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Spherical systems with polytropic equations of state are of great interest in astrophysics. They are

widely used to describe neutron stars, red giants, white dwarfs, brown dwarfs, main sequence stars,

galactic halos, and globular clusters of diverse sizes. In this paper we construct analytically a family of

self-gravitating spherical models in the post-Newtonian approximation of general relativity. These models

present interesting cusps in their density profiles which are appropriate for the modeling of galaxies and

dark matter halos. The systems described here are anisotropic in the sense that their equiprobability

surfaces in velocity space are nonspherical, leading to an overabundance of radial or circular orbits,

depending on the parameters of the model under consideration. Among the family of models, we find the

post-Newtonian generalization of the Plummer and Hernquist models. A close inspection of their equation

of state reveals that these solutions interpolate smoothly between a polytropic sphere in the asymptotic

region and an inner core that resembles an isothermal sphere. Finally, we study the thermodynamics of

these models and argue for their stability.
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I. INTRODUCTION

The study of many-body astrophysical systems has been
an important issue in relativistic astrophysics for the past
decades. In general, the number of constituents of such
systems is enormous and it is neither practical nor worth-
while to follow the interactions and evolution of each
particle in the ensemble. From the statistical point of
view, most of the qualitative properties of the system can
be inferred from the distribution Fð ~x; ~v; tÞ, a quantity that
determines the probability of finding a single particle in a
phase-space volume d3xd3v around the position ~x and the
velocity ~v.

The distribution function (or DF for short) is dynamical.
It is governed by an appropriate kinetic equation, and it in
turn determines the statistical evolution of the system. In
the framework of the general theory of relativity (GR) the
DF is assumed to obey the general relativistic version of
the Vlasov equation or the Fokker-Planck equation [1–5].
The first one is devoted to systems sufficiently smooth,
so that they may be considered to be collisionless, whereas
the latter one also accounts for gravitational encounters.
One can actually consider systems in which a number of
particle species can collide and produce different species.
This is how the formation of the light elements in the big
bang nucleosynthesis is calculated (see [6] for a review).
Even though these interactions might have important ef-
fects in the evolution of some astrophysical systems over
large time scales, for most of the applications in this paper
we will focus on the collisionless case, which is otherwise

believed to capture the relevant physics in a wide variety of
scenarios.
There are many applications of kinetic theory in relativ-

istic astrophysics. In stellar dynamics, for instance, the
systems described are halos, galaxies, or stellar clusters
of diverse sizes. In all these cases the ‘‘particles’’ of the
system are stars. Applications to cosmology consider gal-
axies or even clusters of galaxies as the basic constituents.
The point here is that their internal structure is irrelevant at
cosmological scales so they can be modeled as particles.
Finally, applications to the description of compact objects
can also be considered. Although in these situations colli-
sions actually play an important role, analytical solutions
to the Vlasov equation are of great interest and serve as a
useful starting point to develop a perturbative expansion
that accounts for the internal interactions.
A number of methods to construct self-consistent stellar

models have appeared in the literature over the years
[7–13]. A first approach consists in starting with known
profiles for the matter distribution and gravitational fields
(which can be inferred directly from photometric and kine-
matic observations). Since the mass density of the system
is defined by the integration of the DF over the velocity
space, the problem of finding a DF is that of solving an
integral equation. This is the so-called ‘‘� to F approach.’’
Conversely, one can start by assuming a general form for
the DF following symmetry considerations and a few
physically reasonable assumptions. This is known as the
‘‘F to � approach’’ and is the main tool we shall adopt for
the purposes of the present paper.
Now, even though for most systems under consideration

Newtonian gravity is assumed to be dominant, general
relativistic corrections might play an important role in their
evolution. Studying this issue in the fully relativistic
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context is challenging. Not only do we face technical
difficulties while trying to obtain analytical solutions to
the Einstein-Vlasov system, but also the comparison to the
Newtonian predictions is very limited (it should also be
noted that there exist a few exact solutions to the Einstein
equations that become, in the Newtonian limit, well-known
astrophysical models, but those solutions are not based on
kinetic theory [14–16]). Thus, in order to estimate the
effects on the various observables we are interested in, it
would be nice to have a framework to include systemati-
cally general relativistic corrections to a given Newtonian
model. The post-Newtonian approximation is perfectly
suited for this purpose. The appropriate scheme that de-
scribes the effects of the first corrections beyond the
Newtonian theory was first developed in [17–19], and it
is known as the first post-Newtonian (1PN) approximation.
This approach holds if the particles in the system are
moving nonrelativistically ( �v � c), and it gives the cor-
rections up to order �v2=c2, where �v is a typical velocity in
the system and c is the speed of light. Currently, higher
order PN approximations have appeared in the literature
because of the increasing interest regarding the kinematics
and associated emission of gravitational waves by binary
pulsars, neutron stars, and black holes, with promising
candidates for detectors such as LIGO, VIRGO, and
GEO600 (see [20,21] and the references therein).

In a recent series of papers, the first steps towards this
objective were given in [22], obtaining a version of the
Vlasov equation that accounts for the first general relativ-
istic corrections. With this tool at hand, the authors ob-
tained the 1PN version of the Eddington polytropes,
starting from an ergodic DF proportional to En. Further
applications to galactic dynamics were presented in [23].
The purpose of this paper is to implement the techniques
developed in [22,23] to study the influence of relativistic
corrections in different astrophysical scenarios. In particu-
lar, we will center our attention on the study of spherically
symmetric systems with local anisotropy, which seems to
be very reasonable for describing the matter distribution
under many circumstances, and has been proven to be very
useful in the study of relativistic systems. To date, we have
encountered a large body of work with such applications in
the literature [24–55].

By local anisotropy, we mean systems whose DFs de-
pend on the phase space coordinates not only through the
energy (as in the polytropic case above), but also through
the angular momentum. On the level of the orbit of indi-
vidual stars, this translates into a bias of the system towards
either circular orbits or more elongated ones. Such a bias is
captured by the so-called velocity dispersion tensor, on
which we will elaborate later, and is an observationally
measurable quantity, besides the mass density profile. In
this way, building models with local anisotropy can help us
narrow down the range of possible DFs that give rise to a
given density profile. Another good reason to study

anisotropic systems is that the anisotropy in velocity space
leads to a pressure anisotropy, which is believed to play an
important role in the physics of gravitational collapse.
Moreover, this pressure anisotropy may have a destabiliz-
ing effect on the system, resulting in the system evolving
away from a spherically symmetric configuration. This
may yield insights into the fate of self-gravitating systems
for very large time scales, a subject about which little is
currently known. Finally, let us mention that, for the sake
of simplicity, we will only consider in this paper models
with constant anisotropy. While such models are not par-
ticularly realistic, we will see that the relativistic correc-
tions for them are analytically tractable. Also, such models
can be considered as building blocks for more realistic
anisotropic systems where the anisotropy varies from one
part of the system to another.
The rest of the paper is organized as follows. In Sec. II

we start by reviewing the main entries of the 1PN approxi-
mation of general relativity and introducing the Einstein-
Vlasov system. Then, in Sec. III we write down a set of
self-gravitation equations for the so-called generalized
polytropes, which are one of the simplest anisotropic gen-
eralizations of the polytropic DFs. Sections IV and V are
devoted to obtaining particular solutions for a family of
models in the Newtonian and post-Newtonian limits, re-
spectively. Along the way, we study in detail the main
properties of the models. In particular, we study the
equation of state for the Newtonian model (assuming a
barotropic form) and its possible implications for stability.
In the 1PN regime, we learn that the relativistic correction
results in a less centrally dominated mass density profile,
which in turns implies a slightly flatter galactic rotation
curve. Finally, in Sec. VI we give a brief summary of our
main results and comment briefly on future work.

II. THE 1PN APPROXIMATION OF
GENERAL RELATIVITY

The Newtonian theory of gravity is commonly used to
describe a wide range of astrophysical phenomena at dif-
ferent scales, ranging from the celestial mechanics of a few
bodies up to the description of star clusters and galaxies
which are composed of billions of stars. Remarkably, most
of the observations agree with a very good precision with
the theory, and it is just when it comes to very precise
measurements that small deviations from the Newtonian
description start to appear.
Newtonian dynamics is therefore strongly expected to

define an excellent starting point for an approximation
scheme of general relativity, in situations for which the
velocities of the bodies are small compared to the velocity
of light (v2 � c2). The post-Newtonian approximation is a
systematic expansion that accounts for the first general
relativistic corrections over the Newtonian dynamics. It
has been carefully reviewed in a number of references
(for a textbook analysis see for instance [56]), but for
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completeness we will devote the present section to provide
the reader with the basic definitions.

A. The field equations

Consider a system that is bounded by the gravitational
interactions of its constituents, and let �M, �v and �r be the
typical values of the mass, velocity and separation. In
Newtonian mechanics the typical kinetic energy �M �v2=2
is roughly of the same order of magnitude as the typical
potential energy G �M2= �r, so

�v 2 �G �M

�r
: (1)

The idea of the first post-Newtonian approximation is to
express all physical quantities in terms of a series expan-
sion of �v=c � 1 and keep only the first order beyond the
Newtonian theory. Although it is sometimes referred to as
an expansion in inverse powers of the speed of light, it is a
good idea to keep track of dimensions and perform the
expansion in terms of a dimensionless parameter.

Consider for example the metric tensor. The expansion
for g�� reads

g00 ¼ 0g00 þ 2g00 þ 4g00 þ � � � ;
gij ¼ 0gij þ 2gij þ 4gij þ � � � ;
g0i ¼ 1g0i þ 3g0i þ 5g0i þ � � � ;

(2)

where the symbol ng�� refers to the term of order ð �v=cÞn in
the expansion of g��. In our conventions x� ¼ ðct; xiÞ so,
for the computation of the line element ds2 ¼ g��dx

�dx�,

we have to keep in mind that temporal indices carry an
extra power of the speed of light. Odd powers of �v=c
appear in g0i because these components must change
sign under a time-reversal transformation t ! �t.

Without loss of generality, we can say that at zeroth
order 0g00 ¼ �1 and 0gij ¼ �ij, reflecting the fact that any

manifold is locally flat. By working in harmonic coordi-
nates (i.e., coordinates such that g����

�� ¼ 0) we can

further simplify the above expansions by writing them as
a function of the Newtonian potential � and two new post-

Newtonian potentials c and ~� defined as in [56]. To our
order of approximation we get

2g00 ¼�2�=c2; 4g00 ¼�2ð�2 þ c Þ=c4;
2gij ¼�2��ij=c

2; 1g0i ¼ 0; 3g0i ¼ �i=c
3:

(3)

At 1PN order then, the line element can be written as

ds2 ¼ �
�
1þ 2�

c2
þ 2ð�2 þ c Þ

c4

�
c2dt2

þ 2

�
�i

c3

�
cdtdxi þ

�
1� 2�

c2

�
�ijdx

idxj: (4)

It is convenient to assume a similar expansion for the
components of the energy-momentum tensor. In particular,

from their interpretation of energy density, momentum
flux, and energy flux, we expect that [57]

T00 ¼ 0T00 þ 2T00 þ � � � ;
Tij ¼ 2Tij þ 4Tij þ � � � ;
T0i ¼ 1T0i þ 3T0i þ � � � :

(5)

The above expressions lead to a consistent expansion of
the Einstein field equations. At 1PN order these can be
written as

r2� ¼ 4�G0T00; (6)

r2c ¼ 4�Gc2ð2T00 þ 2TiiÞ þ @2�

@t2
; (7)

r2�i ¼ 16�Gc1T0i; (8)

along with the coordinate condition

4
@�

@t
þr � ~� ¼ 0: (9)

B. Particle motion and the geodesic equation

The post-Newtonian approximation was first developed
to study the problem of motion in celestial mechanics.
Among other things, it gives a correct estimation for the
perihelion precession of Mercury [58], a crucial fact that
motivated the adoption of general relativity. Here, we will
review a few key points that we need for the remaining part
of the paper.
Consider the action for a free-falling particle,

S ¼
Z

d	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�g��U

�U�
q

: (10)

The symbol U� ¼ @x�=@	 represents the particle’s four-
velocity which is related to the three-velocity by Ui ¼
U0vi=c (Greek indices run from 0 to 3 and Latin indices
from 1 to 3). Although we are free to choose an arbitrary
affine parametrization, in the expression above 	 denotes
the particle’s proper time. For a timelike geodesic there is
an additional constraint, namely the normalization of the
four-velocity g��U

�U� ¼ �c2.

The Euler-Lagrange equation for this system leads to the
geodesic equation. At 1PN order and for general potentials

�, c , and ~� one finds that the free-falling particle obeys
the equation

d ~v

dt
¼ �r�� 1

c2

�
rð2�2 þ c Þ þ @ ~�

@t
� ~v� ðr� ~�Þ

� 3 ~v
@�

@t
� 4 ~vð ~v � r�Þ þ v2r�

�
; (11)

which partially resembles the equation of motion for a
charged particle with velocity ~v in the presence of electro-
magnetic fields. This law of motion will determine, for
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instance, the rotation curve for test particles moving in
equatorial circular geodesics (see [23] for details) [59],

v2
c¼R

@�

@R

�
1þ4�

c2
þ R

c2
@�

@R

�

þ R

c2

�
@c

@R
�

ffiffiffiffiffiffiffiffiffiffiffi
R
@�

@R

s
@�’

@R

���������z¼0
: (12)

There is an important difference between the above rela-
tion and the usual formula for the rotation curves: in the
Newtonian case v2

c is linear in @�=@R, whereas in the 1PN
case, it depends on nonlinear terms involving the potentials
and their derivatives. The corrections introduced by these
nonlinearities are found to be significant in some cases,
especially for large radial distances, which is surprising
given that one would expect major corrections near the
center, where the mass concentration is maximum. For
example, the authors of [60] presented a model in which
the percentage of dark matter needed to explain flat rota-
tion curves is around �30% less than that required by the
Newtonian theory.

Likewise, we can get the Lagrangian by expanding
d	=dt at 1PN order. Following Weinberg [56], we get
(after some algebra)

L ¼ v2

2
��� 1

c2

�
�2

2
þ 3�v2

2
� v4

8
þ c � ~v � ~�

�
:

(13)

Given the symmetries of the problem, we can easily derive
the various integrals of motion. For the purposes of the
present paper we need two, in particular: the energy and
the angular momentum. For static spacetimes, � ¼ 0 and
the potentials � and c are independent of time. The
Hamiltonian H ¼ P

i _xi@L=@vi � L is then a conserved
quantity,

H ¼ v2

2
þ�þ 1

c2

�
3v4

8
� 3v2�

2
þ�2

2
þ c

�
¼ E;

(14)

and this can be regarded as the 1PN generalization of the
energy. If we further constrain the problem by assuming
spherical symmetry, the fields � and c will depend on the

spatial coordinates only through r ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
, and

in this case one finds that the quantities

Li ¼ "ijkx
jvk

�
1� 3�

c2
þ v2

2c2

�
(15)

are also integrals of motion. These are the components of
the angular momentum at 1PN order.

C. The Einstein-Vlasov system

In the kinetic theory of gases, the Vlasov equation
arises as an effective description of a system composed
of many particles in the regime when their interactions are

negligible. In particular, no collisions are included in the
model, and each particle is acted on only by smooth fields
generated collectively by all the particles in the ensemble.
When, in addition, the system is coupled to general rela-
tivity, then the resulting set of equations is known as the
Einstein-Vlasov system (for a review on the subject, see for
example [61–63]).
In the framework of kinetic theory, the state of the

system is described from a statistical point of view. The
starting point is the DF [64], Fð ~x; ~v; tÞ, which depends on
the spatial coordinates, velocity and time. For the applica-
tions we want to consider here, we will require that the DF
of the system satisfies the general relativistic version of the
Vlasov equation,

LUF ¼
�
U� @

@x�
� �i

��U
�U� @

@Ui

�
Fðx�;UiÞ ¼ 0; (16)

where ðx�;UiÞ is the set of configuration and four-velocity
coordinates [65], �i

�� are the Christoffel symbols and LU

is the Liouville operator. In the 1PN approximation, the
above equation can be written as (see [22] for details)

@F

@t
þ vi @F

@xi
� @�

@xi
@F

@vi þ
1

c2

�
v2

2
��

��
@F

@t
þ vi @F

@xi

�

þ 1

c2

�
4vivj @�

@xj
�

�
3v2

2
þ 3�

�
@�

@xi
� vj

�
@�i

@xj
� @�j

@xi

�

þ 3vi @�

@t
� @c

@xi
� @�i

@t

�
@F

@vi ¼ 0: (17)

We have to emphasize that this expression is only valid in
the collisionless regime. For cases in which encounters
play a dominant role, the right-hand side of (17) must be
replaced by a term of the Fokker-Planck type [66].
Similar to the classical case, the 1PN equation can be

expressed in various ways, each of which is useful in
different contexts [22]. The one that is relevant for us is
in terms of Poisson brackets,

@F

@t
þ fF;H g ¼ 0; (18)

where H is the 1PN Hamiltonian (14). Since all integrals
of motion commute with H , this implies that Jeans theo-
rem [67] is valid at 1PN order. That is, any static solution of
the Vlasov equation depends only on the integrals of
motion of the system, and any function of the integrals
yields a static solution of the Vlasov equation [68].
The second moment of the DF is the energy-momentum

tensor. Via the Einstein equations, this establishes a con-

nection between F and the potentials �, c , and ~� that can
be summarized as a set of coupled differential equations.
These are known as the 1PN self-gravitation equations
[22,23].
The starting point is the general relativistic expression

for the energy-momentum tensor,
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T��ðxi; tÞ ¼ 1

c

Z U�U�

U0
Fðxi; Ui; tÞ ffiffiffiffiffiffiffi�g

p
d3U: (19)

Expanding to the various orders required by the 1PN
approximation we get

0T00 ¼
Z

0Fd3v; (20)

2T00 ¼ 3

c2

Z
ðv2 � 2�Þ0Fd3vþ

Z
2Fd3v; (21)

1T0i ¼ 1

c

Z
vi0Fd3v; (22)

2Tij ¼ 1

c2

Z
vivj0Fd3v; (23)

along with 0Tij ¼ 0, as expected. Finally, substituting in

(6)–(8), one gets the 1PN self-gravitation equations,

r2� ¼ 4�G
Z

0Fd3v; (24)

r2c ¼ 8�G
Z
ð2v2 � 3�Þ0Fd3vþ 4�Gc2

Z
2Fd3v;

(25)

r2�i ¼ 16�G
Z

vi0Fd3v: (26)

Thus, any system characterized by an equilibrium
DF can be written as a function of the integrals of motion.
This automatically implies that the DF is a solution to the
kinetic equation (17). The energy-momentum tensor
can be obtained through (21)–(23), which acts as a source
of the gravitational field according to the field equations
(6)–(8). In order to have a self-consistent description, the
relations (24)–(26) must be satisfied. All of these equations
are written as power expansions in �v=c and, as a conse-
quence, we can clearly distinguish between the Newtonian
contribution and the post-Newtonian corrections.

III. GENERALIZED POLYTROPES

A. Distribution functions

In astrophysics, there is a well-known family of spheri-
cal models characterized by ergodic DFs of the form

FðEÞ ¼
�
knEn�3=2 for E > 0;

0 for E � 0;
(27)

These models are known as ‘‘stellar dynamical poly-
tropes.’’ In (27), E ¼ E0 � E is the relative energy [70],
kn is a constant related to the total mass of the systems,
and n is the polytropic index. The reason why these models
are of particular interest is because they lead to a simple

equation of state, p / �1þ1=n, that is widely used to

describe a variety of astrophysical systems. Among them
are neutron stars, red giants, white dwarfs, brown dwarfs,
main sequence stars, galactic halos, globular clusters of
diverse size, galaxies and galaxy clusters. A full account of
gaseous polytropes can be found in [71,72].
The post-Newtonian version of the stellar polytropes

was consider recently in [22]. Although most of the work
in that paper was numerical, it was clear that the correc-
tions introduced by the relativistic effects can be relevant in
the computation of certain observables. Here, we will
consider generalizations of these models that are described
by a distribution function of the form [73]

FðE; LÞ ¼
�
k
�L

2
E� for E > 0;

0 for E � 0;
(28)

where 
 and � are constants and L is the magnitude of the
angular momentum. These are known as ‘‘generalized
polytropes’’ and they are found to be anisotropic in the
sense that their equiprobability surfaces in velocity space
are nonspherical. This leads to an overabundance of radial
or circular orbits depending on the value of the constant 
.
For now we are going to assume arbitrary values for 
 and
�, but later we will specialize to a subset of models that are
analytically solvable.
We begin by splitting the energy and the angular mo-

mentum into classical and post-Newtonian contributions,
E ¼ Ecl þ Epn and L2 ¼ L2

cl þ L2
pn, where

Ecl ¼ v2

2
þ�; Epn ¼ 1

c2

�
3

8
v4 � 3

2
v2�þ�2

2
þ c

�
;

(29)

and

L2
cl ¼ ð~r� ~vÞ2;

L2
pn ¼ 1

c2
½ð~r� ~vÞ2ðv2 � 6�Þ þ 2ð~r� ~�Þ � ð~r� ~vÞ�:

(30)

We also assume that E0 can be split into two contribu-
tions, a leading term and a correction of order ð �v=cÞ2, so
that E ¼ Ecl þ Epn. For later convenience, we will write

E0 ¼ �0 þ c 0

c2
: (31)

Making the approximation that the post-Newtonian con-
tributions are much smaller than the classical ones, we get

F ¼ 0Fþ 2F; (32)

where 0F and 2F are the zeroth order and second order
terms, respectively,

0F ¼ k
�L
2

cl E

�
cl and

2F ¼ k
�ð�L2

cl E

��1
cl Epn þ 
L2ð
�1Þ

cl E�
clL

2
pnÞ:

(33)
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It is convenient to use spherical coordinates in velocity space (with the z axis pointing in the direction of ~r): vr ¼ v cos�,
v� ¼ v sin� cos and v� ¼ v sin� sin. As usual, v 2 ½0;1� � 2 ½0; �� and  2 ½0; 2��. In these variables, the
angular momentum becomes

L2
cl ¼ r2v2sin 2�; (34)

and

L2
pn ¼ 1

c2
ðr2v2sin 2�ðv2 � 6�Þ þ 2r2��v sin� sinþ 2r2��v sin� cosÞ: (35)

Finally, substituting into the expressions for 0F and 2F we obtain

0F ¼ k
�ðrv sin�Þ2

�
�0 � v2

2
��

�
�

(36)

and

2F ¼ k
�

c2

�
�ðrv sin�Þ2


�
�0 � v2

2
��

�
��1

�
c 0 � 3

8
v4 þ 3

2
v2���2

2
� c

�

þ 
ðrv sin�Þ2ð
�1Þ
�
�0 � v2

2
��

�
�ðr2v2sin 2�ðv2 � 6�Þ þ 2r2��v sin� sinþ 2r2��v sin� cosÞ

�
: (37)

B. The energy-momentum tensor and the
field equations

The distribution function (28) acts as a source for the
energy-momentum distribution according to (20)–(23).
However, note that 0F is even with respect to v, so
1T0i ¼ 0 and 2Tij ¼ 0 for i � j. In particular, the first
relation implies that the vector potential �i is sourceless,

r2�i ¼ 0; (38)

which agrees with the fact that for any static and spheri-
cally symmetric system the only physical solution to the
coordinate condition (9) is that �i ¼ 0. The remaining
components of the energy-momentum tensor are

0T00 ¼
Z ve

0
dv

Z �

0
d�

Z 2�

0
dv2 sin�0F; (39)

2T00 ¼
Z ve

0
dv

Z �

0
d�

�
Z 2�

0
dv2 sin�

��
3v2

c2
� 6�

c2

�
0Fþ 2F

�
; (40)

and

2Tii ¼ 1

c2

Z ve

0
dv

Z �

0
d�

Z 2�

0
dv4 sin�0F: (41)

Here ve denotes the escape velocity, i.e. the velocity at
which a particle reaches its maximum value of energy,
E ¼ 0, so that it is confined to the distribution of matter.
Also, repeated indices in Eq. (41) stand for summation.

The escape velocity can be computed from (14) and the
result is

ve ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð�0 ��Þ

q
þOðð �v=cÞ2Þ: (42)

Note that we are keeping just the zeroth order term. This is
fine because even when the integrand is 0F, the correction
due to the escape velocity is proportional to an integral of
the form

Z ffiffiffiffiffiffiffiffi�2�
p þX=c2ffiffiffiffiffiffiffiffi�2�
p v2
þ2

�
�v2

2
��

�
�
dv; (43)

where � ¼ ���0 and X is a function of � and c of

order 1. The change of variable v ! c2ðv� ffiffiffiffiffiffiffiffiffiffiffi�2�
p Þ then

reveals that this integral is of order Oðð �v=cÞ2þ2�Þ after
integration, which is negligible in comparison with the
post-Newtonian corrections.
To evaluate these integrals, the following abbreviation is

useful:

Ið�;�Þ ¼
Z ffiffiffiffiffiffiffiffi�2�

p

0
v�

�
�v2

2
��

�
�
dv: (44)

For �>�1 and �>�1, this evaluates to

Ið�;�Þ ¼ 2
1
2ð��1Þð��Þ12ð1þ�þ2�Þ �ð1þ�

2 Þ�ð1þ �Þ
�ð3þ�

2 þ �Þ : (45)

In terms of the function Ið�;�Þ, the components of the
stress-energy tensor are
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0T00 ¼ 2�3=2k
�r
2
 �ð
þ 1Þ

�ð
þ 3
2Þ
Ið2þ 2
; �Þ; (46)

2T00 ¼ 2�3=2k
�

c2
r2


�ð
þ 1Þ
�ð32 þ 
Þ

�
ð3þ 
ÞIð4þ 2
; �Þ

� 6�ð1þ 
ÞIð2þ 2
; �Þ � 3

8
�Ið6þ 2
; �� 1Þ

þ 3

2
��Ið4þ 2
; �� 1Þ

� �

�
�2

2
þ�

�
Ið2þ 2
; �� 1Þ

�
; (47)

and

2Tii ¼ 2�3=2k
�r
2


c2
�ð1þ 
Þ
�ð
þ 3

2Þ
Ið4þ 2
; �Þ: (48)

We have also defined � ¼ c � c 0. Using (45), these
expressions reduce to

0T00 ¼ 2
þ3
2�3=2k
�

�ð1þ �Þ�ð1þ 
Þ
�ð
þ �þ 5

2Þ
r2
ð��Þ
þ�þ3

2;

(49)

2T00 ¼ 1

c2
2
�3

2k
��
3=2r2
ð��Þ
þ�þ1

2
�ð1þ �Þ�ð1þ 
Þ
�ð
þ �þ 7

2Þ
� ½�2ð3þ 2
Þð9þ 2
Þ
þ 6��ð1þ 2
Þð5þ 2
þ 2�Þ
� 30�� 8ð
þ �Þð4þ 
þ �Þ�
��2ð3þ 2
þ 2�Þð5þ 2
þ 2�Þ�; (50)

and

2Tii ¼ 1

c2
2
þ3

2k
��
3=2ð3þ 2
Þr2
ð��Þ
þ�þ5

2

� �ð1þ �Þ�ð1þ 
Þ
�ð
þ �þ 7

2Þ
: (51)

Einstein’s field equations (6) and (7) then take the form

r2� ¼ 2
þ7
2�5=2Gk
�

�ð1þ �Þ�ð1þ 
Þ
�ð
þ �þ 5

2Þ
r2
ð��Þ
þ�þ3

2;

(52)

and

r2� ¼ 2
þ1
2�5=2Gk
�

�ð1þ �Þ�ð1þ 
Þ
�ð
þ �þ 7

2Þ
r2
ð��Þ
þ�þ1

2½�2ð3þ 2
Þð9þ 2
Þ þ 6��ð1þ 2
Þð5þ 2
þ 2�Þ

� 30�� 8ð
þ �Þð4þ 
þ �Þ���2ð3þ 2
þ 2�Þð5þ 2
þ 2�Þ�

þ 2
þ7
2�5=2Gk
�ð3þ 2
Þ�ð1þ �Þ�ð1þ 
Þ

�ð
þ �þ 7
2Þ

r2
ð��Þ
þ�þ5
2: (53)

IV. NEWTONIAN LIMIT

A. Solving the field equations at leading order

Let us start with the equation for the Newtonian poten-
tial (52). Assuming spherical symmetry, the equation for
�ðrÞ becomes

1

r2
d

dr

�
r2

d�

dr

�
¼ �
�r

2
ð��Þ
þ�þ3
2; (54)

with

�
� ¼ 2
þ7
2�5=2Gk
�

�ð1þ �Þ�ð1þ 
Þ
�ð
þ �þ 5

2Þ
: (55)

Now, let ~� ¼ �r�. With this change of variables, the
above equation reduces to

d2 ~�

dr2
¼ ��
�r


���1
2 ~�
þ�þ3

2; (56)

which after some redefinitions takes the general form
y00ðxÞ ¼ Axpyq. This is known as the Emden-Fowler

differential equation. All known solutions are listed, for
example, in [74], and among them, there are a few one-
parameter families and some isolated points (in the space
of p and q). To have a physically sensible model we have to
impose a further constraint, namely the convergence of
(45). We thus focus our attention on the family


 ¼ 1

4
ðm� 5Þ and � ¼ 1

4
ð3m� 1Þ; (57)

with m>�1. Other physically sound models are dis-
cussed in Appendix A. A few comments are in order
here. First note that the DF (28) becomes

FðE; LÞ ¼
�
kmL

1
2ðm�5ÞE1

4ð3m�1Þ for E > 0;

0 for E � 0:
(58)

This family of DFs is known to be related to the hypervirial
potential-density pairs presented in [75]. The models
all possess the remarkable property that the virial theorem
holds locally, from which they earn their name as the
hypervirial family. Moreover, it is found that some
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members present cosmologically interesting cusps at the
center and are appropriate for the modeling of galaxies and
dark matter halos. Our goal here is to study further prop-
erties of these models in the Newtonian theory and to
construct their post-Newtonian generalizations in order to
investigate the effect of the relativistic corrections.

The only isotropic model in this family corresponds to
m ¼ 5, and it is known as the Plummer model [76,77]. This
is one of the few polytropic models that is analytically
solvable [79]. For m< 5 the power of the angular momen-
tum is negative. This means that there is a huge probability
of finding a particle with small angular momentum, leading
to an overabundance of radial orbits. Also, for these models
we expect most of the matter distribution to be located near
the center of the system. For m> 5 the situation is exactly
the opposite. In this case, the probability of finding a
particle in phase space grows with the angular momentum,
which would lead to an overabundance of circular orbits.
For these models, we do not expect a large mass concen-
tration in the inner region. We will come back to the
discussion of these properties in Sec. IVB2.

The authors of [75] used the global properties of the
potential-density pairs to infer the corresponding DFs. The
purpose of this section is to use the direct method to check
their results and to gain some insight on the behavior of the
models. To begin with, note that in terms of m Eq. (56)
becomes

d2 ~�

dr2
¼ ��mr

�1
2ðmþ3Þ ~�m: (59)

From [74], the solution is given in parametric form by

rð	Þ ¼ aC2
2 exp

�
2
Z �

8

mþ 1
	mþ1 þ 	2 þ C1

��1=2
d	

�
;

(60)

~�ð	Þ ¼ bC2	 exp

�Z �
8

mþ 1
	mþ1 þ 	2 þ C1

��1=2
d	

�
;

(61)

where C1 and C2 are integration constants, and a and b are
related by

��m ¼
�
a

b2

�m�1
2
: (62)

We wish to have a solution that is well behaved at r ! 1
and at r ¼ 0. This can be achieved by tuning the constants
C1 and C2. In particular, for C1 ¼ 0 and C2 ¼ 1, one finds
that

Z �
8

mþ 1
	mþ1 þ 	2

��1=2
d	

¼
�

2

1�m

�
sinh�1

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
mþ 1

8

s
	

1�m
2

�
: (63)

Solving for 	, we obtain

	1�m ¼
�

8

mþ 1

�
sinh 2

��
1�m

4

�
log

�
r

a

��
: (64)

On the other hand, from (60) and (61) it follows that

r
~�2 ¼ a

b2	2
; (65)

or equivalently �
r
~�2

�m�1
2 ¼ ��m

	m�1
: (66)

Substituting the solution for 	 and solving for ~�, we find
[80]

~�ðrÞ ¼ ffiffiffi
a

p �
1þm

2�m

� 1
m�1

�
r

a

��
1þ

�
r

a

�m�1
2

�� 2
m�1

; (67)

which leads to

�ðrÞ ¼ � ffiffiffi
a

p �
1þm

2�m

� 1
m�1ðam�1

2 þ r
m�1
2 Þ� 2

m�1: (68)

The constant a is a dimensionful parameter of the solution
that fixes a length scale. In particular, we shall call the
regions r < a and r > a the inner and outer (or asymptotic)
regions, respectively. Also, note that in order to have a
finite potential at r ¼ 0 we must restrict ourselves to the
range m> 1. For all these cases we obtain that � ! 0 as
r ! 1, so from now on we set�0 ¼ 0 [81], which implies
that �ðrÞ ¼ �ðrÞ.
This family of potentials was also considered in [82]. In

that paper it was shown that these models can successfully
describe the temperature and density profiles often seen in
cooling flow clusters (from x-ray data), and some potential
relevance for the modeling of collisionless dark matter
halos was suggested [83]. Among these models, the
m ¼ 5 case corresponds to the well-known Plummer
potential [76],

�ðrÞ / 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p ; (69)

and the m ¼ 3 case corresponds to the Hernquist potential
[84,85],

�ðrÞ / 1

rþ a
: (70)

Now, in order to show graphically the behavior of these
models, we first define a dimensionless (and normalized)
potential through

~�ð~rÞ ¼ ffiffiffi
a

p �
1þm

2�m

�� 1
m�1

�ð~rÞ ¼ �ð1þ ~r
m�1
2 Þ� 2

m�1; (71)

where ~r ¼ r=a. In Fig. 1 we show ~� as a function of ~r
for some particular models. For the cases with m> 3 we
have that �0ð0Þ ¼ 0, whereas for 1<m< 3 we have
�0ð0Þ ! 1. The model with m ¼ 3 is the only case with
a finite inner slope. On the other hand, for all cases the
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asymptotic region of the potential has Coulombic behavior
for r � a, i.e. ���1=r, and this relation becomes more
exact as we increase m.

B. Physical properties of the models

1. Normalization and mass density

As a first step towards the analysis of the physical
properties, we have to fix the overall constant km that
appears in front of the DF. This can be done by imposing
that the integral over phase space of the DF is the total mass
of the system M. At lowest order, this implies that

4�
Z 1

0
�r2dr ¼ M; (72)

with � ¼ 0T00. From (49) and (68) we find

km ¼ aðm�1Þ=2

2ðmþ13Þ=4�5=2GmMm�1

�ðmþ 2Þ
�ð14 ðm� 1ÞÞ�ð34 ðmþ 1ÞÞ :

(73)

Substituting into the solution, we find

�ðrÞ ¼ � GM

ðam�1
2 þ r

m�1
2 Þ 2

m�1

: (74)

Note that this result is intuitive. The overall factor GM
is independent of m because in the limit of large radius,
r � a, (74) should reduce to the Coulomb potential re-
gardless of the value of m (this applies for any potential
sourced by a matter distribution that is confined or that
decays sufficiently fast for large distances).

The mass density can be obtained by means of the
Poisson equation (54). Using our result for the potential,
we get

�ðrÞ ¼ ðmþ 1ÞMa
m�1
2 r

m�5
2

8�ðam�1
2 þ r

m�1
2 Þ 2m

m�1

: (75)

As we anticipated in the paragraph below (58), there are
markedly different behaviors for the density depending on
the value of m (which follows directly from the depen-
dence of the DF on the angular momentum). The case

m ¼ 5 is the only one with finite density at the origin.
This corresponds to the Plummer model. For m< 5 the
density profile diverges near the center as a power law,
despite the fact that the total mass is finite. Until recently,
such a density dependence was considered unphysical, but
it is now known that dark matter halos and early-type
galaxies always have power-law density cusps [86–88].
The case m ¼ 3 is of particular interest, as it resembles
the well-known NFW profile for small radius [89,90]. For
m> 5 the density profile vanishes at the origin.
Distributions of matter in the form of shells have been a
useful tool in astrophysics, often providing simplified but
analytically tractable models in cosmology, gravitational
collapse and supernovae [91]. Finally, one can always
consider a superposition of various potential-density pairs
or even the gluing of two different models at some radius
by means of the appropriate junction conditions. This last
possibility is briefly discussed in Appendix B.
To show graphically the behavior of (75) we define the

dimensionless density as

~�ð~rÞ ¼ 8�a3

ðmþ 1ÞM�ð~rÞ ¼ ~r
m�5
2

ð1þ ~r
m�1
2 Þ 2m

m�1

; (76)

where, again, ~r is the dimensionless radius ~r ¼ r=a. In

Fig. 2 we plot ~� for some particular models. Form> 5 the
density has a maximum at some point �a that depends on the
value of m,

�a ¼
�
m� 5

mþ 5

� 2
m�1

a: (77)

It is worth noticing that as we increase m the matter
distribution becomes more and more localized around
r ¼ �a (the explicit limit m ! 1 represents a shell-like
configuration at �a ! a, with a potential that vanishes in
the interior and becomes Coulombic for r > a). Otherwise,
the behavior of the density for the different values of m
agrees with our previous discussion.
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FIG. 1 (color online). Dimensionless potential ~� as a function of the dimensionless radius ~r for m< 5 and m 	 5, respectively. Left
panel: m 2 f32 ; 2; 52 ; 3; 72 ; 4; 92g from top to bottom. Right panel: m 2 f5; 6; 7; 8; 9; 10; 11g from top to bottom.
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2. Velocity dispersion and the anisotropic parameter

Instead of working with the distribution function, a
somewhat less powerful approach is to work with the
density of stars �ðrÞ (obtained by integrating the DF over
all velocities and dividing by the total mass M) and veloc-
ity dispersion tensor �ij defined by

�ijðrÞ ¼ 1

�ðrÞ
Z

d3vvivjFðr; ~vÞ: (78)

This is, of course, the second moment of the Newtonian
distribution function. To compute�ij wewill not, however,

use the definition above. Instead, we follow a less direct
route by first deriving a relation between the mass density
� in terms of the potential � and the radial distance r. To
do this, we perform a change of coordinate in velocity
space, from the spherical coordinates ðv; �; Þ to

ðE; v2
t ; Þ, where E ¼ v2

2 þ� is the energy and vt ¼
v sin� is the tangential velocity. In terms of the new
coordinates, the angular momentum and the volume ele-
ment in velocity space become

L ¼ rvt; (79)

d3v ¼ 2�
dEdv2

tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðE��Þ � v2

t

p : (80)

Integrating over all of velocity space then yields the func-
tion �ðr;�Þ. Of course, upon substituting �ðrÞ into this
function we must recover the mass density profile �ðrÞ.
Explicitly, we find for our family

�ðr;�Þ ¼ ðmþ 1Þaðm�1Þ=2

8�GmMm�1
r
m�5
2 ð��Þm; (81)

which can also be obtained by combining (74) and (75).
The velocity dispersions can be computed from �ð�; rÞ as
follows [78]:

�2
rðrÞ 
 hv2

ri ¼ � 1

�ð�; rÞ
Z �

0
�ð�0; rÞd�0 ¼ � �

mþ 1
;

(82)

�2
’ðrÞ 
 hv2

’i
¼ � 1

�ð�; rÞ
Z �

0
@r2½r2�ð�0; rÞ�d�0

¼ � m� 1

4ðmþ 1Þ�; (83)

and �2
�ðrÞ ¼ �2

’ðrÞ. Here, it is understood that we are

working in spherical coordinates. The anisotropic parame-
ter � as defined in [79] is

� ¼ 1� �2
’

�2
r

¼ 5�m

4
: (84)

In particular, � is constant. This is true for all DFs of the
form fðE; LÞ ¼ L�gðEÞ. When �> 0, near-radial orbits
are preferred. This happens whenm< 5, and these models
are possibly subject to the radial-orbit instability. By con-
trast, �< 0 implies that near-circular orbits are preferred,
and this happens for m> 5. Moreover, as m ! 1, circular
orbits become more and more dominant. When� vanishes,
both kinds are equally probable (therefore the model is
isotropic). In the context of velocity dispersion and the
density of stars, the Vlasov equation becomes the Jeans
equation:

d

dr
ð��2

rÞ þ 2�

r
��2

r þ �
d�

dr
¼ 0: (85)

There are some quantities computed from the second mo-
ments that are useful when comparing with observations.
Among them, the surface densities, surface brightness
(assuming a constant mass-to-light ratio) and the line-of-
sight velocities were computed for the hypervirial family
in [75]. However, these quantities alone do not completely
determine a particular model; hence, an important thing to
do is to study the higher order moments. The next nonzero
moments are the fourth order ones, which in this case
reduce to
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FIG. 2 (color online). Dimensionless density ~� as a function of the dimensionless radius ~r for m< 5 and m 	 5, respectively.
Left panel: m 2 f32 ; 2; 52 ; 3; 72 ; 4; 92g from left to right. Right panel: m 2 f5; 6; 7; 8; 9; 10; 11g from top to bottom.
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	4rrðrÞ ¼ � 1

�ð�; rÞ
Z �

0
ð�0 ��Þ�ð�0; rÞd�0

¼ �2

2þ 3mþm2
; (86)

	4r’ðrÞ ¼ 	4r�ð�; rÞ
¼ � 1

3�ð�; rÞ
Z �

0
ð�0 ��Þ@r2½r2�ð�0; rÞ�d�0

¼ m� 1

12ð2þ 3mþm2Þ�
2; (87)

	4’’ðrÞ ¼ 	4��ð�; rÞ ¼ 3	4’�ð�; rÞ

¼ � 1

2�ð�; rÞ
Z �

0
ð�0 ��Þ@2

r2
½r4�ð�0; rÞ�d�0;

¼ ðm� 1Þðmþ 3Þ
32ð2þ 3mþm2Þ�

2: (88)

The analog of the Jeans equation for the fourth order mo-
ments has been derived in the literature [92] and used
extensively to investigate the degeneracy in projected
quantities for anisotropic systems (see for instance
[93,94]).

3. Pressure and the equation of state

In this subsection and the next one, we will study prop-
erties of our stellar system by approximating the system as
a fluid. Consequently, we will use concepts from hydro-
dynamics and thermodynamics such as pressure, tempera-
ture, equation of state or hydrostatic equilibrium to
describe the system. While many of these concepts could
be defined in a more or less natural way in the context of
stellar systems, it is important to keep in mind that the
‘‘microscopic’’ pictures are quite different: on one hand,
the pressure inside a self-gravitating fluid counteracts grav-
ity, resulting in hydrostatic equilibrium; on the other hand,
what sustains a stellar system against gravitational collapse
is the angular momentum of the individual stars.

That said, the analogy between stellar systems and self-
gravitating fluids is a fruitful one, especially with regards
to systems described by isotropic distribution functions.
For example, there exist theorems which state that the
stability of an isotropic system may be inferred from the
stability of a barotropic fluid with the same density and
pressure [79]. The stability of fluids is often a simpler
problem as there exist simple criteria for the stability of
fluids (for example using the adiabatic index). For aniso-
tropic systems, however, the analogy with a barotropic
fluid is problematic: nothing guarantees that the mass
density is an invertible function of r. Nevertheless we
will pursue this analogy as far as we can in this section.

The first thermodynamical quantity we are interested in
is the pressure of the system. However, in anisotropic
systems the different dispersions in velocity space lead to

different pressures along the different directions. In our
case, a straightforward computation leads to

prðrÞ ¼ �ðrÞ�2
rðrÞ ¼ a

m�1
2 GM2r

m�5
2

8�ðam�1
2 þ r

m�1
2 Þ2ðmþ1Þ

m�1

; (89)

p�ðrÞ ¼ �ðrÞ�2
�ðrÞ ¼

m� 1

4
prðrÞ; (90)

and p’ðrÞ ¼ p�ðrÞ 
 p?ðrÞ. We can also define an aver-

age pressure as

pðrÞ 
 �

3
hv2i ¼ �

3
hv2

r þ v2
’ þ v2

�i

¼ ðmþ 1Þam�1
2 GM2r

m�5
2

48�ðam�1
2 þ r

m�1
2 Þ2ðmþ1Þ

m�1

: (91)

This quantity is useful in the sense that it gives us a notion
of average speed which will ultimately be related to the
temperature of the system (see Sec. IVB 4 for details).
Of course, these pressures are related to the spatial

components of the energy-momentum tensor. In the non-
relativistic limit, however, the pressure is not expected to
appear at leading order in the energy-momentum tensor
because � � p=c2. At next-to-leading order we have that
2Tij ¼ pij=c

2, where pij ¼ hvivji (although the off-

diagonal terms vanish in our case by symmetry arguments)
[95]. For instance, the average pressure (91) could also be
obtained by substituting (74) in (51). Finally, as a consis-
tency check we also notice that (49) and (51) imply that
p ¼ ���=6, which agrees with (82) and (83). This simple
relation will be helpful in the next section.
Now, we define a dimensionless pressure through

~pð~rÞ ¼ 48�a4

ðmþ 1ÞGM2
pð~rÞ ¼ ~r

m�5
2

ð1þ ~r
m�1
2 Þ2ðmþ1Þ

m�1

; (92)

where ~r ¼ r=a. In Fig. 3 we plot ~p for some values ofm. In
general, the behavior for this quantity is very similar to the
density. The case m ¼ 5 is the only one whose pressure is
finite and decreasing. For m< 5 the pressure diverges at
the origin but is still a decreasing function of the radius. For
m> 5 the pressure vanishes at the center, then increases to
a maximum at r ¼ �a and finally goes back to zero as the
radius increases. In the limit m ! 1 the pressure becomes
sharply localized at r ¼ a.
We can relate the pressure and density through an ap-

propriate equation of state p ¼ pð�; sÞ or p ¼ pð�; TÞ.
Nevertheless, for the purposes of the present section it is
sufficient to consider the simple case of a barotropic equa-
tion of state, where the pressure is determined by the
density, p ¼ pð�Þ. To do this, we first have to invert (75)
to get rð�Þ and then plug it into (91). A few comments are
in order here. First note that for m> 5, rð�Þ would be
multivalued given that for such cases the density �ðrÞ is
nonmonotonic. For these models we divide the equation of
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state into two parts, one that is valid for r � �a and the other
that is valid for r 	 �a. For m � 5 the equation of state can
be defined globally.

In practice, we can only analytically invert rð�Þ for
m ¼ 5 [96]. In this case we get

~rð~�Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~��2=5 � 1

q
; (93)

which leads to the simple result

~pð~�Þ ¼ ~�6=5: (94)

This is the equation of state of a polytrope. For other values
of m we can expand ~�ð~rÞ in the regimes ~r � 1 and ~r � 1,
and then solve the equation perturbatively. For ~r � 1 we
obtain

~�ð~rÞ ¼ ~r�mþ5
2

�
1� 2m

m� 1
~r�

ðm�1Þ
2 þOð~r�ðm�1ÞÞ

�
; (95)

whereas for ~r � 1 we get

~�ð~rÞ ¼ ~r
m�5
2

�
1� 2m

m� 1
~r
m�1
2 þOð~rm�1Þ

�
: (96)

We must proceed with certain care in order to invert
these relations. Let us first consider the regime ~r � 1. In
this case ~� � 1 regardless of the value of m. At leading

order ~r ’ ~��2=ðmþ5Þ, so from (95) we can write

~r ’
�

~�

1� 2m
m�1 ~�

m�1
mþ5

�� 2
mþ5

’ ~�� 2
mþ5

�
1� 4m

ðm� 1Þðmþ 5Þ ~�
m�1
mþ5 þOð~�2ðm�1Þ

mþ5 Þ
�
:

(97)

The expansion parameter is ~�ðm�1Þ=ðmþ5Þ, which is small
for all values of m. Now, consider the regime ~r � 1.
Notice that in this case ~� � 1 for m< 5 whereas ~� � 1

for m> 5. For m � 5 at leading order we have ~r ’
~�2=ðm�5Þ, so from (96) it follows that

~r ’
�

~�

1� 2m
m�1 ~�

m�1
m�5

� 2
m�5

’ ~�
2

m�5

�
1þ 4m

ðm� 1Þðm� 5Þ ~�
m�1
m�5 þOð~�2ðm�1Þ

m�5 Þ
�
: (98)

In this case the expansion parameter is ~�ðm�1Þ=ðm�5Þ.
In particular, the power of ~� is negative for m< 5 and
positive for m> 5 so we have a consistent perturbative
expansion in both cases.
The next step is to substitute these expressions in (91) to

obtain the equation of state in the two regimes. For ~r � 1
we obtain

~pð~�Þ ¼ ~�1þ1=n

�
1þ 2ðm� 5Þ

ðm� 1Þðmþ 5Þ ~�
m�1
mþ5 þOð~�2ðm�1Þ

mþ5 Þ
�
;

n 
 mþ 5

2
: (99)

At leading order, this is the equation of state for a polytrope
with index n, but it has corrections that appear when one
goes to higher densities. On the other hand, for ~r � 1 and
m � 5 we get

~pð~�Þ ¼ ~�

�
1� 2

ðm� 1Þ ~�
m�1
m�5 þOð~�2ðm�1Þ

m�5 Þ
�
; (100)

which at leading order behaves like the equation of state
of an isothermal gas [97]. Incidentally, this is also the
famous equation of state usually considered in cosmology,
p ¼ !�c2, with ! being a dimensionless constant. This is
closely related to the thermodynamic equation of state of
an ideal gas law, which may be written as

p ¼ �RT: (101)

Here R is a constant that depends on the gas, T is the

temperature and �v ¼ ffiffiffiffiffiffiffi
RT

p
is the characteristic thermal

speed of the molecules. Thus, in order to have a consistent
post-Newtonian expansion we require that

! ¼
�
�v

c

�
2 � 1; (102)
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FIG. 3 (color online). Dimensionless pressure ~p as a function of the dimensionless radius ~r for m< 5 and m 	 5, respectively.
Left panel: m 2 f32 ; 2; 52 ; 3; 72 ; 4; 92g from left to right. Right panel: m 2 f5; 6; 7; 8; 9; 10; 11g from top to bottom.
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which means that we are dealing with ‘‘cold gases.’’ In our
case, we get

! ¼ GM

6ac2
; (103)

and the characteristic speed turns out to be

�v ¼
ffiffiffiffiffiffiffiffiffi
GM

6a

s
: (104)

Now, for any value of m one can always invert rð�Þ
numerically and then plug it into the expression for the
pressure (91) in order to obtain the equation of state. The
result is shown in Fig. 4. For m> 5 the equation of state
pð�Þ is multivalued and forms a loop. One part increases
linearly with � and is valid in the inner region, r < �a. The
other part increases like a power law and is valid for the
outer region, r > �a. Form � 5 the equation of state is well
defined globally and it behaves as a power law for small �
(r � a). For large �, on the other hand, it behaves linearly
but it is difficult to see it graphically because the slope
depends strongly on the value of m, which leads to a great
dispersion. We thus truncated the plotting range in these
cases to focus on the first regime.

Before closing this section let us perform a final com-
putation that might help to clarify the above discussion. We
are interested in the behavior of the adiabatic index �1 as a
function of the radius, which can be computed as

�1ðrÞ ¼ d lnp

d ln�
¼ �

p

dp=dr

d�=dr
: (105)

In general, this is identified as the ratio of heat capacities,
�1 ¼ cp=cv, and for the particular case of polytropes the

adiabatic index turns out to be a constant, �1 ¼ 1þ 1=n.
For our models, a straightforward computation shows that

�1ð~rÞ ¼ ðmþ 7Þ~rm=2 � ðm� 5Þ~r1=2
ðmþ 5Þ~rm=2 � ðm� 5Þ~r1=2 ¼ 1þ 1

nð~rÞ ; (106)

where

nð~rÞ ¼ mþ 5

2
�m� 5

2
~r�ðm�1Þ=2: (107)

For m ¼ 5 the last term vanishes and we recover the
expected result for n. For m � 5 we still have a polytropic
index n ¼ ðmþ 5Þ=2 for large radius but it gets correc-
tions for any finite r. In particular, in the limit ~r ! 0we get
n ! 1 and we recover the isothermal result, �1 ¼ 1.
Notice, however, that the second term can be positive or
negative depending on the value of m. To see it explicitly
we plot in Fig. 5 both the adiabatic index �1 and the
polytropic index n as a function of the radius. For m � 5
the plots are generally well behaved. For m> 5, �1

presents a discontinuity at r ¼ �a, exactly where n vanishes
(and changes sign). These models also present a small
region near r & �a for which �1 < 0 and therefore seem
to be thermodynamically unstable. We will come back to
this point in Sec. VC 3.

4. Hydrostatic equilibrium and thermodynamics

Conservation equations in general relativity come from
the conservation of the energy-momentum tensor,

r�T
�� ¼ 0: (108)

There are four equations, one for each value of the free
index �. However, for spherically symmetric spacetimes
with anisotropic pressures, only one of these does not
vanish identically: the one for which� ¼ r. It implies [99]

dpr

dr
¼ �

�
�þ pr

c2

�
d�

dr
þ 2

r
ðp? � prÞ: (109)

This equation tells us what pressure gradient is needed to
keep the fluid static in the gravitational field, an effect that
depends on d�=dr. If we use the field equations to elimi-
nate � we recover the so-called Tolman-Oppenheimer-
Volkoff (TOV) equation [100,101] for anisotropic spheres.
The important point here is that, when supplemented with
an equation of state Fð�; pÞ ¼ 0, the TOV equation com-
pletely determines the structure of a spherically symmetric
body in equilibrium.
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FIG. 4 (color online). Dimensionless pressure ~p as a function of the dimensionless density ~� for m< 5 and m> 5, respectively.
Left panel: m 2 f32 ; 2; 52 ; 3; 72 ; 4; 92g from right to left. Right panel: m 2 f6; 7; 8; 9; 10; 11; 12g from right to left. In both plots, the case

m ¼ 5 is shown as dashed lines for comparison.
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If we consider matter that is nonrelativistic, the terms of
order ð �v=cÞ2 can be neglected and the TOV equation be-
comes the Newtonian equation for hydrostatic equilibrium,

dpr

dr
¼ ��

d�

dr
þ 2

r
ðp? � prÞ: (110)

This equation is commonly used to find the equilibrium
structure of a spherically symmetric body with anisotropic
pressures when general-relativistic corrections are not im-
portant. In our case, using (74), (75), (89), and (90), we can
see that Eq. (110) is always satisfied, thus implying equi-
librium. This result is not surprising. From (19) one can
immediately see that the energy-momentum tensor is
divergence-free, and then even the relativistic version of
(110) must be satisfied.

Now, by analogy with an ideal gas, we can define the
temperature T (or thermal energy) of a self-gravitating
system through the relation [79]

1

2
hv2i ¼ 3

2
kBT; (111)

where kB is Boltzmann’s constant. In general, the mean-
square velocity and hence the temperature depend on
position. For our models, at leading order we get

kBT ¼
R

0Fv2d3vR
0Fd3v

¼ p

�
¼ ��

6
: (112)

The temperature profiles can be easily inferred from Fig. 1.
In general, the temperature reaches a maximum at the
center (even for the m> 5 cases) and then decreases
with the radius. For m< 5, although the densities are
divergent, the temperatures are finite everywhere.

Although this notion of temperature is a mere analogy, it
has been proven to be useful in the context of understand-
ing relaxation processes within the system and the so-
called gravothermal catastrophe [102,103]. Indeed, the
mean-square velocity and hence the temperature are found
to be position dependent, so if we follow the analogy to its
logical end, Fourier’s law for thermal conduction predicts a

heat flow inside the system due to a nonzero temperature
gradient. In this way, even though we are working with an
equilibrium solution of the Vlasov system, we may gain
insight into what happens to the system beyond the as-
sumption of staticity.
For a general spherical system, the expression for the

thermal conductivity as a function of r is given by [102]

�ðrÞ ¼ �ðrÞr2kB
trelax

; (113)

where �ðrÞ is the number density and trelax is the relaxation
time. Substituting (112) and (113) into Fourier’s law
q ¼ ��rT, we obtain the heat flux as

qðrÞ / r2�ðrÞ @�
@r

/ rm�2

ðam�1
2 þ r

m�1
2 Þ3mþ1

m�1

: (114)

As explained in [102], it is tempting to identify this heat
flow as the relaxation process itself.
Finally, we can also interpret the TOVequation in terms

of thermodynamic quantities by recalling that (110) is just
a restatement of the conservation laws. In particular, plug-
ging (112) into Eq. (110) we arrive at

1

�

dðT�Þ
dr

¼ �mþ 1

6

d�

dr
þm� 5

2r
T: (115)

This equation resembles a local version of the first law of
thermodynamics. Identifying u� T� as the internal en-
ergy density for an infinitesimal fluid element with volume
V � 1=�, we can write

du ¼ dq� dw; (116)

where

dq ¼ �
m� 5

2r
Tdr ¼ Tds (117)

is the heat transfer to the infinitesimal volume, s is the
entropy density, and
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FIG. 5 (color online). Left panel: Adiabatic index �1 as a function of the dimensionless radius ~r for m 2 f3; 72 ; 4; 92 ; 5; 112 ; 6; 132 ; 7g
from top to bottom (in the region ~r � 1). Right panel: Polytropic index n as a function of the dimensionless radius ~r for
m 2 f3; 72 ; 4; 92 ; 5; 112 ; 6; 132 ; 7g from bottom to top (in the region ~r � 1). In both plots, the case m ¼ 5 is shown as dashed lines.
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dw ¼ �
mþ 1

6

d�

dr
dr ¼ ��

mþ 1

6
Frdr

¼ ��
mþ 1

6
prdV ¼ ��pdV (118)

is the work (per unit volume) done by the system on its
surroundings. Thus, Eq. (115) reveals an interesting feature
that is present in anisotropic models: for m � 5 there is
entropy production and thus the system is dissipative.

V. POST-NEWTONIAN CORRECTIONS

A. Solving the field equations at the next order

Now that we have studied in certain detail the properties
of the Newtonian models, it is time to move on and
compute the relativistic corrections. Substituting the solu-
tion obtained in (74) for the Newtonian potential into the
next-to-leading order equation (53), we obtain

1

r2
d

dr

�
r2
d�

dr

�
þ

1
2mðmþ 1Þam�1

2 r
m�5
2

ðam�1
2 þ r

m�1
2 Þ2 �

¼ Cmr
m�5
2 a

mþ1
2 ðam�1

2 þ r
m�1
2 Þ2ðmþ1Þ

1�m ; (119)

where we defined constants

Cm ¼ �m

�
1þm

2�m

�mþ1
m�1

: (120)

This is an inhomogeneous, second order differential equa-
tion, and thus the general solution can be written as

�ðrÞ ¼ C1�1ðrÞ þ C2�2ðrÞ þ�pðrÞ; (121)

where �1;2ðrÞ are solutions to the homogeneous equation

and �pðrÞ is a particular solution of the inhomogeneous

one. To solve this equation, we perform a change of both
the independent and the dependent variables, as follows:

z ¼ �ðr=aÞm�1
2 ; (122)

~�ðrÞ ¼ �ðrÞðam�1
2 þ r

m�1
2 Þmþ1

m�1 ¼ a
m�1
2 �ðzÞð1� zÞmþ1

m�1:

(123)

Then, substituting into the equation for � we get

zð1� zÞ d
2 ~�

dz2
þ

�
mþ 1

m� 1

�
ð1þ zÞ d

~�

dz
�

�
mþ 1

m� 1

�
~�

¼ � 4Cm

ðm� 1Þ2 a
m�3
2 ð1� zÞ 2

1�m: (124)

The corresponding homogeneous equation can be cast as a
hypergeometric differential equation,

zð1� zÞ d
2w

dz2
þ ½c� ðaþ bþ 1Þz� dw

dz
� abw ¼ 0;

(125)

with c ¼ �a ¼ ðmþ 1Þ=ðm� 1Þ and b ¼ �1. If c is not
an integer (i.e. if m � 3, 2), the two independent solutions
are 2F1ða; b; c; zÞ and z1�c

2F1ð1þ a� c; 1þ b� c;
2� c; zÞ. In terms of m these are [104]

~� 1ðzÞ ¼ 1þ z (126)

and

~�2ðrÞ ¼ z
2

1�m
2F1

�
�mþ 3

m� 1
;�mþ 1

m� 1
;
m� 3

m� 1
; z

�
: (127)

We will consider the special cases m ¼ 3 and m ¼ 2
separately later in this paper. To construct the particular
solution, we follow the standard Wronskian method. Using
the formula for the derivative of a hypergeometric function
[105], the Wronskian is found to be

W½ ~�1; ~�2�ðzÞ

¼ z
2

1�m
ðmþ 3Þðmþ 1Þ
ðm� 3Þðm� 1Þ ð1þ zÞ

� 2F1

�
4

1�m
;

2

1�m
;
2m� 4

m� 1
; z

�

� z
mþ1
1�m

�
2þ zðmþ 1Þ

m� 1

�
2F1

�
mþ 3

1�m
;
mþ 1

1�m
;
m� 3

m� 1
; z

�
:

(128)

The particular solution is obtained from the homogeneous
solutions and the Wronskian by evaluating the following
integrals:

~� pðzÞ ¼ ~�1

Z
~�2

g

fW
dz� ~�2

Z
~�1

g

fW
dz; (129)

where g ¼ gðzÞ is the inhomogeneous term on the right-
hand side of (124) and f ¼ fðzÞ is the coefficient of the
second derivative term. The integrals in (129) are challeng-
ing. To proceed, we first simplify the Wronskian using a
sequence of identities of hypergeometric functions, start-
ing with the Euler transformation [106]:

ðm� 1Þzmþ1
m�1ð1� zÞ2mþ2

1�mW

¼ zð1þ zÞ ðmþ 3Þðmþ 1Þ
m� 3 2F1

�
2m

m� 1
; 2;

2m� 4

m� 1
; z

�

� ½2þ zðmþ 1Þ�ð1� zÞ2F1

�
2m

m� 1
; 2;

m� 3

m� 1
; z

�
:

(130)

Next, using the Gauss contiguous relations [107], the right-
hand side above can be shown to be equal to �2, reducing
the Wronskian to a simple form:

WðzÞ ¼ �
�

2

m� 1

�
z
mþ1
1�mð1� zÞ2mþ2

m�1 : (131)

The integrals can be evaluated in terms of the Meijer G
function [108], and the particular solution is found to be

ANISOTROPIC MODELS FOR GLOBULAR CLUSTERS, . . . PHYSICAL REVIEW D 88, 064020 (2013)

064020-15



�pðzÞ ¼ Cmz

að1� zÞmþ1
m�1

2F1

�
mþ 3

1�m
;
mþ 1

1�m
;
m� 3

m� 1
; z

���
2

mþ 1

�
2F1

�
mþ 1

m� 1
;
3ðmþ 1Þ
m� 1

;
2m

m� 1
; z

�

þ z

m 2F1

�
2m

m� 1
;
3ðmþ 1Þ
m� 1

;
3m� 1

m� 1
; z

��

þ 2Cm

aðm� 1Þ
1þ z

ð1� zÞmþ1
m�1

�ðm�3
m�1Þ

�ðmþ3
1�mÞ�ðmþ1

1�mÞ�ð 2m
m�1Þ

G2;3
3;3

� 1; 2
1�m ;

4
1�m

2mþ4
1�m ; m�3

m�1 ; 0

��������1� z

�
: (132)

Putting this all together we find that, for m � 3, 2,

�ðzÞ ¼ C1

1þ z

ð1� zÞmþ1
m�1

þ C2

z
2

1�m

ð1� zÞmþ1
m�1

2F1

�
mþ 3

1�m
;
mþ 1

1�m
;
m� 3

m� 1
; z

�
þ�pðzÞ: (133)

1. Special cases

In the case m ¼ 5, the homogeneous solutions can be expressed in terms of the trigonometric functions [109]:

�1ðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ r2

p

4r
sin

�
4 arctan

�
r

a

��
; (134)

�2ðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ r2

p

4r
cos

�
4 arctan

�
r

a

��
: (135)

To obtain the particular solution, notice that both the Meijer G function and the factor �ð�ðmþ 3Þðm� 1ÞÞ in the
denominator diverge as m ! 5. To take this limit, we replace the Meijer G function by generalized hypergeometric
functions as follows:

G2;3
3;3

�
a1; a2; a3

b1; b2; b3

��������z

�
¼ Kza1�1

3F2

�
1� a1 þ b1; 1� a1 þ b2; 1� a1 þ b3

1� a1 þ a2; 1� a1 þ a3

��������1z
�
þ ða1 $ a2Þ þ ða1 $ a3Þ; (136)

where

K ¼�ða1�a2Þ�ða1�a3Þ�ð1�a1þb1Þ�ð1�a1þb2Þ
�ða1�b3Þ :

(137)

This formula is valid when jzj 	 1 and none of the ai
differs by an integer. The final result simplifies to

�pðrÞ ¼ 3G2M2

112ðr2 þ a2Þ �
G2M2

280a2
: (138)

For m ¼ 3 the homogeneous solutions are

�1ðrÞ ¼
r
a � 1

ð1þ r
aÞ2

; (139)

�2ðrÞ ¼
ðraÞ2 � r

a þ 6ðra � 1Þ log ðraÞ þ a
r � 17

ð1þ r
aÞ2

; (140)

which lead to the particular solution

�pðrÞ ¼ G2M2

60ðaþ rÞ2
�
6

�
r

a
� 1

�
log

�
1þ a

r

�
� a

r
� 6

�
:

(141)

Finally, for m ¼ 2 the homogeneous solutions are

�1ðrÞ ¼
ffiffi
r
a

p � 1

ð1þ ffiffi
r
a

p Þ3 ; (142)

�2ðrÞ ¼
1
2 ðraÞ3=2 þ 15

2 ðraÞ � 8
ffiffi
r
a

p þ 15ð ffiffi
r
a

p � 1Þ log ðraÞ þ 15
2

ffiffi
a
r

p þ 1
2 ðarÞ � 72

ð1þ ffiffi
r
a

p Þ3 ; (143)

and the particular solution is
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�pðrÞ ¼ 5G2M2

896ð ffiffiffi
a

p þ ffiffiffi
r

p Þ4
�
60

�
r

a
� 1

�
log

� ffiffiffi
a

r

r
þ 1

�

� 60

ffiffiffi
r

a

r
� 16

ffiffiffi
a

r

r
� a

r
þ 30

�
: (144)

B. Fixing the integration constants

To fix one of the integration constants, we will require
that� remains finite at the origin. Form � 3, 2 this means

setting C2 ¼ 0. For m ¼ 3 we set C2 ¼ G2M2

60a2
, whereas for

m ¼ 2 we set C2 ¼ 5G2M2

448a2
. We also have to subtract the

value at infinity of� to obtain c . This value turns out to be
independent of the remaining integration constant, and it is
given by

c 0 ¼ �lim
r!1�ðrÞ

¼ ð9m� 43ÞG2M2

64ma2
�ð 2

m�1Þ�ðm�3
m�1Þ

�ð3ðmþ1Þ
m�1 Þ�ð 2m

m�1Þ�ðmþ1
1�mÞ

�
�
2m�

�
2ðmþ 1Þ
m� 1

�
�

�
2m

m� 1

�

� ðmþ 1Þ�
�
3m� 1

m� 1

�
�

�
mþ 3

m� 1

��
: (145)

For m ¼ 5 the above formula leads to c 0 ¼ G2M2

280a2
. For

m ¼ 3 and m ¼ 2 we get c 0 ¼ � G2M2

60a2
and c 0 ¼

� 5G2M2

896a2
, respectively. The fact that we have to shift the

Newtonian cutoff energy E0 by a small amount in order for
the solution to be asymptotically flat was numerically
confirmed in the fully relativistic case by [110]. Our results
show that this shift in E0 is already needed at the 1PN
order.

As for the other constant of integration, we will leave it
as a free parameter and express it in terms of the value of c
at the origin, which we will denote by c ð0Þ. For m � 3, 2
we get

C1 ¼ � 2Cm�ðm�3
m�1Þ

aðm� 1Þ�ðmþ3
1�mÞ�ðmþ1

1�mÞ�ð 2m
m�1Þ

�G2;3
3;3

0
@ 1; 2

1�m ;
4

1�m

2mþ4
1�m ; m�3

m�1 ; 0

��������1
1
Aþ c ð0Þ � c 0: (146)

For m ¼ 5 we get the simple result C1 ¼ � 3G2M2

112a2
þ c ð0Þ,

and as for m ¼ 3, 2 we obtain C1 ¼ � 2G2M2

5a2
� c ð0Þ and

C1 ¼ � 125G2M2

224a2
� c ð0Þ, respectively.

In Fig. 6 (left panel) we plot the dimensionless potential
~c ¼ c a2=G2M2 as a function of ~r. For concreteness, we

have fixed the value of c at the center such that ~c ð0Þ ¼
~�ð0Þ2 ¼ 1 so that we can compare our results directly with
the numerical polytropes presented in [22]. For this choice
of parameters the behavior of the post-Newtonian potential
is somehow universal, depending very little on the value of
m; it is maximum at the center, it reaches a minimum
around r� a, and it goes to zero at infinity.

C. Effect on some physical observables

1. Corrections to the energy density

In general relativity we can write the energy-momentum
tensor of a general anisotropic fluid in the form

T�� ¼ "u�u� þ ph�� þ���; (147)

where " and p are the energy density and isotropic pressure
along a four-velocity field u�, h�� ¼ g�� þ u�u�, and
��� is the anisotropic and traceless stress tensor,

��
� ¼ diagð0;�2�;�;�Þ: (148)

The radial and tangential pressures are then related to p
and � ¼ �ðrÞ through

p? � pr ¼ 3�; 2p? þ pr ¼ 3p: (149)

For a comoving observer and to our order of approxima-
tion, we are left with T�� ¼ 0T�� þ 2T��, which can be
written in terms of � and c as in (49)–(51). For further
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FIG. 6 (color online). Left panel: Post-Newtonian potential ~c as a function of the dimensionless radius ~r for m 2 f2; 3; 4; 5; 6; 7g.
Right panel: Correction to the energy density ~�2 as a function of the dimensionless radius ~r form 2 f2; 3; 4; 5; 6; 7g. For all the plots we
have set ~c ð0Þ ¼ 1.
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purposes, it will be convenient to represent the energy
density as " ¼ 0"þ 2", where 0" ¼ � is the rest-mass
energy density and 2" ¼ �2 is the first relativistic correc-
tion. This is the only observable that gets corrected in the
1PN approximation at the level of the energy-momentum
tensor.

From (50) we get

ð2ÞT00 
 �2

¼ � a
m�1
2

8�c2GmMm�1
r
m�5
2

�
59� 9m

32
ð��Þmþ1

þm�ð��Þm�1

�
: (150)

In Fig. 6 (right panel) we plot the dimensionless ~�2 as a

function of ~r. We have also fixed ~c ð0Þ ¼ 1 as discussed in
the previous section. The correction to the energy density is
somehow surprising; it is negative in the inner core but
becomes positive for r 	 a. We believe this feature is
essential to improve the behavior of the rotation curves
as predicted by the Newtonian theory. This effect was
already observed in [22], but for the sake of comparison
we will devote the next section to the study of this observ-
able. As a final comment, note that the behavior of �2 near
the center is very similar to � itself; i.e. �2 ! �1 for
m< 5, it is finite for m ¼ 5, and it vanishes for m> 5. In
fact, it is easy to verify that the inner slopes are the same
(although with opposite signs), which makes the total
energy density, ~" ¼ ~�þ �~�2, positive everywhere for
� 
 GM

ac2
� 1 [111].

It is important to note that the value of c ð0Þ fixes the
post-Newtonian correction to the total mass of the system.
Although this quantity is difficult to compute for general
m, we were able to handle the integrals for the simplest
case, the post-Newtonian Plummer model. If we setm ¼ 5,
then

�2ðrÞ ¼ � GM2

8�c2a4

�
5a4

4rðr2 þ a2Þ3=2
�
c ð0Þa2
G2M2

� 13

560

�

� sin

�
4 arctan

�
r

a

��
� 5a4

280ðr2 þ a2Þ2

þ 4a6

7ðr2 þ a2Þ3
�
: (151)

The integral of the DF over all phase space must be
normalized to the total mass of the system,

Z ffiffiffi
h

p
T00d3x ¼ Mtotal ¼ 0Mþ 2Mþ � � � ; (152)

where 0M is just the Newtonian mass given by (72) and h is
the determinant of the induced metric on a constant-t
hypersurface. At second order we obtain

ffiffiffi
h

p ¼
�
1� 2�

c2

�
3=2 � 1� 3�

c2
; (153)

and thus the 1PN correction to the total mass can be
computed via

2M ¼ 4�
Z 1

0

�
�2 � 3�

c2
�

�
r2dr: (154)

For the Plummer model we find that

2M ¼ GM2

ac2

�
35�

64
� 13

3360
þ c ð0Þa2

6G2M2

�
; (155)

or, in terms of the dimensionless quantities,

2M ¼ M�

�
35�

64
� 13

3360
þ

~c ð0Þ
6

�
: (156)

For other models one can perform the integral numerically
for different values of c ð0Þ, but the result is always of
order Oð�Þ, which is a small correction in the range of
parameters allowed in the 1PN approximation.

2. Rotation curves

The galaxy rotation problem is the discrepancy between
the observed galaxy rotation curves and the Newtonian
prediction assuming a centrally dominated mass associated
with the observed luminous material [112,113]. Even
though dark matter is by far the most accepted explanation
for the resolution to the galaxy rotation problem, there have
been other proposals with varying degrees of success.
Among them, the most popular ones involve certain modi-
fication of the laws of gravity, starting with the seminal
works [114,115] and continuing with a large body of
work that includes [116–126] and the recent additions
[127–132].
On the other hand, while some authors argue that by

including relativistic corrections the inclusion of a dark
matter halo is unnecessary at galactic scales [133–137],
several publications have pointed out that this is not en-
tirely true [138–142]. The purpose of this section is then to
investigate this issue in the 1PN approximation of general
relativity. Here, the idea is not to argue whether GR is
enough or not enough to overcome the galaxy rotation
problem but to estimate the importance of the first correc-
tions over the Newtonian gravity. In fact, one of the ad-
vantages of our framework is that it gives us the possibility
to compare directly with the Newtonian theory, given that
our models are direct generalizations of classical ones.
From Eq. (12) we can obtain an expression for vc in

terms of dimensionless quantities:

v2
c ¼ ~r

@ ~�

@~r
þ �

�
4r ~�

@ ~�

@~r
þ ~r2

�
@ ~�

@~r

�
2 þ ~r

@ ~c

@~r

�
: (157)

The parameter � (defined in the previous section) is a
measure of how important the 1PN corrections are. In
Fig. 7 we plot the circular velocity for various models
when � ¼ 0, 10�2, 5� 10�2, and 10�1. The 1PN correc-
tions become important as we increase �; in general, the
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profile decreases in the inner region and increases far from
the center, giving a flatter distribution in comparison to the
standard case. As we can see, the general trend implies that
general relativistic corrections actually improve the behav-
ior of rotation curves, a phenomenon that was anticipated
in [22,23].

3. Comments on stability

While any positive, normalizable function of the inte-
grals of motion represents an equilibrium solution of the
Poisson-Vlasov or Einstein-Vlasov system, only a handful
of density profiles are observed in real astrophysical sys-
tems. It is therefore important to narrow down the range of

acceptable models to those which are stable against per-

turbations. Also, even if a particular model is unstable, the

study of stability provides insights into the evolution of

such systems over large time scales, a topic of great

relevance in astrophysics.
Stability can be studied on several levels: most

commonly, one linearizes the dynamics around an equili-
brium solution of the Vlasov-Poisson system and studies
the energy cost incurred by small deviations around the
equilibrium (the energy method). Applying this methodol-
ogy in Newtonian theory, we have learned a lot about
the stability of stellar systems with respect to radial
perturbations. In particular, a generalization of the
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FIG. 7 (color online). Rotation curves vc as a function of ~r for m 2 f2; 3; 4; 5; 6; 7g and different values of � ¼ 0 (black), 10�2 (red),
5� 10�2 (blue), and 10�1 (green). In order to make these plots we have chosen c ��2 at r ! 0. For �� 10�2 or more, the
differences with the Newtonian case become significant. In general, the relativistic corrections tend to flatten the curves, making vc

smaller near the center and bigger for large distances.
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Doremus-Feix-Baumann theorem asserts that all radial
modes of a spherical stellar system with @FðE;LÞ=@E <
0 are stable [143]. Applying this result to our family, we
conclude that for all m the Newtonian models are stable to
radial perturbations. On the other hand, very little is known
about nonradial perturbations of an anisotropic system,
except by means of numerical simulations. A type of
instability associated with nonradial perturbations com-
monly encountered in simulations is the radial-orbit insta-
bility, which occurs in systems where radial orbits are
predominant [144,145]. Comparing with our model, radial
orbits are preferred for values of m smaller than 5, and in
the limit m ! 1, radial orbits are suppressed. Thus, we
expect that, in general, the models become more and more
stable to nonradial perturbations with increasing m.

In addition to the energy method described above, other
methods to study the stability of self-gravitating systems
are available. For example, we may not linearize the per-
turbed equation of motion (nonlinear stability). We may
decompose the perturbations into a linear combination of
modes (spectral stability). Two studies of the stability of
(Newtonian) generalized polytropes using such methods
are [146,147]. For the remainder of this section, however,
we will focus on the stability of circular orbits since the
tools available to us can be easily generalized to the
relativistic setting.

In the theory of central potentials of Newtonian dynam-
ics, the stability of a circular orbit in a potential�ðrÞ can be
inferred from the so-called effective potential �eff:

�eff ¼ �þ L2

2mr2
; (158)

where L is the angular momentum of the particle and m is
its mass. From the kinematics of uniform circular motion,
we have

�0 ¼ m
v2

r
¼ L2

r3m2
; (159)

from which we find the energy and angular momentum of a
circular orbit at radius r to be

E ¼ 1

2
r�0 þ�; (160)

L2 ¼ m2r3�0: (161)

Substituting L2 into �eff and requiring the second deriva-
tive of the effective potential to be positive in order for the
orbit to be stable, we find the criterion

3

r
�0 þ�00 > 0: (162)

Alternatively, by differentiating L2 with respect to r, we
can recast the criterion in the following equivalent form:

L
dL

dr
> 0: (163)

The latter is known as Rayleigh’s criterion [148], and it can
be justified by the following reasoning: suppose we perturb
a circular orbit of radius a in the radially outward direction,
to a new radius r > a, while keeping its angular momen-
tum the same. Then if the initial orbit is to be stable, the
gravitational force at r must be greater than the centrifugal
force (in the noninertial reference frame of the moving
particle) so that the particle comes back to the initial radius
a. This implies

L2ðrÞ> L2ðaÞ; (164)

or, by expanding L2 around a, we recover the Rayleigh
criterion. In the relativistic theory, this line of reasoning
works for any static axisymmetric line element. In spheri-
cal coordinates ðt; r; #; ’Þ, such a metric takes the form

ds2 ¼ gttc
2dt2 þ grrdr

2 þ g##d#
2 þ g’’d’

2; (165)

where the components g�� depend only on the variables r

and #. The geodesic equation for a circular motion on the
plane # ¼ �=2 is then

gtt;rc
2 _t2 þ g’’;r _’

2 ¼ 0: (166)

We also have the constants of motion:

�1 ¼ gttc
2 _t2 þ g’’ _’2; (167)

E ¼ gttc
2 _t; (168)

L ¼ g’’ _’; (169)

corresponding to the square of the four-velocity, and the
conserved quantities of the Killing vector field @t and of the
Killing vector field @�, respectively (here the overdot

denotes a derivative with respect to the proper time s).
The constant E can be identified as the relativistic specific
energy and L as the specific angular momentum. Note that
the equation of motion (166) can be cast as a balance
equation valid on the plane # ¼ �=2:

gtt;rE
2

g2ttc
2

¼ � g’’;rL
2

g2’’
: (170)

So, as in the Newtonian case, we have a balance between
the ‘‘gravitational force’’ and the ‘‘centrifugal force.’’
Following the same reasoning as for the Newtonian case,
we obtain the criterion for stability,

LL;r > 0: (171)

We claim that this expression is equivalent to EE;r > 0.
Indeed, from (166)–(169) we find

L2 ¼ g2’’gtt;r
gttg’’;r � gtt;rg’’

; (172)
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E2 ¼ � c2g2ttg’’;r
gttg’’;r � gtt;rg’’

: (173)

From (172) and (173) we get

LL;r ¼ � g’’

gttc
2
EE;r: (174)

Since �g’’=gtt is identically positive, the claim is estab-

lished. Next, we substitute the following components of the
metric into (173) and expand to 1PN order:

gtt ¼ �c2 � 2�� 2

c2
ð�2 þ c Þ; (175)

g’’ ¼
�
1� 2�

c2

�
r2: (176)

The result is

E ¼ c2 þ�þ 1

2
r�0 þ 1

8c2
ð4�2 þ 8c þ 4r��0

þ 3r2�02 þ 4rc 0Þ: (177)

To first order we recover, as expected, Newtonian energy in
addition to the rest mass. The Rayleigh criterion becomes
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FIG. 8 (color online). We show EE;~r as a function of ~r for m 2 f32 ; 2; 52 ; 3; 72 ; 4; 92g (left column), m 2 f5; 6; 7; 8; 9; 10; 11g
(right column), and different values of � ¼ 0 (first row), 10�2 (second row), 10�1 (last row). Rayleigh’s criterion for stability is
satisfied in all these cases, but for models with m> 5 a small region of instability appears in the inner core for sufficiently large �.
However, for this range of parameters the 1PN approximation is no longer valid.

ANISOTROPIC MODELS FOR GLOBULAR CLUSTERS, . . . PHYSICAL REVIEW D 88, 064020 (2013)

064020-21



1

2
c2ð3�0 þ r�00Þ þ

�
3��0 þ 2r�02 þ 3

2
c 0 þ r��00

þ r2�0�00 þ 1

2
rc 00

�
> 0: (178)

Notice that if we keep only the lowest order term, we
recover the Newtonian Rayleigh criterion in terms of �.
Using the dimensionless quantities, this is

1

2
ð3 ~�0 þ ~r ~�00Þ þ �

�
3 ~� ~�0 þ 2~r ~�02 þ 3

2
~c 0 þ ~r ~� ~�00

þ ~r2 ~�0 ~�00 þ 1

2
~r ~c 00

�
> 0: (179)

In Fig. 8 we plot this quantity as a function of ~r for
different values of m and �. Although for the range of
parameters allowed in the 1PN approximation we find that
the system is absent of instabilities, the general trend
suggests that for models with m> 5 and sufficiently large
� there might be a small region near the center for which
EE;r < 0, indicating unstable modes. Extrapolating our

results to larger values of � we find that this phenomenon
starts to happen when � * 5� 10�1. This fact seems to
agree to a very good approximation with Buchdahl’s theo-
rem [15,149], a result that was derived in the context of
spherically symmetric fluids in general relativity, and ac-
cording to which a star with radius R is stable when
GM=c2R< 4=9.

VI. FINAL REMARKS

We have constructed a one-parameter family of self-
consistent star clusters that are spherically symmetric but
anisotropic in velocity space. The model was constructed
first in the Newtonian limit; then the first post-Newtonian
corrections were computed. By self-consistent, we mean
that the collective potential and the distribution function
that gives rise to the density profile solve the Einstein-
Vlasov system (in the 1PN approximation); i.e. they are
simultaneous solutions of the Einstein field equation and
the Vlasov equation.

The Newtonian distribution function is a particular case
of a broader class of models known in the literature as
generalized polytropes, which are the simplest anisotropic
generalizations of polytropes. The family is labeled by m,
which ranges from 1 to infinity, and includes two com-
monly used models in astrophysics as particular cases,
namely the Hernquist model for m ¼ 3 and the Plummer
model for m ¼ 5. We found that the mass density profile is
qualitatively different depending on whether m< 5, m ¼
5, or m> 5. On one hand, the models with m> 5 are
unphysical due to nonmonotonic mass profiles; the ones
with m< 5, on the other hand, have density profiles that
decrease monotonically with increasing radius. Moreover,
the density profiles for m< 5 diverge near the center as
power laws, a feature believed to always be present in
early-type galaxies.

While the equation of state for polytropes can be readily
computed thanks to ergodicity of the distribution (which
can be shown to imply that the mass density is monotonic),
this is no longer the case if we introduce anisotropy into the
model. Nevertheless, it still makes sense to talk about an
equation of state form � 5. Proceeding in analogy with the
virial expansion for an interacting many-particle system at
equilibrium, we compute the equation of state perturba-
tively in the two limits of small radius and large radius.
Near the center of the system, we find that, to leading order,
the pressure is proportional to the mass density, where the
factor of proportionality is proportional to the expansion
parameter � and therefore has to remain small. This is the
equation of state used in cosmology for a matter-
dominated universe (i.e. where matter moves nonrelativ-
istically). At large distances from the center, the equation
of state is approximately polytropic. We also calculated the
adiabatic index and found that this quantity is well behaved
for m � 5 but is negative in the inner region for m> 5.
Because of anisotropy, the equation of hydrostatic equilib-
rium picks up an extra term.When identified as the first law
of thermodynamics, the extra term can be interpreted as
entropy production. Thus, anisotropy introduces dissipa-
tion into the system.
By solving for the post-Newtonian corrections, we

found that generally 1PN corrections in the inner region
differ qualitatively from the corrections in the outer region.
For example, for all values of m, the post-Newtonian
potential c is a decreasing function in the inner core,
assumes a minimum around r � a, and then increases to
zero at infinity. This behavior of c results in a flatter
rotation curve compared to the Newtonian result. This
fact can also be understood from the 1PN correction to
the mass density: it is negative in the inner region and
positive in the outer region. As a consequence, the total
mass density is less centrally dominated than the
Newtonian profile.
Finally, by studying the stability of circular orbits to

radial perturbations, we discovered that, as the system
becomes more and more relativistic, circular orbits in the
inner core become unstable as � approaches 1=2. This is in
good agreement with the predictions of Buchdahl’s theo-
rem regarding the stability of relativistic fluid spheres. Of
course, the stability of the model is best studied by perturb-
ing the distribution function and does not follow directly
from the stability of the orbits of the stars. Unfortunately,
we expect such an investigation to be rather difficult (even
in the Newtonian theory very little is known analytically
about the stability of anisotropic models), but we leave
these studies for future work.
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APPENDIX A: ANOTHER FAMILY OF
GENERALIZED POLYTROPES

In this appendix, we present a second one-parameter
family of generalized polytropes that also includes a poly-
trope as a particular case. We consider a distribution func-
tion of the form

FðE; LÞ ¼ KnL
nE�n

2�1
2; (A1)

restricting ourselves to the range �2< n< 1 so that the
integral (44) converges. For n ¼ 0, we obtain the polytrope
with polytropic index 1, one of the few analytically solv-
able polytropic models.

1. The Newtonian limit

Integrating over velocity space we get that the
Newtonian mass density is given by

�ðrÞ ¼ 2
nþ3
2 �3=2Knr

n�

�
n

2
þ 1

�
�

�
�n

2
þ 1

2

�
ð��Þ: (A2)

The Poisson equation for ~� ¼ �r� in Emden-Fowler
form is

d2 ~�

dr2
¼ ��nr

n ~�; (A3)

where in this case

�n ¼ 2
nþ7
2 �5=2KnG�

�
n

2
þ 1

�
�

�
� n

2
þ 1

2

�
: (A4)

The general solution can be expressed in terms of the
Bessel functions:

~�ðrÞ ¼ C1

ffiffiffi
r

p
J 1
nþ2

�
2

ffiffiffiffiffiffi
�n

p
nþ 2

r1þn
2

�
þ C2

ffiffiffi
r

p
Y 1

nþ2

�
2

ffiffiffiffiffiffi
�n

p
nþ 2

r1þn
2

�
;

(A5)

or equivalently,

�ðrÞ ¼ C1ffiffiffi
r

p J 1
nþ2

�
2

ffiffiffiffiffiffi
�n

p
nþ 2

r1þn
2

�
þ C2ffiffiffi

r
p Y 1

nþ2

�
2

ffiffiffiffiffiffi
�n

p
nþ 2

r1þn
2

�
:

(A6)

Here J and Y are Bessel functions of the first and second
kinds, respectively. Because of the oscillatory nature of the
Bessel functions, it is not possible to choose the constants
C1 and C2 so that the mass density is everywhere non-
negative. Therefore, we will have to truncate the system at
some radius, and the constants of integration must be
chosen such that � is nonnegative everywhere inside the

cutoff radius. Also, the potential diverges as r ! 0 unless
we choose C2 ¼ 0.
Like the family of models labeled by m, this family of

models has adjustable inner slopes and outer slopes that
depend on the value of the parameter n. Using the asymp-
totic expansions of the Bessel functions for small argu-
ments [150], we find that, close to the center,

�� K1r
n þ K2r

n�1; (A7)

where K1 and K2 are unimportant constant factors.
Similarly, using the asymptotic expansions of the Bessel
functions for large arguments [151], we find

�� r
3n
4�1; (A8)

where we averaged out the oscillatory piece in the asymp-
totic expansion. The case n ¼ �1, corresponding to the
DF FðE; LÞ / L�1, is particularly interesting: the outer

cusp is �� r�7=4, which is the power law dependence of
the Bahcall-Wolf cusp. As for the inner slope, it transitions
from the r�1 dependence to the steeper r�2 dependence, a
possible indication of the presence of a central black hole
[152,153].
For the rest of this section, we will set C2 ¼ 0 so that �

remains finite as r ! 0. We will truncate the system at the
first zero of the potential, i.e. at the radius R given by

R1þn
2 ¼

�
nþ 2

2
ffiffiffiffiffiffi
�n

p
�

 1

nþ2
; (A9)

where 
 1
nþ2

is the first positive zero of the Bessel function

J 1
nþ2
. This choice of truncation is justified by the fact that

the mass density and the pressure are continuous across the
boundary (since they have to vanish outside the system);
thus, what we have is a dynamical analogue of a gaseous
sphere, with a DF that is discontinuous at the radius of
truncation. Also, we choose the constant �0 such that the
potential across the r ¼ R surface matches with the exte-
rior Coulombic potential,

�0 ¼ �GM

R
: (A10)

Then

�ðrÞ ¼ C1ffiffiffi
r

p J 1
nþ2

�

 1

nþ2

�
r

R

�
1þn

2

�
�GM

R
; (A11)

where we expressed �n in terms of the cutoff radius R.
Substituting this into the mass density profile and normal-
izing to the total mass [154], we find

�ðrÞ ¼ M

4�R3


 1
nþ2
ð1þ n=2Þ

Jnþ3
nþ2
ð
 1

nþ2
Þ

�
R

r

�1
2�n

J 1
nþ2

�

 1

nþ2

�
r

R

�
1þn

2

�
:

(A12)

The mass density is qualitatively different depending on
whether n < 0, n ¼ 0, or n > 0. For n > 0, � vanishes at
the origin and increases with distance in the inner region
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before decreasing to zero at some finite value of r. For
n ¼ 0, � is finite at r ¼ 0 and decreases with distance,
while for n < 0, � is infinite at r ¼ 0 and decreases with
distance. Substituting the value of C1 in terms of M back
into the potential, we find

�ðrÞ ¼ � 2GM

R

1

ðnþ 2Þ
 1
nþ2
Jnþ3
nþ2
ð
 1

nþ2
Þ

�
ffiffiffiffi
R

r

s
J 1
nþ2

�

 1

nþ2

�
r

R

�
1þn

2

�
�GM

R
: (A13)

As a consistency check, note that if we set n ¼ 0 (and use

1=2 ¼ �) we get

�ðrÞ ¼ �GM

�r
sin

�
�r

R

�
�GM

R
; (A14)

�ðrÞ ¼ M

4rR2
sin

�
�r

R

�
; (A15)

which is the familiar solution for the polytrope with poly-
tropic index 1 [72]. Next, we compute the velocity disper-
sion and the pressure in the radial and transverse
directions:

�2
r ¼ � 1

2
� ¼ pr

�
; (A16)

�2
� ¼ � 1

2

�
1þ n

2

�
� ¼ p?

�
: (A17)

The anisotropy parameter is then

� ¼ � n

2
: (A18)

Thus, nearly radial orbits are preferred for n < 0 and
nearly circular orbits are preferred for n > 0.

2. Comments on the post-Newtonian corrections

At this point, we could try to solve for c from Eq. (53),
with the Newtonian potential derived in the previous sub-
section. Unfortunately, Eq. (53) was derived with the as-
sumption that the correction due to the post-Newtonian
escape velocity, given in (43), is negligible. Unlike for the
family labeled by m, this assumption no longer holds for
this family of models.

To see this, recall that the quantity in (43) is of the order
of magnitude of ð �v=cÞ2þ2�. In order for this quantity to be
ignorable at 1PN order, we need � > 0; i.e. the DF is a
decreasing function of energy. But the DF for the present
family of models is an increasing function of energy;
hence, Eq. (53) is not valid. In particular, for the polytropic
case (n ¼ 0), the quantity (43) goes like ( �v=c), which is of
order 0.5PN. For the case n ¼ �1, this quantity is of order
1PN. This is problematic because it is inconsistent with the
expansions (5) for T00, which contains only even powers
of ( �v=c).

In fact, the correction (43) is the only place where
powers of ( �v=c) other than even powers could be poten-
tially introduced into our calculation. Let us come back to
the family labeled by m and compute the order of magni-
tude of (43) for the two most important models: Hernquist
and Plummer. For the Hernquist model, we have � ¼ 2 and
(43) goes like ð �v=cÞ6. For the Plummer model, we have
� ¼ 7

2 and (43) goes like ð �v=cÞ9. Thus, the correction (43)

consists of even powers of ð �v=cÞ for the Hernquist model
but introduces odd powers of ( �v=c) in the case of the
Plummer model (similarly to the polytrope case of the
family labeled by n).
We suggest that the presence of odd powers of ( �v=c)

(corresponding to half-integer post-Newtonian orders)
should be interpreted as indicating dissipative effects
such as collision or radiation reaction. For example, gravi-
tational radiation usually appear at 2.5PN order. As a
result, there seems to be dissipation of some kind in the
Plummer model at 4.5PN order. As for the polytropic case
of the family labeled by n, the fact that dissipation makes
its appearance at the lowest order possible is expected
since the model is that of a compact object, where colli-
sions cannot be ignored.

APPENDIX B: MODELS WITH MULTIPLE
COMPONENTS

The mass density profile for the models with m> 5
increases with distance in the inner region. While this is
generally considered unphysical, we can eliminate this
feature by forming composite models. In this appendix,
we present a simple example where we replace the inner
region of such models by a constant mass density. A
uniform density sphere of radius �a and mass M1 is de-
scribed by the potential

�1ðrÞ ¼ GM1

2 �a3
r2 � K; (B1)

where K is an arbitrary constant shift, to be determined by
continuity of the composite potential. We will glue this
model to a hypervirial model with massM2, length scale a,
and some m> 5 (we will do this for all such values of m):

�2ðrÞ ¼ � GM2

ðam�1
2 þ r

m�1
2 Þ 2

m�1

: (B2)

The gluing takes place at the radius where the mass density
of �2 is maximal. Doing so not only makes the composite
profile nonincreasing with distance, but the first derivative
of � will also be continuous. The two length scales �a and a
are then related by Eq. (77). Requiring continuity of the
first derivative of the potential fixes the ratio of the total
masses to be

M1

M2

¼
�
m� 5

2m

�mþ1
m�1

: (B3)
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Finally, requiring continuity of the potential then fixesK to
be

K ¼ 5GM2

4r0

�
m� 5

2m

� 2
m�1

�
1� 1

m

�
: (B4)

Another possible two-component model consists of glu-
ing together two models in our family, with radii a and b,
total massesM1 andM2, and parameters m1 andm2, say, at
the radius r ¼ a. We require the potential and its first
derivative to be continuous across the junction. Continuity
of the potential implies the following relation between the
ratio of the total masses and the ratio of the radii:

M1

M2

¼ 2
2

m1�1

½1þ ðb=aÞm2�1

2 � 2
m2�1

: (B5)

Continuity of the first derivative of the potential implies

M1

M2
¼ 2

m1þ1

m1�1

½1þ ðb=aÞm2�1

2 �
m2þ1

m2�1

: (B6)

Solving the system above, we finally find

a ¼ b (B7)

and

M1

M2

¼ 2
2

m1�1� 2
m2�1: (B8)
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