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Stability about cosmological background solutions to the bimetric Hassan-Rosen theory is studied.

The results of this analysis are presented, and it is shown that a large class of cosmological backgrounds

is classically unstable. This sets serious doubts on the physical viability of the Hassan-Rosen theory—and

in turn also of the de Rham-Gadabaze-Tolley model. A way to overcome this instability by means of

curvature-type deformations is discussed.
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I. INTRODUCTION

The general theory of relativity proposed by Einstein in
1916 [1] provides the fundamental building block of our
current understanding of gravitation. This framework—
describing the dynamics of a massless spin-two field in
four dimensions—has been tested from scales of about a
fraction of a millimeter up to scales of a few astronomical
units and agrees remarkably well with all experimental
data.

Despite its successes, and the necessity of a theory
of quantum gravity in the ultraviolet, it remains rather
unclear whether general relativity is a valid description
on cosmological scales. Therefore, it is tempting to study
its consistent infrared deformations. Several of those pos-
sibilities have been considered, such as extra-dimensional
models [2–5], multigravitation [6–8], and deformed
(e.g. massive) gravity [5,9–13].

Since the fundamental work of Fierz and Pauli [11] in
1939, who constructed a consistent theory of massive
gravity onMinkowski background to linear order, the quest
has long been unsuccessful at consistently generalizing
such a framework to curved space-times. In Ref. [13] this
task has been established on a Friedmann-Lemaı̂tre-
Robertson-Walker (FLRW) background, which—by inclu-
sion of the Ricci scalar—was shown to be fully respected
throughout the entire realistic cosmological evolution.
An important feature of this theory is that the Fierz-Pauli
mass parameter can be consistently set to zero, therefore
providing a modification of general relativity solely on
curved space-times. This might be very important in light
of the Boulware-Deser ghost [14], the van Dam-Veltman-
Zakharov (vDVZ) discontinuity [15,16], and recently
raised acausality concerns [17].

Many of the models that have been proposed so far to
modify gravity have the unphysical need to fix a reference
metric, or, if this metric is dynamical, lack the existence of a
respected cosmological background. A recent and much-
noticed attempt to modify gravity with a bimetric theory
that allows for cosmological backgrounds has been presented

in [8]. This work was only concerned with establishing
realistic backgrounds. A complete and consistent study of
fluctuations about this background is very important for
stability issues (cf. [18]).
In this work we present results of precisely such a

stability analysis and show that a large class of the cosmo-
logical branch of the Hassan-Rosen theory [7] is not physi-
cally viable. We then show (for one particular case) a way
to ensure full stability, at least on the linear level.

II. FRAMEWORK

The bimetric action under consideration is (cf. Ref. [8])

S½f; g;�� ¼ �M2
f

2

Z
M

d4x
ffiffiffiffiffiffi
jfj

q
R½f� �M2

g

2

�
Z
M

d4x
ffiffiffiffiffiffi
jgj

q
R½g�

þ
Z
M

d4x
ffiffiffiffiffiffi
jgj

q
Lm½g;��

þm2M2
g

Z
M

d4x
ffiffiffiffiffiffi
jgj

q X4
n¼0

�nenðXÞ: (1)

Here, X :¼ ffiffiffiffiffiffiffiffiffiffiffi
g�1f

p
, M is a four-dimensional pseudo-

Riemannian manifold, the metrics f and g have signature
ð�;þ;þ;þÞ, and the units are such that "¼! c¼! 1.
For the sake of convenience, the matter fields—which
are minimally coupled to g in the matter Lagrangian Lm

(we will restrict ourselves to the case of a perfect fluid)—
are denoted by�. Hence, matter is only indirectly coupled
to f through its interactions with g. R½�� is the Ricci scalar
of the respective metric, the �n are fixed, real parameters,
and enðXÞ are elementary symmetric polynomials of the
eigenvalues of the matrix X, e.g.

e0ðXÞ ¼ 1; e1ðXÞ ¼ ⟦X⟧;

e2ðXÞ ¼ 1

2
ð⟦X⟧2 � ⟦X⟧2Þ; e4ðXÞ ¼ det ½X�;

(2)

where the double-lined square brackets denote the matrix
trace, i.e. ⟦X⟧ � X�

�. The quantity e3 is not displayed as

it will not be included in the present analysis, which refers*florian.kuehnel@physik.lmu.de
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to the cosmological studies of Ref. [8] wherein �3 is set to
zero. Actually, in the case of massive gravity (where f is
nondynamical), its inclusion is phenomenologically non-
acceptable [19]. Hence, we will set �3 � 0.

It is easy to check that the model (1) (except the matter
sector) only depends upon three dimensionless parameters
(H0 being today’s Hubble constant) [20],

M? :¼ Mf

Mg

; M :¼ m

H0

; �2: (3)

III. STABILITY

To check for stability or instability, respectively, one has
to expand the fields f and g about certain backgrounds
which are consistent with the action (1). Then one studies
how the perturbations evolve.

To this end we expand f and g about the backgrounds
fð0Þ and gð0Þ, respectively,

f � fð0Þ þ �f; g � gð0Þ þ �g; (4)

and define the matrix � via �2 � g�1
ð0Þ fð0Þ, which appears in

the whole interaction term in (1) and allows us to express
fð0Þ through gð0Þ via fð0Þ ¼ gð0Þ�2.

In the cosmologically relevant case, the background gð0Þ
of the fluctuation �g (to which our matter sector is coupled
to) is homogeneous and isotropic and shall assume the
Friedmann-Lemaı̂tre-Robertson-Walker form

gð0Þ ¼ diagð�1; a2; a2; a2Þ; (5a)

where a is the scale factor, being normalized such that it
equals one today. Then, demanding spatial homogeneity
and isotropy for fð0Þ as well, i.e. the same SOð3Þ symmetry,

and assuming the same spatial curvature as for gð0Þ, leads
(up to time reparametrizations) to

fð0Þ ¼ diagð��ðaÞ2; a2�ðaÞ2; a2�ðaÞ2; a2�ðaÞ2Þ; (5b)

yielding

� ¼ diagðj�j; j�j; j�j; j�jÞ: (6)

Hence, the functions � ¼ �ðaÞ and � ¼ �ðaÞ parametrize
the deviation of the two backgrounds. In general, they are
not independent, as the Bianchi identity together with the
conservation of energy yields (cf. Ref. [8])

�ðaÞ � dða�ðaÞÞ
da

: (7)

The Friedmann equations determine the function �ðaÞ.
In general, it is given by a root of a quartic polynominal.
However, for the choice of �3 ¼ 0 (cf. the comment on the
end of the previous section), this equation is only cubic in
�. Let � be the energy density of the Universe and set
�? :¼ �=3m2M2

g. Then one finds

�
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The corresponding three solutions to Eq. (8) show a
quite different behavior (cf. Fig. 1). In fact, in the limit
of small scale factor one of them diverges, while two
approach zero. The latter solutions imply that those terms
(involving powers of �f��), that are contracted with the

inverse metric f�1
ð0Þ , have prefactors that strongly grow

(and eventually diverge in the limit of vanishing scale
factor) the stronger the higher their order is.
Actually, as we will see below, fluctuations become of

order one already at some moderately small value of a.
Moreover, one of the solutions has a zero crossing of �ðaÞ
(cf. Fig. 1), which makes �ðaÞ nonanalytic—a particularity
that also concerns the solutions for the fluctuations
(see below).
Let us now come to the general cosmological case, as

discussed in Ref. [8]. Assuming a spatially flat universe,
one can show that the Friedmann equation takes the form
ðH=H0Þ2 ¼ �þ�� � ð�r þ�m þ��Þ þ��, wherein

�r;m;� denote the density parameters for radiation, matter,

and a cosmological constant, respectively. As usual we
define H :¼ _a=a, � :¼ �=3H2

0M
2
g, and further set �� :¼

M2ð�� 1Þ½�2ð�þ 1Þ � ð1þ 2�2Þ�2�. We demand that
�ða ¼ 1Þ ¼ 1 in order to have that the density parameter
� equals one today, i.e.�ða ¼ 1Þ ¼ 1, being suggested by
cosmic microwave background observations [21].
By performing distance-related tests using cosmological

data, it has been shown by the authors of Ref. [8] that it
is possible to choose the above parameters such that
a realistic cosmological background can be obtained.
Unfortunately, this has been done only for a very limited
range of redshifts and is purely on the background level.
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FIG. 1 (color online). Absolute values of the functions �ðaÞ
(black, solid curves) and �ðaÞ (red, dashed curves) as functions
of the scale factor a (double-logarithmic scale). The parameters
are �2 ¼ �0:3, M ¼ 3, M? ¼ 2:5. Note that the two lower
curves are twofold degenerate.
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For the sake of studying stability, the standard way is to
perform a decomposition of the fluctuations �g and �f into
irreducible tensors with respect to the isometries of the
Friedmann backgrounds. In this way, and on the linear
level, one can study the rank-2,1,0 SOð3Þ-tensor contribu-
tions separately. Often, the scalar sector is the most indica-
tive of (in)stability. Precisely the same results can,
however, be obtained in the following way: As we are
interested in studying stability of the homogeneous back-
grounds, it suffices to look at the fluctuations’ zero modes.
Then, it is easy to show that the metrics’ off-diagonal
spatial components (i � j) can be solved for separately
and are invariant with respect to time reparametrizations.

After expanding the action (1) to second order in the
fluctuations, we find for i � j the set of coupled field
equations,

�f00ij þ a1�f
0
ij þ b1�fij ¼ c1�gij; (9a)

�g00ij þ a2�g
0
ij þ b2�gij ¼ c2�fij; (9b)

wherein a prime denotes a derivative with regard to the
scale factor a, and the quantities ai, bi, ci are given by

a1 ¼ �log 0½a����; a2 ¼ �log 0½a��;

b1 ¼ M2�2
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with t being cosmic time, and � :¼ H0dtðaÞ=da. Defining
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(11)

one can express the system (9a) and (9b) as

~y 0 ¼ A � ~y; (12)

wherein the matrixA is composed of the coefficients ai, bi,
ci. Stability of the above system (12) depends upon the
behavior of the real parts of the eigenvalues of A.

Analyzing (numerically) precisely those real parts shows
(cf. Fig. 2), first of all, that the undeformed theory (i.e. zero
interactions) is stable (dashed lines in the lower panel of
Fig. 2). For the deformed theory, one observes that there is

always [i.e. for all three solutions to Eq. (8)] at least one
eigenvalue that diverge towardsþ1 if a goes to zero. More
precisely, for a ! 0 it diverges much faster than 1=a,
yielding an exponential divergence of the associated
mode. Furthermore, the solution to Eq. (8) for which �ðaÞ
and �ðaÞ grow for small a [and hence does not imply that
higher-order terms in the expansion of the action (1) be-
come more and more important as a becomes smaller
[cf. remark below Eq. (8)] and which has a zero crossing,
diverges at somefinitevaluea ¼ a?. The divergence is such
that it grows towards �1 for ða? � aÞ ! 0þ.
We should stress that all parameters within the physi-

cally relevant intervals (as given in Ref. [8]),

1:5&M?&3:0; 2&M&3:5; �0:5&�2&�0:1; (13)

yield the same qualitative behavior. In all those cases, the
scale factor at which the theory is nonanalytic, a?, is far
larger than its value at recombination. On the other hand, it
is smaller than the value up to which supernovae data
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FIG. 2 (color online). Real parts of the eigenvalues of the
matrix A [cf. Eq. (12)] as functions of the scale factor a
(log-axis). The two large panels represent the regular solutions
to Eq. (8), and the small graph in the lower panel shows the
one for which �ðaÞ is nonanalytic. Dashed lines indicate
the eigenvalues of the undeformed theory. The parameters are
�2 ¼ �0:3, M ¼ 3, M? ¼ 2:5.
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have been analyzed in [8]. Exactly the same holds true for
the value at which fluctuations become of order one, anl
(see below). Choosing

M? ¼ 2:5; M ¼ 3:0; �2 ¼ �0:3; (14)

we find that both anl and a? are Oð0:1Þ (cf. Figs. 2 and 3.
Figure 3 shows the full solution to the system, (9a) and

(9b). It can be seen (exemplary for the parameter set (14),
and certain initial conditions) how the (absolute values of
the) relative fluctuations behave as a function of the scale
factor a. One can read off the aforementioned instability
from the solid lines, describing one particular realization of
the deformed theory. In contrast, the undeformed theory
(dashed lines) is well behaved.

One also observes the same unphysical backward insta-
bility as in Refs. [12], implying that the setup is merely
self-protected, where the notion of ‘‘self-protection’’ refers
to the breakdown of the linear approximation, i.e., the
formation of a new background, such that no unitarity
violation can be seen within this approximation.

We checked that the instability occurs for all cosmolog-
ically allowed parameters out of the intervals (13) (for the
present case of no matter coupling to f, as discussed in
Ref. [8]). On top of that, it is independent of the precise
details of the initial conditions [22].

Let us finally come to one particularly interesting case,
which is constituted by the limit M? ¼ Mf=Mg ! 1.

Therefore, the f field is frozen into its background value,
which may be taken to be Minkowskian due to the lack of
respective matter couplings [cf. Eq. (1)]. Performing analo-
gous studies as above reveals the same mentioned back-
ward instability—the figure corresponding to Fig. 3 looks
qualitatively the same in this respect. Since, now, there
is only one dynamical metric (albeit with a particular

deformation term), we can easily use a modified version
of the stability analysis performed in Ref. [13]. This
amounts to studying—after introduction of Stückelberg
fields—the roots of the determinant of the full kinetic
operator, from which bounds for stability and unitarity
can be directly read off.
Explicitly, and following Ref. [13], one introduces

Stückelberg fields as

�g�� ¼ h�� þrð�A�Þ þ r�r��: (15)

Here, h, A, � are rank-2,1,0 tensors, respectively, under
full background diffeomorphisms; round brackets around
indices stand for symmetrization. This parametrization
corresponds to two successive Stückelberg completions
and introduces a Uð1Þ4 �Uð1Þ gauge symmetry among
the fields h, A, �.
The task is now to supplement the linearized action (1)

with a ‘‘healthy’’ deformation term, such that the theory
respects realistic cosmological backgrounds, i.e. those
FLRW ones as in Eq. (5a) which are in agreement with
observations.
The Goldstone-Stückelberg field � enters the gauge-

invariant combination �g with two derivatives and, there-
fore, a priori any modified quadric action with four
derivatives. Without further restriction, the short-distance
behavior of the deformation would be governed by a
higher-derivative theory that violates unitarity. In order to
avoid pathological four-derivative terms, and to second
adiabatic order (given by the number of derivatives acting
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FIG. 3 (color online). Absolute values of the relative metric

fluctuations yð1Þ23
:¼ �f23=f

ð0Þ
22 (red curve) and yð3Þ23

:¼ �g23=g
ð0Þ
22

(blue curve) as functions of the scale factor a. Dashed, colored
lines correspond to the undeformed theory, solid lines to the
deformed one. The dot-dashed, vertical line is at a ¼ a? � 0:3
[for the parameter set (14)].
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FIG. 4 (color online). Stability parameter plot in the�-	 plane,
exemplary for � ¼ 0, �2 ¼ �0:4 and M ¼ 1. Green dots repre-
sent fully stable regions, yellow ones indicate classical instability,
and red points stand for unitarity violation (cf. main text).
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on the background metric), one can show that the unique
way of proper covariantization is given by adding to the
Lagrangian curvature-type deformations of the form

�g��½�R0g
�½�
0 g���0 þ 	R

����
0 þ �ðR�½�

0 g���0

þ R�½�
0 g

���
0 Þ��g��: (16)

Here, a subscript 0 indicates a g0-background quantity, �,
�, 	 are real dimensionless parameters, and square brack-
ets around indices stand for antisymmetrization. Including
terms of higher adiabatic order requires introducing further
parameters with appropriate inverse mass dimension to
compensate for the additional derivatives acting on g0.

The stability analysis only requires to determine the
roots of the determinant of the kinetic operator of the
new action, which signal the saturation of the stability or
unitarity bounds [12], respectively. Crossing the first bound
indicates the breakdown of the linear approximation and
the formation of a new background. Crossing the latter
indicates an inconsistency, as it means that the system
looses its probabilistic interpretation.

In order to calculate the determinant of that kinetic
operator, it is useful to completely fix the gauge to
h0� ¼ 0 and A0 ¼ 0. Then, unitary violation is indicated

by the zero crossing of the coefficient in front of the highest
power in the temporal component of the momentum.
Classical stability is determined by the zero crossing of
the coefficient in front of the highest power in the spatial
components of the momentum.

Figure 4 shows a respective (in)stability parameter plot
(�� 	 plane), exemplary for � ¼ 0, �2 ¼ �0:4 and
M ¼ 1. One observes, in particular, two things: First, the
case of � ¼ � ¼ 	 ¼ 0 (which corresponds to the original
model) is classically unstable, albeit it does not violate
unitarity (as expected), and provides an independent con-
firmation of the aforementioned instability. Second, there
exist parameter values (being of order one) such that the
linear theory is truly stable.

However, this necessarily involves curvature extensions
[cf. Eq. (16)]. For the full model in which both metrics
(spin-two fields) are dynamical, the situation seems

problematic due to inevitable kinematic modifications.
We will devote a future publication to such an analysis.

IV. SUMMARYAND OUTLOOK

Let us summarize: Starting from the general bimetric
model (1), using the general phenomenologically viable
parameters intervals (13) (given in Ref. [8]) that allow for
cosmological backgrounds, and expanding the action to
second order in the fluctuations about these backgrounds,
one finds that the theory under consideration is classically
unstable.
We confirmed (for a special case) our results with an

independent analysis method (introduced in Ref. [13]), and
were able to show—by appropriate supplementation with
the curvature-type deformation terms (16)—that the theory
(with one metric being frozen) can be made stable on the
linear level.
The full nonlinear bimetric theory—which is background

independent—might, however, not allow us to cure the
aforementioned instabilities in the described way. This is
so because the curvature terms will, then, be applied on
dynamical metric(s) and not only on the background metric
(s). Terms like, e.g., Rf½f�;Rg½g�;Rg½f�;Rf½g�; . . . , must

occur in front of the potential term in order to generate the
mentioned background curvature terms. This necessarily
involves kinetic modifications, also in the tensor sector, in
such a way that ghosts are difficult, if not impossible, to
avoid. So, in light of recent acausality concerns [17], it
might very well be that nature prefers undeformed and
massless gravity.
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