the direct consequences on
some quantities of interest that can be expressed directly
in terms of the cavity Bogoliubov coefficients. In particu-
lar, the results of the present paper allow us to extend the
validity of the expressions obtained in [17,18,21] to mas-
sive (1þ 1)-dimensional spinor fields. Two distinct cases
of interest are affected: degradation effects, reducing the
amount of entanglement that is shared between two
modes situated in different cavities [17], as opposed to
entanglement generation between modes within a single
cavity [18,21].

For entanglement degradation effects, the inclusion of
mass and transverse momenta and the choice of boundary
conditions result in quantitative changes of the amount of

decoherence. Qualitatively, nonzero effective mass removes
the periodicity in the duration of individual segments of
motion for travel scenarios of piecewise constant accelera-
tion. For a massless field in (1þ 1) dimensions, on the other
hand, the Bogoliubov coefficients are periodic in the dura-
tion of such segments [17].
In scenarios where entanglement generation between

two or more modes in a single cavity is considered, the
leading-order effects are determined by the coefficients of
h in (6.23) [17]. As noted above, we denote these coef-

ficients by Â�klðMÞ, indicating explicitly their depen-

dence on � and L through the dimensionless combination
M :¼ �L. Selected plots are shown in Fig. 2. In the
limit M ! 1, it can be shown from (6.23) that the
mode-mixing coefficients increase proportionally to M2

[Fig. 2(a)], while the particle-creation coefficients

2 4 6 8 10
M

1.5

1.0

0.5

0.0

0.5

1.0

1.5
Â k l

nk,nl 0,1 , 1, 2

nk,nl 1,0 , 2, 1

nk,nl 1,2 , 2, 3

nk,nl 2,1 , 3, 2

nk,nl 0,3 , 1, 4

nk,nl 3,0 , 4, 1

2 4 6 8 10
M

0.0015

0.0010

0.0005

0.0000

0.0005

0.0010

0.0015

Â k l

nk,nl 0, 3 , 1,2

nk,nl 3,0 , 2, 1

nk,nl 1, 4 , 2,3

nk,nl 4,1 , 3, 2

nk,nl 0, 5 , 1,4

nk,nl 5,0 , 4, 1

FIG. 2 (color online). Behavior of the Bogoliubov coefficients
for the massive (1þ 1)-dimensional Dirac field with MIT
bag boundary conditions for increasing mass. The coefficient
of h in (6.23), denoted by Â�klðMÞ, is plotted against the

dimensionless combination M :¼ �L. Fig. 2(a) shows a selec-
tion of Bogoliubov coefficients that relate modes with the same
sign of the frequency (�-type coefficients): the map k � nk
has been chosen so that nk � 0 labels the positive frequency
solutions and nk < 0 labels the negative frequency solutions.
These mode-mixing coefficients are proportional to M2 as
M ! 1. Figure 2(b) shows a selection of Bogoliubov coeffi-
cients that relate positive frequency modes with negative fre-
quency modes (�-type coefficients). These particle creation
coefficients are proportional to M�6 as M ! 1.
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decrease proportionally toM�6 [Fig. 2(b)]. The relevance
of this behavior becomes apparent when we consider
initial pure states of two modes labeled by nk and nk0 ,

respectively. The coefficient Â�kk
0 is directly related to

the entanglement that is created between these modes
due to the cavity motion [18]. The qualitatively different
dependence on the field mass for mode-mixing and
particle-creation Bogoliubov coefficients indicates that
nonzero mass enhances entanglement generation between
modes of equal charge, while the effect is suppressed
between modes of opposite charge.

Finally, it is also of interest to reconsider the massless
limit. As noted before, the coefficients for the MIT bag
boundary condition reduce to the case s ¼ 1

2 (rather than

s ¼ 0) discussed in [17]. Since this choice removes the
zero mode from the spectrum, the resulting Bogoliubov
coefficients allow for a violation of the Clauser-Horne-
Shimony-Holt inequality [49,50] by the entanglement
generated from the initial vacuum state.

VII. UNITARITY OF EVOLUTION

In this section we address the unitary implementability
of the cavity field’s time evolution, for both smoothly
varying and sharply varying accelerations. We treat the
boson fields and the spinor field in turn.

A. Bosons

Recall that a Bogoliubov transformation for a real
bosonic field, with the coefficient matrices written in our
notation as � ¼ ð�ijÞ and � ¼ ð�ijÞ [30], is implement-

able as a unitary transformation iff the matrix ��1� is
Hilbert-Schmidt,

P
ijjð��1�Þijj2 <1 [51–54].

We start with the (1þ 1)-dimensional scalar field of
Secs. II and III, and with the Bogoliubov transformation
from the inertial segment to the uniformly accelerated
segment. While the perturbative small acceleration expan-
sions of the Bogoliubov coefficients in (2.12) and (3.3) are
not uniform in the mode numbers, we may nevertheless
examine the unitarity of the dynamics perturbatively in h.
To leading order in h, this reduces to considering the linear
terms in (2.12) and (3.3), and to this order the Hilbert-
Schmidt condition for o�

�1
o� is equivalent to the Hilbert-

Schmidt condition for o�.
In the notation established in Secs. II and III, we denote

the coefficient of h in the expansion of o�mn in (2.12c) or

(3.3c) by �̂mnðMÞ, continuing to suppress the distinction
between Dirichlet and Neumann, but indicating explicitly
the dependence on � and L through the dimensionless
combination M :¼ �L. Elementary estimates show that

the function FðMÞ :¼ P
mnj�̂mnðMÞj2 is finite for all values

of M. The field evolution in the sharp transition from the
inertial segment to the uniformly accelerated segment is
hence perturbatively unitary to linear order in h.

Suppose then that the acceleration varies smoothly
between an initial inertial region and a final inertial region,
so that to linear order in the acceleration the Bogoliubov
coefficients are given by (2.14), where �̂mnðMÞ and

�̂mnðMÞ are the coefficients of h in the expansions of

o�mn and o�mn (2.12) or (3.3). As the Fourier transform
of a smooth function of compact support falls off at infinity
faster than any power, (2.14c) shows that s�mn is bounded

in absolute value by j�̂mnðMÞfð!m þ!nÞj, where f is
a function that falls off at infinity faster than any power.
The sum

P
mnjs�mnj2 is hence finite. We conclude that the

evolution is perturbatively unitary to linear order in the
acceleration.
Consider then a rectangular cavity in a higher-

dimensional spacetime, with acceleration in one of its
principal directions. By Fourier decomposition in the
transverse dimensions, the Bogoliubov transformation
reduces to that of the (1þ 1)-dimensional cavity for
each set of the transverse quantum numbers, with the
transverse momenta contributing to the effective (1þ 1)-
dimensional mass. The trace in the Hilbert-Schmidt
norm includes now also a sum over the transverse
quantum numbers. For the sharp evolution from inertial
motion to uniform acceleration, the criterion of leading
order perturbative unitarity is hence the finiteness of the

sum
P

k?FðL
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

0 þ k2
?

q
Þ, where �0 is the genuine mass

and k? are the quantized transverse momenta. It follows
from the estimates given in the Appendix that this
criterion is satisfied in (2þ 1) dimensions but
not in (3þ 1) or higher. The perturbative unitarity of
the dynamics hence fails in (3þ 1) spacetime dimen-
sions and above when the onset of the acceleration is
sharp. When the acceleration changes smoothly, by
contrast, the rapid falloff of

P
mnjs�mnj2 guarantees

that the evolution is unitary in any spacetime dimension.
Finally, as the Maxwell field in a (3þ 1)-dimensional

cavity decomposes into Dirichlet-type polarization modes
and Neumann-type polarization modes, the results about
the perturbative unitarity of the time evolution follow
directly from those for the scalar field. Unitarity holds
when the acceleration changes smoothly but fails when
the acceleration onset is sharp.

B. Fermions

For a fermionic field, a Bogoliubov transformation is
unitarily implementable if the two blocks of the
Bogoliubov transformation matrix that relate positive fre-
quencies to negative frequencies are Hilbert-Schmidt
[42,51–54]. We consider this condition in our system per-
turbatively in the acceleration, to the leading order.
Consider first the (1þ 1)-dimensional Dirac field of

Sec. VI and the Bogoliubov transformation from the iner-
tial segment to the uniformly accelerated segment. Recall

that we denote the coefficient of h in (6.23) by Â�klðMÞ,
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indicating explicitly the dependence on � and L through
the dimensionless combination M :¼ �L. The condition
of unitarily implementable evolution for given M is then

that GðMÞ :¼ P
k>0>ljÂ�klðMÞj2, or equivalently GðMÞ :¼P

l>0>kjÂ�klðMÞj2, is finite. Elementary estimates show

that this condition holds for all M.
When the acceleration varies smoothly in time, the

Bogoliubov coefficient matrix between an initial inertial
region and a final inertial region is given by (6.25).
The rapid falloff of the Fourier transform guarantees that
the unitarity condition is satisfied.

Consider then a rectangular cavity in a higher-
dimensional spacetime, with acceleration in one of its
principal directions. Proceeding as for the scalar field,
and using the large M behavior of GðMÞ established in
the Appendix, we find that the situation is as for the scalar
field: unitarity holds for smoothly varying acceleration in
any spacetime dimension but fails for sharply varying
acceleration in spacetime dimension (3þ 1) and higher.

VIII. CONCLUSIONS

In this paper we have investigated scalar, spinor, and
photon fields in a cavity that is accelerated in Minkowki
spacetime. The cavity was assumed mechanically rigid,
and we worked within a recently introduced perturbative
formalism [12] that assumes accelerations to remain
small compared with the inverse linear dimensions of
the cavity but allows the velocities, travel times, and
travel distances to be arbitrary, and in particular in-
cludes the regime where the velocities are relativistic.
We extended previous scalar field analyses to cover
both Dirichlet and Neumann boundary conditions, and
we showed that a photon field in (3þ 1) spacetime
dimensions with perfect conductor boundary conditions
decomposes into Dirchlet-type and Neumann-type
polarization modes. For a Dirac spinor, we extended
previous work on (1þ 1)-dimensional massless spinors
to a strictly positive (1þ 1)-dimensional mass: this is
necessary to handle a cavity in dimensions higher than
(1þ 1), where the dimensions transverse to the accel-
eration give a strictly positive contribution to the effec-
tive (1þ 1)-dimensional mass. We also presented the
spinor field time evolution formulas for acceleration
with arbitrary time dependence, in parallel with
the scalar field formulas given in [13]. We discussed
briefly the consequences of the nonvanishing (1þ 1)-
dimensional mass for quantum information tasks with
Dirac fermions, noting that the mass and the absence of
a zero mode can enhance both entanglement degrada-
tion and generation effects.

Finally, we considered whether particle creation in the
cavity could become strong enough to prevent the time
evolution of the quantum field from being implementable
as a unitary transformation in the Fock space. Working to

linear order in the acceleration, we found the evolution to
be unitary when the acceleration varies smoothly in time.
In the limit of discontinously varying accelerations
the evolution remains unitary in spacetime dimensions
(1þ 1) and (2þ 1) but becomes nonunitary in spacetime
dimensions (3þ 1) and higher.
While the focus of this paper was theoretical, we shall

finish by recalling two experimental situations for which
our results are relevant.
First, traditional proposals to observe acceleration

effects in the laboratory use photons [4–7], and success
in observing the generated photons has been recently
reported in an experiment where acceleration is simu-
lated by SQUID circuits [24]. Our results confirm that the
small acceleration cavity formalism that was introduced
in [12] for a scalar field adapts in a straightforward way
to the electromagnetic field. It follows in particular that
the experimental scenario of mode mixing in a cavity
accelerated on a desktop, proposed and analyzed for a
scalar field in [13], does apply to photons captured in
the cavity.
Second, it has been proposed that acceleration effects for

fermions can be simulated in solid state analogue systems
[25–27]. Our work provides the theoretical framework
for analyzing such acceleration effects with cavitylike
boundary conditions whenever the fermion field has a
mass and/or dimensions transverse to the acceleration.
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APPENDIX: ASYMPTOTICS OF BOGOLIUBOV
COEFFICIENT SUMS

In this Appendix we establish the asymptotic large M
behavior of the functions FðMÞ and GðMÞ defined in
Sec. VII.

Recall that FðMÞ :¼ P
mnj�̂mnðMÞj2, where �̂mnðMÞ is

the coefficient of h in the expansion of o�mn in (2.12c)
or (3.3c), where the notation suppresses the distinction
between the Dirichlet and Neumann boundary conditions
but indicates explicitly the dependence on� and L through
the dimensionless combination M :¼ �L> 0. Recall

similarly that GðMÞ :¼ P
k>0>ljÂ�klðMÞj2, or equivalently

GðMÞ :¼ P
l>0>kjÂ�klðMÞj2, where Â�klðMÞ is the coeffi-

cient of h in (6.23).
Elementary estimates show that FðMÞ and GðMÞ are

finite for all M. At M ! 1, we find
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M2FðMÞ !

8>>>><
>>>>:

2
�2

R
x>0
y>0

x2y2dxdyffiffiffiffiffiffiffiffi
1þx2

p ffiffiffiffiffiffiffiffi
1þy2

p � ffiffiffiffiffiffiffiffi
1þx2

p
þ

ffiffiffiffiffiffiffiffi
1þy2

p �
6 ¼ 1

90�2 ; ðDirichletÞ

2
�2

R
x>0
y>0

� ffiffiffiffiffiffiffiffi
1þx2

p ffiffiffiffiffiffiffiffi
1þy2

p
þ1

�
2

dxdyffiffiffiffiffiffiffiffi
1þx2

p ffiffiffiffiffiffiffiffi
1þy2

p � ffiffiffiffiffiffiffiffi
1þx2

p
þ

ffiffiffiffiffiffiffiffi
1þy2

p �
6 ¼ 11

90�2 ; ðNeumannÞ
(A1a)

M2GðMÞ ! 8

�2

Z
x>0
y>0

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p
þ x� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ y2
p � y

�
2
h� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ x2
p

þ x
�� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ y2
p þ y

�
� 1

i
2� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ x2
p

þ xþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y2

p þ y
�
6
h� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ x2
p

þ x
�� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ y2
p þ y

�
þ 1

i
6

�
x2y2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p
þ x

�
4
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ y2
p þ y

�
4

ð1þ x2Þð1þ y2Þ dxdy;

¼ 7

45�2
� 1

64
; (A1b)

where the integral expressions ensue by regarding the sum as a Riemann sum: in (A1a) we have set x ¼ ð�=MÞm
and y ¼ ð�=MÞn, and in (A1b) we have set x ¼ jkj=� and y ¼ jlj=�. The integrals can be evaluated by the substitution
x ¼ 1

2 ðu� u�1Þ, y ¼ 1
2 ðv� v�1Þ.
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