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We derive multipolar equations of motion for gravitational theories with general nonminimal coupling

in spacetimes admitting torsion. Our very general findings allow for the systematic testing of whole

classes of theories by means of extended test bodies. One peculiar feature of certain subclasses of

nonminimal theories turns out to be their sensitivity to post-Riemannian spacetime structures even in

experiments without microstructured test matter.
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I. INTRODUCTION

In a recent work [1] we derived the conservation laws for
the most general class of nonminimally coupled gravity
theories. Here we are going to work out the equations of
motion for this whole class of theories by using Synge’s
expansion technique [2] in combination with a multipolar
framework à la Dixon [3]. The framework does not only
cover the metric case, but it is also general enough to cope
with theories which go beyond the usual Riemannian
framework [4]. In particular it allows for a generalized
discussion of microstructured media.

The results obtained here extend the ones in [5–13]. In
particular, they offer a new perspective on placing possible
observational constraints on new geometric features like
torsion.

Our notations and conventions are those of [4]. In par-
ticular, the basic geometrical quantities such as the curva-
ture, torsion, etc., are defined as in [4], and we use the
Latin alphabet to label the spacetime coordinate indices.
Furthermore, the metric has the signature ðþ;�;�;�Þ.

The structure of the paper is as follows. In Sec. II we
briefly discuss the class of theories under consideration.
In particular we provide the conservation laws, which in
turn are crucial for the subsequent derivation of the multi-
polar equations of motion in Sec. III. Apart from provid-
ing the general form of these equations, we study the
pole-dipole equations of motion in detail, and thereby find
an analogue to the classical Mathisson-Papapetrou [14,15]
equations for the whole class of nonminimal coupling
theories under consideration. Furthermore, we discuss
the case of test matter without microstructure and its
peculiar type of coupling to post-Riemannian spacetime
features. Our final conclusions and an outlook on open
problems is given in Sec. IV. Appendices A and B contain

a brief overview of our conventions and some frequently
used formulas.

II. GENERAL NONMINIMAL GRAVITY

In order to be as general as possible, we consider matter
with microstructure, namely, with spin. An appropriate
gravitational model is then the Poincaré gauge theory in
which the metric tensor gij is accompanied by the connec-

tion �ki
j that is metric compatible but not necessarily

symmetric. The gravitational field strengths are the
Riemann-Cartan curvature and the torsion:

Rkli
j ¼ @k�li

j � @l�ki
j þ �kn

j�li
n � �ln

j�ki
n; (1)

Tkl
i ¼ �kl

i � �lk
i: (2)

In [1], we worked out the conservation laws for a
general nonminimal gravity model in which the interaction
Lagrangian reads

Lint ¼ Fðgij; Rkli
j; Tkl

iÞLmat: (3)

The coupling function Fðgij; Rkli
j; Tkl

iÞ depends arbitrarily
on its arguments. In technical terms, F is a function
of independent scalar invariants constructed in all possible
ways from the components of the curvature and torsion
tensors. The matter Lagrangian has the usual form
Lmat ¼ Lmatðc A;ric

A; gijÞ.
A Lagrange-Noether analysis, see [1], yields the

following conservations laws:

F�k
i ¼ Ftk

i þr
�
nðF�iknÞ;

r
�
iðF�k

iÞ ¼ F�l
iTki

l � F�mn
lRklm

n

(4)

� LmatrkF: (5)

Here we made use of the following abbreviations, i.e.
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�k
i ¼ @Lmat

@ric
A
rkc

A � �i
kLmat; (6)

for the canonical energy-momentum tensor,

�nk
i ¼ � @Lmat

@ric
A
ð�A

BÞknc B; (7)

for the canonical spin tensor, and

tij ¼
2ffiffiffiffiffiffiffi�g

p @ð ffiffiffiffiffiffiffi�g
p

LmatÞ
@gij

; (8)

for the metrical energy-momentum tensor. Furthermore,
we made use of the so-called modified covariant derivative,
which is defined as usual by

r
�
i ¼ ri � Tki

k: (9)

Lowering the index in (4) and antisymmetrizing, we derive
the conservation law for the spin

F�½ij� þ r
�
nðF�½ij�nÞ ¼ 0: (10)

This is a generalization of the usual conservation law of
the total angular momentum for the case of nonminimal
coupling.

A. Purely Riemannian theory

Our results contain the Riemannian theory as a special
case. Suppose the torsion is absent Tij

k ¼ 0. Then for

usual matter without microstructure (spinless matter
with �mn

i ¼ 0) the canonical and the metrical energy-
momentum tensors coincide, �k

i ¼ tk
i. As a result, the

conservation law (5) reduces to

ritk
i ¼ 1

F
ð�Lmat�

i
k � tikÞriF: (11)

B. Further generalization:
Matter with intrinsic moments

Our formalism allows one to consider also the case when
matter couples to the gravitational field strengths not just
through an F factor in front of the Lagrangian but directly
via Pauli-type interaction terms in Lmat:

Iklmnðc A; gijÞRklm
n þ Jklnðc A; gijÞTkl

n: (12)

In Maxwell’s electrodynamics similar terms describe the
interaction of the electromagnetic field to the anomalous
magnetic and/or electric dipole moments. For Dirac spinor
matter [16,17], the Pauli-type quantities Iklmnðc A; gijÞ and
Jklnðc A; gijÞ are interpreted as the (Lorentz and transla-

tional, respectively) ‘‘gravitational moments’’ that arise
from the Gordon decomposition of the dynamical currents.

The on-shell conservation laws are then given by

�k
i ¼ tk

i þr
�
n�

i
k
n � 2JilnTkl

n þ JlnkTln
i

� 2IilnmRklnm � 2Ilnm½iRjlnmjk�; (13)

r
�
i�k

i¼�l
iTki

l��mn
lRklm

n�IilnmrkRiln
m�JlnmrkTln

m:

(14)

The skew-symmetric part of (13) describes the generalized
conservation of the angular momentum:

r
�
n�½ik�

n ¼ ��½ik� þ Jln½iT
ln
k� þ 2J½i

lnTk�ln
þ 2I½i

lnmRk�lnm þ 2Ilnm½iR
lmn

k�: (15)

For the Riemann-Cartan curvature tensor the pairs of
indices do not commute, Rijkl � Rklij, and one cannot

reduce the two terms in the second line of (15).
However, in the purely Riemannian case of general

relativity, the torsion vanishes and the curvature tensor
has more symmetries (in particular, the pairs of indices
do commute). Then the system (14) and (15) reduces to the
familiar Mathisson-Papapetrou form

rn�½ik�
n ¼ ��½ik� þ 4I½i

lnmRk�lnm; (16)

ri�k
i ¼ ��mn

lRklm
n � IilnmrkRilnm: (17)

The symmetric part of Eq. (16) describes the relation
between the metrical and canonical energy-momentum
tensors. When deriving (16), we took into account that in
view of the contraction in (12), we have the symmetry
properties

Iijkl ¼ I½ij�kl ¼ Iij½kl� ¼ Iklij: (18)

The form of the system of conservation laws (16) and
(17) is very close to Dixon’s equations describing the
dynamics of material body with the dipole and quadrupole
moments. However, it is important to stress that in contrast
to Dixon’s integrated moments of usual structureless mat-
ter, �½ik�

n and Iilnm are the intrinsic spin and quadrupole

moments of matter with microstructure. The above con-
servation laws can also be viewed as a direct generalization
of the ones for spinning particles and polarized media
given in [18].
It is worthwhile to note that in the Riemann-Cartan

spacetime the conservations laws (14) and (15) contain
two types of intrinsic quadrupole moments. We identify
Iijkl with the rotational (Lorentz) quadrupole moment,
whereas Jkli is naturally interpreted as the translational
quadrupole moment. These quantities are coupled to the
corresponding rotational and translational gravitational
field strengths, i.e., to the curvature Rijkl and the torsion

Tkl
i, respectively.
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III. EQUATIONS OF MOTION

The conservation equations (4) and (5) form the basis for
a general multipolar analysis. In the following we are going
to derive the equations of motion for test bodies by utiliz-
ing the expansion technique of Synge [2]. Since we are
now working in a spacetime which allows for more struc-
ture, we now also have—apart from the metric gab—the

torsion Tab
c. This leads to an additional degree of

freedom regarding the transport operations in the under-
lying multipolar formalism. We can proceed in two
ways: (i) extend Synge’s technique to non-Riemannian
spacetimes—thereby switching to a new type of (nongeo-
desic) reference curve; or (ii) use the standard Riemannian
approach and treat torsion as an additional variable. Here
we follow the latter strategy.

A. Rewriting conservation laws

The Riemann-Cartan connection can be decomposed
into the Riemannian (Christoffel) connection

�̂ij
k ¼

�
k

ij

�
¼ 1

2
gklð@igjl þ @jgil � @lgijÞ; (19)

plus the post-Riemannian piece:

�ij
k ¼ �̂ij

k � Kij
k: (20)

Here the contortion tensor reads

Kij
k ¼ � 1

2
ðTij

k � Tj
k
i þ Tk

ijÞ ¼ �Ki
k
j: (21)

We use the hat to denote objects and operators (such as
the curvature, covariant derivatives, etc.) defined by the
Riemannian connection (19).

Using the decomposition (20), we rewrite the conserva-
tion laws (4) and (5) as

r̂nðF�½ik�nÞ ¼ FðKni
l�½kl�

n � Knk
l�½il�

nÞ � F�½ik�; (22)

r̂iðF�k
iÞ ¼ �F�l

iKki
l � F�mn

lRklm
n � LmatrkF: (23)

We can develop the usual Riemannian world-function-
based multipole expansion starting from (22) and (23).

Defining auxiliary variables like in [13], i.e.,

Aðgij; Rijk
l; Tij

kÞ :¼ logF, Ai
:¼ riA, Aij

:¼ r̂jriA etc.,

we rewrite (22) and (23) as follows:

r̂n�½ik�
n¼Kni

l�½kl�
n�Knk

l�½il�
n��½ik��An�½ik�

n; (24)

r̂i�k
i ¼ ��l

iKki
l � �mn

lRklm
n � Ai�ik � Ai�k

i: (25)

Here we introduced the shortcut �ij
:¼ gijLmat.

B. Multipolar approximation

We will now derive the equations of motion of a
test body by utilizing the covariant expansion method of

Synge [2]. For this we need the following auxiliary formula
for the absolute derivative of the integral of an arbitrary
bitensor density ~Bx1y1 ¼ ~Bx1y1ðx; yÞ (the latter is a tensorial
function of two spacetime points):

D

ds

Z
�ðsÞ

~Bx1y1d�x1

¼
Z
�ðsÞ

r̂x1
~Bx1y1wx2d�x2

þ
Z
�ðsÞ

vy2r̂y2
~Bx1y1d�x1

:

(26)

Here vy1 :¼ dxy1=ds, s is the proper time, D
ds ¼ vir̂i, and

the integral is performed over a spatial hypersurface. Note
that in our notation the point to which the index of a
bitensor belongs can be directly read from the index itself;
e.g., yn denotes indices at the point y. Furthermore, we will

now associate the point y with the worldline of the test
body under consideration. Denote

�y1...yny0x0
:¼ �y1 � � ��yngy0x0 ; (27)

�y1...yny0y
0
x0x

0 :¼ �y1 � � ��yngy0x0g
y0
x0 : (28)

We start by integrating (24) and (25) using (26):

D

ds

Z
�y1...yny0y

0
x0x

0 ~�½x0x
0�x2d�x2

¼
Z

�y1...yny0y
0
x0x

0 ½Kx00x000
x0 ~�½x000x0�x00 � Kx00x000

x0 ~�½x000x0�x00

� ~�½x0x0� � Ax00 ~�
½x0x0�x00 �wx2d�x2

þ
Z

�y1...yny0y
0
x0x

0;x00~�
½x0x0�x00wx2d�x2

þ
Z

vynþ1�y1...yny0y
0
x0x

0;ynþ1
~�½x0x0�x2d�x2

; (29)

D

ds

Z
�y1...yny0x0

~�x0x2d�x2

¼
Z

�y1...yny0x0
½Kx0

x0x00
~�x0x00 � Rx0

x000x0x00 ~�
x0x00x000

� Ax0 ð ~�x0x
0 þ ~�x0x

0 Þ�wx2d�x2

þ
Z

�y1...yny0
x0;x

0 ~�
x0x

0
wx2d�x2

þ
Z

vynþ1�y1...yny0x0;ynþ1

~�x0x2d�x2
: (30)

Here the derivatives are straightforwardly evaluated:

�y1...yny0y
0
x0x

0;z ¼
Xn
a¼1

�y1 � � ��yaz � � ��yngy0x0g
y0
x0

þ �y1 � � ��ynðgy0x0;zgy
0
x0 þ gy0x0g

y0
x0;zÞ;
(31)
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�y1...yny0x0;z
¼ Xn

a¼1

�y1 � � ��yaz � � ��yngy0x0

þ �y1 � � ��yngy0x0;z; (32)

where z stands either for x or for y.
We now introduce integrated moments à la Dixon

in [3], i.e.,

py1...yny0 :¼ ð�1Þn
Z
�ðsÞ

�y1...yny0x0
~�x0x1d�x1

; (33)

ty2...ynþ1y0y1 :¼ ð�1Þn
Z
�ðsÞ

�y2...ynþ1y0y1x0x1
~�x0x1wx2d�x2

;

(34)

�y2...ynþ1y0y1 :¼ ð�1Þn
Z
�ðsÞ

�y2...ynþ1y0y1x0x1
~�x0x1wx2d�x2

;

(35)

sy2...ynþ1y0y1 :¼ ð�1Þn
Z
�ðsÞ

�y2...ynþ1y0y1x0x1
~�½x0x1�x2d�x2

;

(36)

qy3...ynþ2y0y1y2

:¼ ð�1Þn
Z
�ðsÞ

�y3...ynþ2y0y1x0x1
gy2x2 ~�

½x0x1�x2wx3d�x3
:

(37)
Then (29) and (30) take the form

D

ds
sy1...ynyayb ¼�ty1...yn½yayb�þqðy1...yn�1jyaybjynÞ �vðy1sy2...ynÞyayb þðvy00sy1...ynþ1y

0½ya þqy1...ynþ1y
0½yajy00jÞR̂yb�

y0y00ynþ1

�2qy1...ynþ1½yajy0jKy0ynþ1

yb� �2qy1...ynþ2½yajy0jKy0ynþ2

yb�;ynþ1
�qy1...ynyayby

0
Ay0 �qy1...ynþ1yayby

0
Ay0;ynþ1

þX1
k¼2

1

k!
½�qy1...ynþkyayby

0
Ay0;ynþ1...ynþk

�2qy1...ynþkþ1½yajy0jKy0ynþkþ1

yb�;ynþ1...ynþk

þð�1Þkvy0�ðy1
y0ynþ1...ynþk

sy2...ynÞynþ1...ynþkyayb �ð�1Þk�ðy1
y0ynþ1...ynþk

qy2...ynÞynþ1...ynþkyayby
0

þð�1Þk2ðvy0sy1...ynþkþ2½ya þqy1...ynþkþ2½yajy0jÞ�yb�
ynþkþ2y

0ynþ1...ynþkþ1
�; (38)

D

ds
py1...yny0 ¼ �vðy1py2...ynÞy0 þ tðy1...yn�1jy0jynÞ þ Ky0

y0y00t
y1...yny

0y00 þ Ky0
y0y00;ynþ1

ty1...ynþ1y
0y00 � Ry0

ynþ1y
0y00q

y1...yny
0y00ynþ1

� Ry0
ynþ2y

0y00;ynþ1
qy1...ynþ1y

0y00ynþ2 � 1

2
R̂y0

y0y00ynþ1
ðvy00py1...ynþ1y

0 þ ty1...ynþ1y
0y00 Þ � Ay0 ð�y1...yny

0y0 þ ty1...yny
0y0Þ

� Ay0;y00 ð�y1...yny
00y0y0 þ ty1...yny

00y0y0Þ þ X1
k¼2

1

k!
½Ky0

y0y00;ynþ1...ynþk
ty1...ynþky

0y00 � Ry0
ynþkþ1y

0y00;ynþ1...ynþk
qy1...ynþky

0y00ynþkþ1

� Ay0;ynþ1...ynþk
ð�y1...ynþky

0y0 þ ty1...ynþky
0y0Þ � ð�1Þk�ðy1

y0ynþ1...ynþk
ty2...ynÞynþ1...ynþky

0y0

þ ð�1Þkvy0�ðy1
y0ynþ1...ynþk

py2...ynÞynþ1...ynþky0 � ð�1Þk�y0
y0y00ynþ1...ynþkþ1

ðvy00py1...ynþkþ1y
0 þ ty1...ynþkþ1y

0y00 Þ�: (39)

C. Vanishing spin current

For the special case of vanishing spin current �abc ¼ 0,
we infer from (24) that the canonical energy-momentum
tensor is symmetric �½ij� ¼ 0, and that it coincides with

the metrical energy-momentum tensor in view of (4).
Furthermore, we have as a starting point for the derivation
of the equations of motion

r̂ i�
ki ¼ �Kk

il�
li � Aið�ik þ �kiÞ: (40)

Due to the antisymmetry of the contortion, the
contraction in the first term with the symmetric t
moment—in the case of an absent spin current—vanishes

identically. Hence we are left with structurally the same
equation as in [13], the only1 difference being that here
Aðgij; Rijk

l; Tij
kÞ is a function of the curvature and the

torsion.
For the vanishing spin all the corresponding multipole

moments (36) and (37) vanish, too: sy2...ynþ1y0y1 ¼ 0 and
qy3...ynþ1y0y1y2 ¼ 0 for any n. In addition, the multipole
moments ty2...ynþ1y0y1 are symmetric in the last two
indices.

1Note the different sign of � in this paper; this is explained by
a different definition of the metrical energy-momentum tensor as
compared to [13].
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1. Monopole order (�ab
c ¼ 0)

At the monopole order we have

D

ds
pa ¼ �Abð�ab þ tabÞ; (41)

tab ¼ pavb: (42)

Substituting (42) into (41), we recover the equation of
motion [13]

D

ds
ðFpaÞ ¼ ��abrbF: (43)

As we see, the nonminimal coupling is manifest in the
nongeodetic motion of the monopole test particle.

2. Pole-dipole order without spin (�ab
c ¼ 0)

At the pole-dipole order we obtain

vðapbÞc ¼ tðabÞc; (44)

D

ds
pab ¼ tab � vapb � Acð�abc þ tabcÞ; (45)

D

ds
pa ¼ � 1

2
R̂a

bcdðvcpdb þ tdbcÞ � Abð�ab þ tabÞ
� Abcð�cab þ tcabÞ: (46)

Note that we did not make any simplifying assumptions
about the spacetime which still has the general Riemann-
Cartan geometric structure with nontrivial torsion.
Nevertheless, neither torsion nor contortion contributes to
the equations of motion (45) and (46).

D. General pole-dipole equations of motion

Let us consider the general case when the extended body
consists of material elements with microstructure, i.e., with
spin. In the pole-dipole approximation, the relevant
moments2 are pa, pab, tab, tabc, �ab, �abc, sab, qabc, and
we neglect all higher multipole moments. Then for n ¼ 1
and n ¼ 0, Eq. (38) yields

0 ¼ �ta½bc� þ qbca � vasbc; (47)

D

ds
sab ¼ �t½ab� � 2qc½ajdjKdc

b� � qabcAc; (48)

whereas (39) for n ¼ 2, n ¼ 1, and n ¼ 0 yields

0 ¼ �vðapbÞc þ tðajcjbÞ; (49)

D

ds
pab ¼ �vapb þ tba þ Kb

cdt
acd � Acð�acb þ tacbÞ;

(50)

D

ds
pa ¼ Ka

cdt
cd þ Ka

cd;bt
bcd � Ra

bcdq
cdb

� 1

2
R̂a

bcdðvcpdb þ tdbcÞ � Abð�ba þ tbaÞ
� Ab;cð�cba þ tcbaÞ: (51)

Combining (47) with (49), we derive

t½ajcjb� ¼ vcp½ab� þ v½apjcjb� � tc½ba� � ta½bc� þ tb½ac� (52)

¼ vcp½ab� þ v½apjcjb� þ 2tc½ab� � 3t½abc�: (53)

Furthermore, we can substitute (47) into (52) and thus

express t½ajcjb� in terms of the p, q, and s moments:

t½ajcjb� ¼ vcðp½ab� � sabÞ þ v½aðpjcjb� þ 2sb�cÞ
þ qabc þ 2q½ajcjb�: (54)

Antisymmetrizing (50), we find

D

ds
p½ab� ¼ �v½apb� þ t½ba� þ K½b

cdt
a�cd

� Acð�½ajcjb� þ t½ajcjb�Þ: (55)

Combining this equation with (48), we eliminate t½ab� and
using (47) derive

D

ds
ðp½ab� � sabÞ
¼ �v½aðpb� þ Kb�

cds
cdÞ þ qcd½aKb�

cd þ 2qc½ajdjKdc
b�

þ Acðqabc � �½ajcjb� � t½ajcjb�Þ: (56)

Next, substituting (47), (48), and (53) into (51), we obtain
after some algebra

D

ds
ðpa þKa

cds
cdÞ

¼ R̂a
bcdðp½cd� � scdÞvb þ qcdb½R̂a

bcd �Ra
bcd þKa

cd;b

� 2Ka
dnKbc

n �Ka
cdAb� �Abð�ba þ tbaÞ

�Ab;cð�cba þ tcbaÞ: (57)

We now introduce the integrated orbital angular momen-
tum and the integrated spin angular momentum of an
extended body as

Lab :¼ 2p½ab�; Sab :¼ �2sab; (58)

respectively.

2Note that this counting scheme is compatible with our pre-
vious work [8] on multipolar approximations with microstruc-
tured matter, in particular, it also matches the one employed
in [6].
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Then, after a straightforward but rather lengthy compu-
tation, we can recast (56) and (57) into the final form

D

ds
J ab ¼ �2v½aP b� þ 2FQcd½aTcd

b� þ 4FQ½a
cdT

b�cd

� ð4q½ajcjb� þ 2�½ajcjb�ÞrcF; (59)

D

ds
P a ¼ 1

2
R̂a

bcdJ
cdvb þFQbc

dr̂aTbc
d � 2qbcdKdc

arbF

þ 2FqacdrdAc � �barbF� �cbar̂crbF: (60)

Here we defined the total energy-momentum vector and the
total angular momentum tensor by

P a :¼ F

�
pa � 1

2
Ka

cdS
cd

�
þ ðpba � SabÞrbF; (61)

J ab :¼ FðLab þ SabÞ: (62)

In addition, we introduced a redefined moment

Qbca :¼ 1

2
ðqbca þ qbac � qcabÞ: (63)

By construction, Qbc
a ¼ �Qcb

a. In the derivation of (59)
and (60) we made use of (47) and (54) and took into
account the geometrical identity

R̂a
bcd � Ra

bcd � Kbcd;
a þ Ka

cd;b þ 2Kb½c
nKa

d�n: (64)

The latter can be proved by substituting the decomposition
of the Riemann-Cartan connection (20) into the curvature
definition (1). Furthermore, it is helpful to notice that

qcd½aKb�
cdþ2qc½ajdjKdc

b� �Qcd½aTcd
b�þ2Q½a

cdT
b�cd and

qcdbKbcd;
a � Qbc

dr̂aTbc
d.

The equations of motion (59) and (60) generalize the
results obtained in [13] to the case when extended bodies
are built of matter with microstructure and move in a
Riemann-Cartan spacetime with nontrivial torsion.

1. Minimal coupling

When the coupling function is constant, F ¼ 1, that is
for the minimal coupling case, we obtain

P a ¼ pa � 1

2
Ka

cdS
cd; J ab ¼ Lab þ Sab; (65)

and the equations of motion

D

ds
J ab ¼ �2v½aP b� þ 2Qcd½aTcd

b� þ 4Q½a
cdT

b�cd; (66)

D

ds
P a ¼ 1

2
R̂a

bcdJ
cdvb þQbc

dr̂aTbc
d: (67)

Comparing these equations to the conservation laws (14)
and (15), it is remarkable that the redefined dipole
spin moment (63) actually took over the role of the trans-
lational quadrupole moment. That is, up to a factor (� 2),

conventionally introduced in (58), we can identify Qbc
a

with Jbca. This interesting feature was not reported before.

2. Nonminimal coupling: A loophole to detect torsion?

It is satisfying to see that the structure of the equations of
motion (66) and (67) is in agreement with the earlier results
of Yasskin and Stoeger [6]. Therefore, we confirm once
again that spacetime torsion couples only to the integrated
spin Sab, which arises from the intrinsic spin of matter,
and the higher moment qabc. Hence, usual matter without
microstructure cannot detect torsion and, in particular,
experiments with macroscopically rotating bodies such as
gyroscopes in the Gravity Probe B mission do not place
any limits on torsion [19].
However, this conclusion is apparently violated for the

nonminimal coupling case. Aswe see from (59) and (60), test
bodies of structureless matter could be affected by torsionvia
the derivatives of the coupling function Fðgij; Rkli

j; Tkl
iÞ.

On the other hand, this possibility is qualitatively different
from the ad hoc assumption that structureless particles move
along auto-parallel curves in the Riemann-Cartan spacetime
made in [20–23]; see the critical assessment in [19]. The
trajectory of a monopole particle, described by (43), is
neither geodesic nor auto-parallel. The same is true for the
dipole case when the nonminimal coupling force is com-
bined with the Mathisson-Papapetrou force.

IV. CONCLUSION

We have obtained equations of motion for material
bodies with microstructure, thus generalizing the previous
works [5,6,8,9,18] to the general framework with nonmi-
nimal coupling. The master equations (38) and (39) de-
scribe the dynamics of an extended body up to an arbitrary
multipole order. It turns out that, despite a rather compli-
cated general structure of the equations of motion, most of
the terms in (38) and (39) show up only at the quadrupole
order or higher orders.
In the special case of minimal coupling (which is recov-

ered when F ¼ 1), our results can be viewed as the
covariant generalization of the ones in [5,6], as well as
the parts concerning Poincaré gauge theory of [8].
A somewhat surprising result in the present nonminimal

context with torsion, is the—indirect—appearance of the
torsion through the coupling function F even in the lowest
order equations of motion for matter without intrinsic
spin—see Eqs. (41) and (42). This clearly is a distinctive
feature of theories which exhibit nonminimal coupling,
which sets them apart from other gauge theoretical ap-
proaches to gravity. As we have shown in [6,8,9], and
as it is also discussed at length in the recent review [19],
in the minimally coupled case only microstructured matter
couples to the post-Riemannian spacetime features—in
particular, in the minimally coupled case one needs
matter with intrinsic spin to detect the possible torsion of
spacetime. As we have shown in the current work, this is
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no longer the case in the nonminimally coupled context.
In other words, supposing that one can come up with a
sensible background model for spacetime including tor-
sion, it could be somewhat constrained through standard
test bodies—i.e. made from regular matter—through the
derived equations of motion, in particular, through (41) and
(42) in the monopolar case.

Despite the progress made here, we would also like to
point out some open questions and directions for future
investigations. (i) In a post-Riemannian context, there is
naturally more freedom regarding the possible geometry of
spacetime. This additional freedom could also be used for
an extension and modification of the multipolar framework
itself in general spacetimes encompassing, besides the
curvature, also new quantities like torsion. In particular,
one could carry out the derivations in the present work with
a modified world-function formalism, i.e. one which is no
longer based on the geodesic structure of the spacetime—
see also [24–26] for some generalizations in this direction.
While such a modification remains a possibility, which is
somewhat linked to the discussion of which types of curves
are ‘‘natural’’ in specific spacetimes, one should also be
clear that one would loose comparability with almost all of
the previous works on equations of motion. (ii) Another
generalization concerns the generalization to the metric-
affine case, i.e. including, apart from the torsion, also the
nonmetricity of spacetime. The results in this paper already
hint into this direction. In general non-Riemannian space-
times, one can expect a direct coupling term, not only
through the function F, on the level of the equations of
motion. This will eventually lead to more ‘‘fine grained’’
possible tests of post-Riemannian geometric structures.
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APPENDIX A: CONVENTION AND SYMBOLS

In the following we summarize our conventions, and
collect some frequently used formulas. A directory of
symbols used throughout the text can be found in
Table I. For an arbitrary k-tensor T

a1...ak
, the symmetriza-

tion and antisymmetrization are defined by

Tða1...akÞ
:¼ 1

k!

Xk!
I¼1

T�Ifa1...akg; (A1)

T½a1...ak�
:¼ 1

k!

Xk!
I¼1

ð�1Þj�I jT�Ifa1...akg; (A2)

where the sum is taken over all possible permutations
(symbolically denoted by �Ifa1 . . .akg) of its k indices.

As is well known, the number of such permutations is

equal to k!. The sign factor depends on whether a permu-
tation is even (j�j ¼ 0) or odd (j�j ¼ 1). The number of
independent components of the totally symmetric tensor
Tða1...akÞ of rank k in n dimensions is equal to the binomial

coefficient

Ck
n�1þk ¼

ðn� 1þ kÞ!
k!ðn� 1Þ! ;

whereas the number of independent components of the
totally antisymmetric tensor T½a1...ak� of rank k in n dimen-

sions is equal to the binomial coefficient

Ck
n ¼ n!

k!ðn� kÞ! :

TABLE I. Directory of symbols.

Symbol Explanation

Geometrical quantities

gab Metricffiffiffiffiffiffiffi�g
p

Determinant of the metric

�a
b Kronecker symbol

xa, s Coordinates, proper time

�ab
c Connection

Kab
c Contortion

Tab
c Torsion

Rabc
d Curvature

� World function

gy0 x0 Parallel propagator

Matter quantities

c A General matter field

�a
b Canonical energy momentum

ta
b Metrical energy momentum

�ab
c Canonical spin

Iabcd, Jabc Pauli-type moments

va Velocity

P a Generalized momentum

Sab Spin angular momentum

Lab Orbital angular momentum

J ab Total angular momentum

L Lagrangian

py1...yny0 , ty2...ynþ1y0y1 , Integrated moments

�y2...ynþ1y0y1 , sy2...ynþ1y0y1 ,

qy3...ynþ2y0y1y2

Auxiliary quantities

r
�
a

Modified covariant derivative

F, A Coupling function

�y0 y1...yn
, �y0 y1...yn

, �y0 y1...yn
Expansion coefficients

Operators

@i, ri (Partial, covariant) derivative
D
ds ¼ “ _” Total derivative

‘‘½. . .�’’ Coincidence limit

“b” Riemannian quantity

EQUATIONS OF MOTION IN GRAVITY THEORIES WITH . . . PHYSICAL REVIEW D 88, 064025 (2013)

064025-7



For example, for a second rank tensor Tab the symmetriza-

tion yields a tensor TðabÞ ¼ 1
2 ðTab þ TbaÞ with 10 indepen-

dent components, and the antisymmetrization yields
another tensor T½ab� ¼ 1

2 ðTab � TbaÞ with 6 independent

components.
The covariant derivative defined by the Riemannian

connection (19) is conventionally denoted by the nabla or

by the semicolon: r̂a ¼ “;a”.

Our conventions for the Riemann curvature are as
follows:

2Ac1...ck
d1...dl;½ba� � 2r̂½ar̂b�A

c1...ck
d1...dl

¼ Xk
i¼1

R̂abe
ciAc1...e...ck

d1...dl

� Xl
j¼1

R̂abdj

eAc1...ck
d1...e...dl

: (A3)

The Ricci tensor is introduced by R̂ij
:¼ R̂kij

k, and the

curvature scalar is R̂ :¼ gijR̂ij. The signature of the space-

time metric is assumed to be ðþ1;�1;�1;�1Þ.
In the following, we summarize some of the frequently

used formulas in the context of the bitensor formalism
[in particular for the world-function �ðx; yÞ]; see, e.g.,
[2,27,28] for the corresponding derivations. Note that our
curvature conventions differ from those in [2,28]. Indices
attached to the world function always denote covariant
derivatives, at the given point, i.e. �y

:¼ ry�; hence we

do not make explicit use of the semicolon in case of the
world function. We start by stating, without proof, the
following useful rule for a bitensor B with arbitrary indices
at different points (here just denoted by dots):

½B...�;y ¼ ½B...;y� þ ½B...;x�: (A4)

Here a coincidence limit of a bitensor B...ðx; yÞ is a tensor
½B...� ¼ lim

x!y
B...ðx; yÞ; (A5)

determined at y. Furthermore, we collect the following
useful identities:

�y0y1x0y2x1
¼ �y0y1y2x0x1

¼ �x0x1y0y1y2
; (A6)

gx1x2�x1
�x2

¼ 2� ¼ gy1y2�y1
�y2

; (A7)

½�� ¼ 0; ½�x� ¼ ½�y� ¼ 0; (A8)

½�x1x2
� ¼ ½�y1y2

� ¼ gy1y2
; (A9)

½�x1y2
� ¼ ½�y1x2

� ¼ �gy1y2
; (A10)

½�x1x2x3
� ¼ ½�x1x2y3

� ¼ ½�x1y2y3
� ¼ ½�y1y2y3

� ¼ 0; (A11)

½gx0y1� ¼ �y0y1
; ½gx0y1;x2� ¼ ½gx0y1;y2� ¼ 0; (A12)

½gx0y1;x2x3� ¼
1

2
R̂y0

y1y2y3
: (A13)

APPENDIX B: COVARIANT EXPANSIONS

Here we briefly summarize the covariant expansions
of the second derivative of the world function, and the
derivative of the parallel propagator:

�y0x1
¼ gy

0
x1

�
��y0

y0 þ
X1
k¼2

1

k!
�y0

y0y2...ykþ1
�y2 � � ��ykþ1

�
;

(B1)

�y0y1
¼ �y0y1

� X1
k¼2

1

k!
�y0y1y2...ykþ1

�y2 � � ��ykþ1 ; (B2)

gy0x1;x2 ¼ gy
0
x1
gy

00
x2

�
1

2
R̂y0

y0y00y3
�y3

þ X1
k¼2

1

k!
�y0

y0y00y3...ykþ2
�y3 � � ��ykþ2

�
; (B3)

gy0x1;y2 ¼ gy
0
x1

�
1

2
R̂y0

y0y2y3
�y3

þ X1
k¼2

1

k!
�y0

y0y2y3...ykþ2
�y3 � � ��ykþ2

�
: (B4)

The coefficients �, �, � in these expansions are polyno-
mials constructed from the Riemann curvature tensor and
its covariant derivatives. The first coefficients read as
follows:

�y0y1y2y3
¼ � 1

3
R̂y0 ðy2y3Þy1 ; (B5)

�y0y1y2y3
¼ 2

3
R̂y0 ðy2y3Þy1 ; (B6)

�y0y1y2y3y4
¼ � 1

2
r̂ðy2R̂

y0
y3y4Þy1 ; (B7)

�y0y1y2y3y4
¼ 1

2
r̂ðy2R̂

y0
y3y4Þy1 ; (B8)

�y0y1y2y3y4
¼ 1

3
r̂ðy3R̂

y0 jy1jy4Þy2 : (B9)

In addition, we also need the covariant expansion of a usual
vector:

Ax ¼ gy0x
X1
k¼0

ð�1Þk
k!

Ay0;y1...yk
�y1 � � ��yk : (B10)
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