
Junction conditions for FðRÞ gravity and their consequences
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I present the junction conditions for FðRÞ theories of gravity and their implications: the generalized

Israel conditions and equations. These junction conditions are necessary to construct global models of

stars, galaxies, etc., where a vacuum region surrounds a finite body in equilibrium, as well as to describe

shells of matter and braneworlds, and they are stricter than in General Relativity in both cases. For the

latter case, I obtain the field equations for the energy-momentum tensor on the shell/brane, and they turn

out to be, remarkably, the same as in General Relativity. An exceptional case for quadratic FðRÞ,
previously overlooked in the literature, is shown to arise, allowing for a discontinuous R and leading

to an energy-momentum content on the shell with unexpected properties, such as nonvanishing compo-

nents normal to the shell and a new term resembling classical dipole distributions. For the former case,

they require not only the agreement of the first and second fundamental forms on both sides of the

matching hypersurface but also that the scalar curvature R and its first derivative rR agree there too.

I argue that, as a consequence, matched solutions in General Relativity are not solutions of FðRÞ models

generically. Several relevant examples are analyzed.

DOI: 10.1103/PhysRevD.88.064015 PACS numbers: 04.50.Kd, 04.40.Dg

I. INTRODUCTION

Alternative theories of gravity, such as models based on
an FðRÞ Lagrangian, have received considerable attention
in the past years, see e.g., [1–4]. The basic fundamental
solutions of standard General Relativity (GR), such as the
Schwarzschild and Kottler spherically symmetric exteri-
ors, or the Friedmann-Lemaı̂tre-Robertson-Walker cosmo-
logical models, are also solutions of the FðRÞ theories. In
the latter case, however, the energy-momentum content of
the spacetime differs from that of GR. Concerning the
former case, and as an illustrative example of the greater
richness of FðRÞ theories, the Birkhoff-Jensen theorem on
the uniqueness of the exterior (vacuum) solution of a
spherically symmetric gravitating system no longer holds
and thus there arise many other (even nonstatic) vacuum
solutions different from the Schwarzschild solution [3].
Similarly, many possible interior solutions (be they perfect
fluids or more general matter) are feasible in the extended
theories. It is tacitly understood, in general, that the GR
solutions are a very good approximation to the FðRÞ solu-
tions at least in some regimes such as low-energy ones [3].

In this paper, the question of whether or not global
models in GR describing (say) stars in equilibrium or
collapsing bodies that form black holes—in both cases
all the way from the center up to infinity—remain as viable
valid models in the generalized FðRÞ theories will be
addressed. The related problem of inserting cavities into
standard cosmological models, which requires a similar
analysis, has been recently considered in [5]. The conclu-
sions obtained herein agree with theirs. In both cases,
one needs the proper junction conditions through the

hypersurface separating the exterior and the interior of
the global gravitational field, in particular, through the
world-surface of finite bodies such as stars. These junction
conditions have been obtained in [6] via a calculation
performed in Gaussian coordinates relative to the matching
hypersurface, and were later used in [5]. The calculation in
[6] allows for cases with branes or thin shells at the
matching hypersurface. However, the field equations for
the energy-momentum tensor on the brane (formulas (4)
and (5) below) were not derived in [6], and they do not
seem to have been written down hitherto. Remarkably, they
are actually identical with those of GR, even though the
derivation as well as the expression for the energy-
momentum tensor are quite different in FðRÞ theories.
This leads to some speculations about its possible universal
character.
To avoid loading the paper with heavy calculations, I

derive the correct junction conditions forFðRÞ gravity in an
Appendix by using tensor distributions [7,8]. The main
results are succinctly presented in Sec. II. For nonlinear
functions FðRÞ, the junction conditions always require
continuity of the trace of the second fundamental form of
the matching hypersurface as well as, generically, the
continuity of the scalar curvature R. It turns out that matter
shells and braneworlds cannot be umbilical hypersurfaces,
and the brane tension is proportional to the discontinuity
of the derivative of R, in contrast with the GR result, see
however [6,9] and references therein.
Very surprisingly, there also arises an exceptional case

that seems to have been overlooked in the literature, where
a discontinuous scalar curvature R is allowed. This excep-
tional case can only arise in theories with a quadratic
function FðRÞ and leads to quite a different matter content
on the brane or thin shell so that, for instance, components*josemm.senovilla@ehu.es
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normal to the matching hypersurface can arise as well as a
completely unexpected new term, described by (9) and
(A18) below, which resembles those of classical ‘‘dipole
distributions’’—a kind of Dirac-delta-prime distribution.
The interpretation of such a new term is quite unclear. This
is considered in Sec. II A 2, where the general field equa-
tions for the energy-momentum content of the shell in this
exceptional situation are presented.

The case without braneworlds or thin shells, so that the
curvature tensor distributions do not possess singular parts,
is then considered in Sec. II B and their implications
in terms of the energy-momentum tensor quantities—
Eq. (13) below—are derived. This seems to be also new
and again adopts the very same form as in GR, despite this
not being trivial at all. This allows to prove, for example,
the important result that the matching hypersurface for a
compact perfect fluid is always defined by the vanishing of
the pressure, and then the fluid has also vanishing energy
density there or at least it becomes tangent to the matching
hypersurface—see Sec. II B 1.

The junction conditions turn out to be more restrictive
that in the GR case, as they will impose—in addition to the
same conditions as in GR—differentiability of the scalar
curvature R across the matching hypersurface. This will
lead to a simple but general proof that, in general, GR
matched solutions will not be solutions of generalized
FðRÞ gravity theories, as analyzed in Sec. III. In particular,
for example, the Oppenheimer-Snyder collapsing star [10]
to form a black hole is not a solution of any FðRÞ theory.
The corresponding complementary matching in the sense
of [11], which describes the Einstein-Straus vacuole [12],
see [13], is also impossible for nonlinear FðRÞ as recently
demonstrated in [5]. The constant-density interior
Schwarzschild solution matched to its exterior is not a
solution either, nor are the vast majority of the multiple
static spherically symmetric GR solutions with a perfect
fluid interior matched to the exterior vacuum
Schwarzschild solution—see also, in this respect, the dis-
cussion in [14,15]. I also consider more general cases with
dynamical and radiating exteriors, and the conclusion is the
same: GR matched solutions are not solutions of the ex-
tended FðRÞ theories generically. A very particular model
that is a global solution of both GR and FðRÞ theories is
found, however, given by a Robertson-Walker interior with
radiation equation of state matched to the Vaidya radiating
exterior solution [16]. The complementary matching gives
rise to a radiating vacuole in an expanding universe.

To avoid any misreading about the conclusions reached
herein, a couple of clarifying warnings are in order. First,
as has been amply demonstrated in the literature—e.g.,
[17–19], Sec. XI. in [1], chapter 4 in [3] and the many
references therein—FðRÞ gravity is fully capable of de-
scribing the structure, or the collapse, of a relativistic star.
For instance, in relation to the examples presented in
Sec. IVA, there certainly are static spherically symmetric

perfect-fluid solutions that can be joined to a
Schwarzschild exterior in FðRÞ theories. A similar com-
ment applies with respect to the examples in Sec. IVB.
Second, I must mention that there have been several papers
discussing the different problems that arise concerning
exact solutions of FðRÞ theories, such as [20–22] and
many references therein, where curvature singularities ap-
pear or there arise impediments to have strong gravitational
fields in spherically symmetric stars. Concerning the sec-
ond point, let me state that the difficulties shown herein
are, nevertheless, of an intrinsic different nature as I am
only concerned with the question of whether or not
matched GR solutions can be solutions of the extended
theories. And in relation to the first point, my discussion
just proves that the matched solutions in GR will not be
among the FðRÞ solutions generically.

II. THE MATCHING CONDITIONS

The appropriate framework to study the matching of two
different spacetimes across a timelike hypersurface1 is that
of tensor distributions [7,8], because the proper junction
conditions follow from analyzing the singular parts of
some curvature tensor distributions and, for the proper
case with no brane/shell, by demanding that they vanish.
This leads in GR to the standard Darmois and Israel
matching conditions [24,25] requiring the agreement, on
the matching hypersurface, of the first fundamental form,
while supplying a formula (respectively, field equations)
for the brane/shell energy-momentum content in terms of
the discontinuities of the second fundamental forms (resp.
of the energy-momentum tensors) inherited from both
sides of the spacetime. In particular, there is no shell/brane
when the second fundamental forms agree, in which case
the junction conditions are equivalent, in a certain sense, to
the Lichnerowicz C1 conditions on the metric components
in admissible coordinates [24–26]. For a summary of the
junction conditions and standard referecnes see [23] and
Sec. 3.8 in [27]. I present a derivation of the junction
conditions following this general method in the
Appendix, and I only give in this section a summary of
the results, stressing the new formulas that were not found
before and the appearance of a particular, extraordinary
case, for theories with a quadratic function FðRÞ.
Following the notation used in the Appendix, let � be

the timelike matching hypersurface, n� the unit normal to

�, h�� ¼ g�� � n�n� its first fundamental form and K��

its second fundamental form. This last object, as well as

1The whole study can be performed for null hypersurfaces, and
in general for hypersurfaces changing their causal character from
point to point [23]. However, to keep the presentation as simple
as possible and make the main point plain, I have preferred to
restrict myself to the important case of a timelike matching
hypersurface.
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others, may have a jump across �. For any function f its
jump across � is denoted by ½f�.

A. Case allowing for matter shells or branes

It is shown in the Appendix that in general FðRÞ theories
the following condition must hold

½K�
�� ¼ 0: (1)

Therefore, the trace of the second fundamental form must
always be continuous across �, even for cases with shells
of matter or branes. This is quite different from the GR
case, and forbids the use of umbilical hypersurfaces—
characterized by K�� ¼ fh��—one of the most common

cases to describe braneworlds in GR.
Now the analysis splits into two possibilities, depending

on whether or not F000ðRÞ ¼ 0.

1. The generic case: F000ðRÞ � 0

In this case, as shown rigorously in the Appendix, the
requirement

½R� ¼ 0 (2)

is unavoidable. Hence, the scalar curvature must always be
continuous across�, even for cases with shells of matter or
branes.

The energy-momentum tensor in the brane or thin shell
reads (see Appendix)

���� ¼ �F0ðR�Þ½K��� þ F00ðR�Þn�½r�R�h��;

n���� ¼ 0:
(3)

Thus, the following result holds:
The proper junction conditions allowing for shells of

matter or branes in FðRÞ theories with F000ðRÞ � 0 are the
agreement of the first fundamental forms on both sides of
the matching hypersurface together with (2) and (1). The
energy-momentum content of the shell or brane is then
given by formula (3).

It should be noted that the first summand in (3) is trace-
less due to (1), so that the trace of the energy-momentum
singular part (sometimes called the ‘‘brane tension’’) reads
simply

���� ¼ ðn� 1ÞF00ðR�Þn�½r�R�
and is fully determined by the discontinuity of the normal
derivative of R across �. This is in sharp contrast with the
GR case, where the brane tension is the discontinuity of
K�

�, which is always continuous now. In particular, for �

with only brane tension � so that ���� ¼ �h�� one must

have ½K��� ¼ 0 and the tension is � ¼ F00ðR�Þn�½r�R�.
Concerning the equations satisfied by the energy-

momentum tensor in the brane, one has from the Appendix

ðKþ
�� þ K�

��Þ��� ¼ 2n�n�½T��� (4)

�r���� ¼ �n�h��½T���: (5)

As far as I am aware, these relations are new and, most
remarkably, identical with the GR case—corresponding to
(A6) and (A7) via the Einstein equations. It arises the idea
that they may be universally valid for diffeomorphism-
invariant theories, but I do not know of any result along
these lines.

2. The exceptional case: F000ðRÞ ¼ 0

As proven in the Appendix, this case allows for a dis-
continuous R, so that ½R� � 0 is possible and the energy-
momentum tensor distribution acquires a singular part with
two terms

T�� ¼ Tþ
��	þ T�

��ð1� 	Þ
þ ð��� þ ��n� þ ��n� þ �n�n�Þ
� þ t��;

where

���� ¼ �f1þ �ðRþ þ R�Þg½K���
þ �f2ah�� � ½R�ðKþ

�� þ K�
��Þg;

n���� ¼ 0; (6)

��� ¼ �2� �r�½R�; n��� ¼ 0; (7)

�� ¼ 2�½R�K�
�; (8)

�t�� ¼ 2����: (9)

Here

� � 1

2
F00ðRÞ

is a constant, a is a function on � defined in (A14) and the
delta-prime–type distribution � is defined in (A18).
Thus, we now have the following:
The proper junction conditions allowing for shells of

matter or branes in FðRÞ theories with F000ðRÞ ¼ 0 are the
agreement of the first fundamental forms on both sides of
the matching hypersurface together with (1). A discontinu-
ous R is permitted and the energy-momentum content of
the shell or brane is given by formulas (6)–(9).
The discontinuity of the energy-momentum tensor can

be computed from (A10) with (A13), leading easily to

�½T��� ¼ ð1þ 2�R�Þ½G���
þ 2�f½R�R�

�� þ g��½r�r�R� � ½r�r�R�g;
which on using (A15), (A6), (A7), and (A4) provides in
this case
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�n�n�½T��� ¼ �ð1þ 2�R�ÞK��
�

½K���
þ 2�f½R�R�

��n
�n� þ aK�

� þ �r� �r�½R�g;
�n�h��½T��� ¼ ð1þ 2�R�Þ �r�½K���

þ 2�f½R�n�h��R�� � �r�a

þ ½K��� �r�R� þ K�
��

�r�½R�g:
Combining these with (6)–(8), (A8), and (A9), one obtains

n�h��½T��� ¼ � �r���� � K�
��� � �r��;

n�n�½T��� � ���K
��
�

þ �r���

¼ 2
�

�
½R�ðR�

��n
�n� þ K��

�
K���Þ

¼ �

�
½R�ðR� �Rþ ðK�

�Þ2 þ Kþ
��K

���Þ:

It may be observed that the case � ¼ 0 is simply GR. If, on
the other hand, one sets ½R� ¼ 0, then the generic case is
recovered under the assumption (A13).

The appearance of the last term (9) is most remarkable,
and very surprising. The classical interpretation of such
terms (for instance in electromagnetism) is that they de-
scribe a distribution of dipoles on �. This is usually
thought to be physically not viable in Gravitation due to
its attractive character and the positivity of masses. The
interpretation of such new terms in this exceptional case
is thus open and may give rise to new possibilities for
describing quite exotic braneworld scenarios.

B. Case without shells or branes

Consider now the proper matching case where no shells
of matter or branes are allowed, so that T�� can have, at

most, jump discontinuities. From the Appendix we know
that in this situation (2) must hold and also

½K��� ¼ 0; n�½r�R� ¼ 0

thus

½r�R� ¼ 0: (10)

This immediately informs us that the GR junction condi-
tions are necessary, that is to say, the first and second
fundamental forms must agree on � from both sides,
however, in contrast to GR, they are not enough in general
as they have to be complemented with (2) and (10). Hence,
the following result has been obtained:

The proper junction conditions allowing for no shells
of matter nor branes in FðRÞ theories with F00ðRÞ � 0
are those of GR—the agreement of the first and second
fundamental forms on both sides of the matching hyper-
surface—together with (2) and (10).

Observe that (2) and (10) amount to saying that R, as a
function, is differentiable everywhere (also across �).

Let me consider the implications of these junction con-
ditions. To start with, it should be noted that, in addition to
(A21) one also has (2), so that

n�½R��� ¼ 0; ½R� ¼ 0 (11)

and R�� has nðn� 1Þ=2� 1 allowed independent discon-

tinuities in contrast to the nðn� 1Þ=2 of standard GR. One
wonders about the allowed discontinuities for the energy-
momentum tensor. They follow from computing the dis-
continuity of the field equations (A10) which, on using
(A12) with a ¼ 0 and ½K��� ¼ 0, produce

F0ðR�Þ½R��� þ Ah��F
00ðR�Þ ¼ �½T��� (12)

where A is a function on � given by (see Appendix)

A � n�n�½r�r�R�;
that is, A represents the discontinuity in the second normal
derivative of R across �. Taking traces,

ðn� 1ÞAF00ðR�Þ ¼ �½T�
��:

From (11) and (12)—alternatively from (5) and (4)—one
derives

n�½T��� ¼ 0; (13)

which happen to be identical with those in the GR case,
proving the continuity of the n normal components of the
energy-momentum tensor across �. Nevertheless, in con-
trast to GR, the nðn� 1Þ=2 allowed independent disconti-
nuities for T�� are not given exclusively by those of the

Ricci tensor (as it has one less), but are also given by the
new one encoded in the second derivative of R represented
by A. In any case, (13) as well as (5) and (4) look like very
good properties of FðRÞ theories.

1. Application: perfect fluids

Consider for example the situation where a perfect fluid
interior (V�) is to be matched to a vacuum exterior solution
(Vþ). Then Tþ

�� ¼ 0, while

T�
�� ¼ ~%~u�~u� þ ~pðg�� þ ~u�~u�Þ; (14)

where ~% and ~p are the energy density and pressure of the
fluid, while ~u� is its unit velocity vector field (in what

follows, I will always use tildes for the energy-momentum
quantities of the FðRÞ theories, to distinguish them from
the corresponding GR quantities). Conditions (13) imme-
diately imply then

~pj� ¼ 0; (15)

~%n�~u�j� ¼ 0: (16)

The first of this determines the feasible matching
hypersurfaces for perfect fluids, while the second informs
us that the fluid must be either tangent to the matching
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hypersurface or with vanishing energy density there; they
are both reminiscent of the GR case.

III. DISCUSSION

Let me finally discuss the consequences of the above
results, in particular in relation to whether or not matched
solutions in GR are solutions of the extended FðRÞ theo-
ries. The answer is generally no, as I am going to argue.
I restrict myself now to the classical four-dimensional
situation: n ¼ 4.

Consider any vacuum solution in GR (with a possible
cosmological constant �). This is always a vacuum solu-
tion of (A10), too, provided Fð0Þ ¼ �2�. The metric is
such that

Rþ
�� ¼ �gþ�� ) Rþ ¼ 4�;

hence

r�R
þ ¼ 0:

Thus, if it is to be matched to an interior solution, the
junction conditions (2) and (10) imply that, on �,

R�j� ¼ 4�; r�R
�j� ¼ 0:

This happens to be generically incompatible with an inte-
rior metric that matches the vacuum solution in GR. The
reason is that—letting aside the fact that the matching
hypersurface might not be the same as in GR—the scalar
curvature of the interior solution would not be constant on
�, even less with vanishing derivative, unless in very
particular situations.

Imagine, for instance, that the interior is described by a
perfect fluid in GR,

TGR
�� ¼ %u�u� þ pðg�� þ u�u�Þ; (17)

where % and p are the energy density and isotropic pres-
sure of the GR perfect fluid, respectively. Then, the scalar
curvature in the interior region will be given by

R� ¼ ��TGR�
� þ 4� ¼ �ð%� 3pÞ þ 4�:

It follows that only the cases with

ð%� 3pÞj� ¼ 0

may survive as matched solutions in the extended theories.
Notice that then %j� ¼ 0, for the matching hypersurface
satisfies pj� ¼ 0 in GR. This already discards many global
solutions because matched solutions in GR may certainly
have a jump in the energy density; as a matter of fact, this is
what one wishes to model in some situations, such as
constant density perfect fluids.

The surviving GR solutions are even more scarce when
this is supplemented with the last condition,

r�ð%� 3pÞj� ¼ 0;

which will certainly rule out many of the few remaining
cases. Therefore, most GR solutions containing the given
vacuum solution as the exterior are not solutions of the
generalized FðRÞ theory.

IV. EXPLICIT EXAMPLES

I present two illustrative and important examples. The
first one considers the general case of static and spherically
symmetric stars; the second deals with dynamical cases
such as collapsing stars, eventually producing black holes.

A. Static spherically symmetric perfect-fluid stars

Consider any static spherically symmetric line element,

ds2� ¼ �A2ðrÞc2dt2 þ dr2

1� 2mðrÞ=rþ r2d�2;

where r is the area coordinate (round spheres at constant t
and r have an area of 4�r2) and d�2 is the metric on the
unit round sphere,mðrÞ is the so-called mass function [28],
and AðrÞ is a function of r that solves the Einstein’s field
equations for a perfect-fluid energy-momentum tensor (17)
with velocity vector u� ¼ �Ac
t

�. A particular example is

given by the interior Schwarzschild constant-density solu-
tion, see [27] or [29], but there are many others.
Assume that any such solution has been matched to the

exterior Schwarzschild solution (I set � ¼ 0 now for sim-
plicity). The matching hypersurface for these cases is given
by the constant value of the area coordinate r ¼ r0 such
that

pðr0Þ ¼ 0;

and then the mass M of the exterior Schwarzschild part is

M ¼ 8�

c2�
mðr0Þ:

Equation (2) implies then %ðr0Þ ¼ 0, and this by itself
forbids many important cases, including the mentioned
constant-density solution for the interior region.
However, even for those cases with a GR equation of state
p ¼ pð%Þ such that %ðr0Þ ¼ 0 holds, Eq. (10) still requires
that

dð%� 3pÞ
dr

ðr0Þ ¼ 0 in GR;

and this of course gets rid of many sensible GR solutions.
Actually, apart from the case of pure radiation (p ¼ %=3)
in GR, only those interiors with

dp

dr
ðr0Þ ¼ d%

dr
ðr0Þ ¼ 0 in GR

survive.
Of course, there are many static spherically symmetric

interior solutions matching the Schwarzschild exterior in
FðRÞ theories of gravity. The previous analysis just proves
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that the matched perfect-fluid solutions in GR will not be
among them generically.

B. Collapsing stars

As for the second example, I consider dynamical situ-
ations. The simplest case is given by a Robertson-Walker
(RW) interior region,

ds2� ¼ �c2dt2 þ a2ðtÞd�2
k; (18)

where aðtÞ is the scale factor and d�2
k is the complete

Riemannian three-dimensional metric of constant curva-
ture k ¼ �1, 0. I denote by % and p the GR energy density
and pressure of the fluid (17) for the RW geometry, that is
to say, [28,29]

�% ¼ 3
_a2 þ k

a2
; �ð%þ 3pÞ ¼ �6

€a

a
;

where dots denote derivatives with respect to ct. An ele-
mentary calculation using the field equations (A10) proves
that the very same metric is also a solution of the FðRÞ field
equations for an energy-momentum tensor of a perfect
fluid (14) with energy density and pressure given by

~% ¼ F0ðRÞ
2

ð%þ 3pÞ þ FðRÞ
2�

þ F00ðRÞ3 _a

a
ð _%� 3 _pÞ;

(19)

~p ¼ F0ðRÞ
2

ð%� pÞ � FðRÞ
2�

� F00ðRÞ
�
€%� 3 €p

þ 2 _a

a
ð _%� 3 _pÞ

�
� F000ðRÞð _%� 3 _pÞ2; (20)

where in these formulas,

R ¼ �ð%� 3pÞ ¼ 6

�
_a2 þ k

a2
þ €a

a

�
:

As is well known, the RW metric (18) matches the
Schwarzschild vacuum solution in GR whenever p ¼ 0,
see e.g., [13], so the fluid becomes dust and %ðtÞa3ðtÞ ¼
C ¼ const. The matching hypersurface is comoving with
the RW fluid flow. Actually, any such comoving hypersur-
face works, and then the exterior mass M gets determined
accordingly. The Oppenheimer-Snyder collapse [10] to
form a black hole, see e.g., [28,29], is included here for
the closed case k ¼ 1. It is important to remark that the
very same matching describes the Einstein-Straus model
[12] of a vacuole in an expanding universe, as they are
complementary matchings in the sense described in [11]
(see [13]).

In contradistinction, it is impossible that such RW dust
solution matches the Schwarzschild vacuum for general
FðRÞ. To prove it, observe that the condition (2) would
require

%j� ¼ 0;

but given that %ðtÞ depends only on t and that� is timelike,
this would lead inevitably to

%ðtÞ ¼ 0:

Hence, the Oppenheimer-Snyder collapse or the Einstein-
Straus vacuole in GR are no longer solutions in FðRÞ
gravity. The impossibility of the latter (and other RW
cavities) in FðRÞ gravity has been recently obtained in [5].
One can further prove that actually no RW spacetime

can be matched to the Schwarzschild solution in
FðRÞ theories with F00ðRÞ � 0 (again, I am assuming
Fð0Þ ¼ 0 ¼ � for simplicity). To that end, observe that
Eq. (2) implies that R�j� ¼ 0 and therefore

ð%� 3pÞj� ¼ 0:

Given that the matching hypersurface is timelike, this
implies

%� 3p ¼ 0 ¼ R� (21)

everywhere. Expressions (19) and (20) show then that the
energy-momentum tensor of the RW geometry in the FðRÞ
theory is described by a comoving perfect fluid with energy
density ~% and pressure ~p given by

~% ¼ F0ð0Þ%; ~p ¼ F0ð0Þp;
so that the fluid has the same radiation equation of state as
in GR, ~%� 3~p ¼ 0. But then the matching condition (15)
implies ~pðtÞ ¼ pðtÞ ¼ 0, and a fortiori %ðtÞ ¼ 0 ¼ ~%ðtÞ,
too, because of (21).
One may wonder if these results depend crucially on the

assumption of vacuum on the exterior, or on the particular
nature of the RW metric. The answer is ‘‘no’’ once again,
as similar conclusions follow for general radiating stars
with spherical symmetry. To describe the exterior of such a
star, one can use the radiating Vaidya metric [16,27],

dsþ2 ¼ �
�
1� 2mðuÞ

r

�
du2 � 2dudrþ r2d�2;

wheremðuÞ is the mass function and u is null retarded time.
This is a solution of Einstein’s field equations for null
incoherent radiation (it reduces to Schwarzschild for
mðuÞ ¼ M ¼ const),

Gþ
�� ¼ Rþ

�� ¼ 2

r2
dm

du
‘�‘�; ‘� ¼�u;�; ‘�‘

� ¼ 0;

and it is easy to check that this is also a solution of (A10)
with Fð0Þ ¼ 0 and

�Tþ
�� ¼ F0ð0Þ 2

r2
dm

du
‘�‘�:

It is known that a very large class of spherically symmetric
metrics match the Vaidya solution [30]. The only require-
ment is the existence of a timelike hypersurface� comply-
ing with conditions (A21), which essentially amounts
to finding a hypersurface such that n�T�

�� is null. The
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majority of these spherically symmetric interiors will have
R� � 0 and/orrR� � 0, so that they will no longer match
the Vaidya solutions in FðRÞ theories.

Actually, in GR the RW metrics (18) always match
the Vaidya solution and the matching hypersurface is time-
like (in general not comoving) whenever the dominant
energy condition holds, ðp=%Þ2 � 1 [11]. The mass func-
tion then gets determined accordingly. The majority of
these RW-Vaidya matched models are not solutions in
FðRÞ theories, because given that Rþ ¼ 0, (2) implies
R� ¼ 0, and then the argument proceeds as above proving
that % ¼ 3p, in which case

%ðtÞa4ðtÞ ¼ const:

Thus, only the pure radiation RW metric matched to
Vaidya is also a global solution for arbitrary FðRÞ, keeping
the matching hypersurface and the same equation of state
in the FðRÞ interior: ~% ¼ 3~p. This is certainly a very
meager surviving set. Still, it is an explicit example of a
matched solution that satisfies the GR field equations as
well as the field equations of FðRÞ theories.
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APPENDIX

Let ðM�; g�Þ be two smooth n-dimensional spacetimes
whose respective metrics are g�. Assume that there are
corresponding timelike hypersurfaces �� � M� which
bound the regions V� � M� on each �-side to be
matched. These two hypersurfaces are to be identified in
the final glued spacetime, so that they must be diffeomor-
phic. The glued manifold is defined as the disjoint union of
Vþ and V� with diffeomorphically related points of �þ
and �� identified. Henceforth, this identified hypersurfce
will be denoted simply by �. An indispensable require-
ment to build a well-defined spacetime—with (at least)
continuous metric—is that the first fundamental forms
h� of � calculated on both sides agree because then there
is a metric extension g defined on the entire manifold that
coincides with g� in the respective V� and is continuous
[23,31].

In practice, one is given two spacetimes and thus two
sets of local coordinates fx��g with no relation whatsoever
[25]. Hence, one has two parametric expressions x

�
� ¼

x
�
�ðaÞ of �, one for each imbedding into each of M�,
where fag are intrinsic local coordinates for� (�; �; . . . ¼
0; 1; . . . ; n� 1; a; b; . . . ¼ 1; . . . ; n� 1). The agreement of

the two ð�Þ-first fundamental forms amounts to the equal-
ities on �

hþab ¼ h�ab; h�ab � g���ðxðÞÞ @x
�
�

@a

@x��
@b

:

Denote by n�� two unit normals to � (one for each side).

They are fixed up to a sign by the conditions

n��
@x

�
�

@a ¼ 0; n��n�� ¼ 1;

and one must choose one of them (say n��) pointing out-

wards from V� and the other (nþ�) pointing towards Vþ.
The two bases on the tangent spaces

�
nþ�;

@x�þ
@a

� �
n��;

@x��
@a

�

are then identified, so that one can drop the �. The space-
time version of the now unique first fundamental form is
described by the projector to �,

h�� ¼ g�� � n�n�:

Notice that

h��

@x�

@a

@x�

@b
¼ hab:

At this stage, the Einstein field equations of GR are well
defined in the distributional sense, because one can easily
prove [23,31] that the Riemann tensor distribution (distri-
butions are distinguished by an underline) takes the explicit
expression

R�
��� ¼ ð1� 	ÞR��

��� þ 	Rþ�
��� þ 
�H�

���; (A1)

where R��
��� are the Riemann tensors of V�, respec-

tively, 	 is the distribution associated to the function that

equals 1 on Vþ and vanishes on V�, and 
� is a scalar
distribution (a Dirac delta) with support on� acting on any
test function Y by returning the value of the integral of this
function on �:

h
�; Yi ¼
Z
�
Y:

It should be observed that

r�	 ¼ n�

�:

H�
��� in (A1) is called the singular part of the Riemann

tensor distribution for obvious reasons and should only be
retained in idealized cases such as braneworlds or thin
shells of matter. It has an explicit expression,

H���� ¼ �n�½K���n� þ n�½K���n�
� n�½K���n� þ n�½K���n�; (A2)
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in terms of the jump of the second fundamental form
across �:2

½K��� ¼ Kþ
�� � K�

��; K�
�� ¼ h��h

�
�r�

� n�:

Observe that each second fundamental form is symmetric
and orthogonal to n�, thus only the nðn� 1Þ=2 compo-
nents tangent to � are nonzero. A convenient formula for
these components is

K�
ab � �n��

�
@2x

�
�

@a@b
þ ���

��
@x

�
�

@a

@x��
@b

�
:

From (A2) the singular parts of the Ricci tensor R�� and

scalar curvature R distributions are easily computed to be,
respectively,

H�
��� � H�� ¼ �½K��� � ½K�

��n�n�;
H�

� � H ¼ �2½K�
��;

(A3)

from where the singular part G�� of the Einstein tensor

distribution

G�� � R�� � 1

2
g��R

¼ Gþ
��	þG�

��ð1� 	Þ þ G��

�

follows [25]

G �� ¼ �½K��� þ h��½K�
��; n�G�� ¼ 0: (A4)

In GR, via the Einstein field equation, this provides the
singular part ��� of the energy-momentum tensor distri-

bution,

����¼�½K���þh��½K�
��; n���� ¼ 0 ðonly inGRÞ;

(A5)

where � is the gravitational coupling constant: this is
known as the Israel formula. Observe that only the tangent
components Gab and �ab are nonidentically zero.

As a general result, the Bianchi identity r�R
�
��� þ

r�R
�
��� þr�R

�
��� ¼ 0 holds in the distributional

sense [23], from where one deduces r�G�� ¼ 0 for the

Einstein tensor distribution. A standard calculation with
distributions then leads to

0 ¼ r�G�� ¼ n�½G���
� þr�ðG��

�Þ

¼ 
�

�
n�½G��� þ �r�G�� � 1

2
n�G��ðKþ

�� þ K�
��Þ

�
;

where �r denotes the intrinsic covariant derivative within�
associated to the first fundamental form. This implies the

following relations (valid in general and well known
in GR):

ðKþ
�� þ K�

��ÞG�� ¼ 2n�n�½G��� ¼ 2n�n�½R��� � ½R�;
(A6)

�r �G�� ¼ �n�h��½G��� ¼ �n�h��½R���: (A7)

In GR, but not in general FðRÞ theories, these can be
trivially rewritten in terms of the energy-momentum tensor
T�� and its singular distributional part ��� via the Einstein

field equations.
An important remark is that these equations can also be

obtained by using part of the Gauss and Codazzi equations
for � on both sides, specifically [25]

R� � 2R�
��n

�n� ¼ R� ðK��
�Þ2 þ K�

��K
���; (A8)

n�R�
��h

�
� ¼ �r�K�

�� � �r�K
��

�; (A9)

where R is the scalar curvature of the first fundamental
form of �.
Consider now the general case of FðRÞ theories. The

field equations read [3]

F0ðRÞR�� � 1

2
FðRÞg�� �r�r�F

0ðRÞ þ g��r�r�F0ðRÞ
¼ �T��; (A10)

where primes denote derivatives with respect to R.
Alternatively, these equations can be written as follows,

F0ðRÞR�� � 1

2
FðRÞg�� � F00ðRÞðr�r�R� g��r�r�RÞ

� F000ðRÞðr�Rr�R� g��r�Rr�RÞ ¼ �T��;

where we can see that covariant derivatives of R (up to the
second order) are needed to compute (A10), and the only
way to do that for a distribution Rwith a singular part or for
a possibly discontinuous function R is by the use of distri-
bution theory. One checks that unless F00ðRÞ ¼ 0—which
corresponds to standard GR—there are terms of type
r�r�R and r�Rr�R that involve singular terms of type

FðRÞg��; F0ðRÞH��;

F00ðRÞr�r�ðH
�Þ; F00ðRÞr�ð½R�n�
�Þ;
and also

F000ðRÞðr�ðH
�Þ þ ½R�n�
�Þðr�ðH
�Þ þ ½R�n�
�Þ;
containing products that are not allowed distributions3 and
that can never cancel with each other in (A10). In order for
the Eqs. (A10) to make sense even in the distributional

2Here the standard notation for discontinuities is used, so that
for any function f with definite limits on both sides of �, one
sets for all p 2 �: ½f�ðpÞ � lim x!pf

þðxÞ � lim x!pf
�ðxÞ, f�

being the restrictions of f to V�, respectively.

3There are some recent results to treat the problem of multi-
plying distributions, see e.g., [32], but still there is no unequivo-
cal answer to this problem.
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sense, a quick analysis implies that the singular part of the
scalar curvature distribution must vanish H ¼ 0, and from
the second in (A3) this entails, inevitably,

½K�
�� ¼ 0:

Similarly, the requirement

½R� ¼ 0

is unavoidable unless F000ðRÞ ¼ 0. There arises an excep-
tional case for quadratic theories where the discontinuity of
the scalar curvature can be nonzero and still the field
equations make sense in the distributional sense. I analyze
this case separately.

1. The generic case F000ðRÞ � 0

Taking (1) and (2) into account, the only remaining
singular parts in the field equations (A10) are those coming
from the Ricci tensor distribution—the first in (A3)—and
the singular part of

r�r�R ¼ ð1� 	Þr�r�R
� þ 	r�r�R

þ þ ½r�R�n�
�:

Taking (2) into account, the discontinuity ½r�R� is easily
computed [23] to give

½r�R� ¼ an�; a ¼ n�½r�R�; (A11)

where a is a function defined on� that represents the jump
in the (normal) derivativerR. Thus, the singular part of the
field equations becomes (compare with (A5), and see [6])

���� ¼ �F0ðR�Þ½K��� þ F00ðR�Þn�½r�R�h��;

n���� ¼ 0;

where R� denotes the value of R at �.
Using (1) and (2), the relations (A6) and (A7) become

now

ðKþ
�� þ K�

��ÞG�� ¼ ðKþ
�� þ K�

��ÞH�� ¼ 2n�n�½R���;
�r�G�� ¼ �r�H�� ¼ �n�h��½R���:

Even though these are different from the GR case, one can
still wonder about the versions of (A6) and (A7) that
involve the energy-momentum quantities. To derive
them, the divergence of (3) is

� F0ðR�Þn�h��½R��� � F00ðR�Þ½K��� �r�R�

þ F00ðR�Þ �r�aþ F000ðR�Þa �r�R� ¼ � �r����;

while from (A10) the following discontinuity can be
computed:

�n�h��½T��� ¼ F0ðR�Þn�h��½R���
� F00ðR�Þn�h��½r�r�R�
� F000ðR�Þa �r�R�:

A straightforward standard calculation [23] leads to

½r�r�R� ¼ An�n� þ n�ð �r�a� ½K��� �r�R�Þ
þ n�ð �r�a� ½K��� �r�R�Þ þ a

2
ðKþ

�� þ K�
��Þ;

(A12)

where A is a function on � defined by

A � n�n�½r�r�R�:
Combining then the previous three expressions, one
arrives at

�r���� ¼ �n�h��½T���:
Computing the total normal discontinuity of (A10) and
using (A12) and (1), one also gets

ðKþ
�� þ K�

��Þ��� ¼ 2n�n�½T���:

2. The exceptional case F000ðRÞ ¼ 0

Assume that F000ðRÞ ¼ 0, or equivalently that

FðRÞ ¼ R� 2�þ �R2 (A13)

for some constants � and �. Then a discontinuous R, with
½R� � 0 is allowed in principle, from a mathematical point
of view. Now, instead of (A11) one has

½r�R� ¼ an� þ �r�½R�; a ¼ n�½r�R�; (A14)

and instead of (A12),

½r�r�R� ¼ An�n� þ n�ð �r�a� ½K���ðr�RÞ�
� K�

��
�r�½R�Þ þ n�ð �r�a� ½K���ðr�RÞ�

� K�
��

�r�½R�Þ þ aK�
�� þ �r�

�r�½R�; (A15)

where now

R� ¼ 1

2
ðRþ þ R�Þ; ðr�RÞ� ¼ 1

2
r�ðRþ þ R�Þj�;

K�
�� ¼ 1

2
ðKþ

�� þ K�
��Þ:

The second derivative of the Ricci tensor distribution has
then a singular part of the form

r�ð½R�n�
�Þ þ ½r�R�n�
�;

which, after a calculation with distributions using (A14),
can be shown to adopt the explicitly symmetric form


�

�
ða� ½R�K�

�Þn�n� þ 1

2
½R�ðKþ

�� þ K�
��Þ

þ n�
�r�½R� þ n�

�r�½R�
�
þ���; (A16)

where � is a two-covariant symmetric tensor distribution
whose components are defined, acting on any test function
Y, by
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h���; Yi ¼ �
Z
�
½R�n�n�n�r�Y:

It should be observed that this distribution has support on�
but it is of ‘‘
0’’ type, and thus its product with objects
defined exclusively within � is not defined unless exten-
sions of those objects off � are considered.

The singular part of the left-hand side of the field
equation (A10) reads then

� f1þ �ðRþ þ R�Þg½K���
� þ 2����

� 2�
�

�
�ah�� þ 1

2
½R�ðKþ

�� þ K�
�� � 2K�

�n�n�Þ

þ n�
�r�½R� þ n�

�r�½R�
�
; (A17)

where � is a two-covariant symmetric tensor distribution
given by

� �� ¼ g���
�
� ����

so that, acting on any test function Y, one has

h���; Yi ¼ �
Z
�
½R�h��n

�r�Y: (A18)

From (A17) and the field equations (A10), one observes
that the energy-momentum tensor distribution is now al-
lowed to have a singular part with several terms,

T�� ¼ Tþ
��	þ T�

��ð1� 	Þ þ ���

� þ ð��n� þ ��n�Þ
�

þ �n�n�

� þ t��;

where

�t�� ¼ 2����;

���� ¼ �f1þ �ðRþ þ R�Þg½K���
þ �f2ah�� � ½R�ðKþ

�� þ K�
��Þg;

n���� ¼ 0; ��� ¼ �2� �r�½R�;
n��� ¼ 0; �� ¼ 2�½R�K�

�:

3. Absence of thin shells or branes

In proper cases where the matching hypersurface intends
to describe the boundary between a matter interior and a

vacuum exterior, or other similar separations, only jumps
in the matter content (in the energy density, for instance)
are to be allowed. Thus, one has to require that the singular
terms in the energy-momentum tensor distributions vanish.
From (3) or from (6)–(9) this leads to

½K��� ¼ 0; (A19)

and to

F00ðR�Þ½R� ¼ 0; F00ðR�Þn�½r�R� ¼ 0:

It is easily proven that (A19) is equivalent to the vanishing
of the whole Riemann singular part H�

��� [23]. If this

holds, one can further prove that
(i) a local coordinate system around � can be con-

structed such that the metric is C1 [23]. These are
called admissible coordinates [26], but they are not
usually computed nor, indeed, explicitly constructi-
ble in an analytical manner.

(ii) the Riemann tensor has a discontinuity described, in
general, by the formula

½R����� ¼ n�B��n� � n�B��n� þ n�B��n�

� n�B��n�; (A20)

where B�� is a symmetric tensor defined only on �,

which can be chosen to be tangent to �, that is to
say, n�B�� ¼ 0. Thus, B�� contains nðn� 1Þ=2
independent components, which are the allowed
independent discontinuities of the Riemann tensor
across �.

One can easily derive from (A20) [or alternatively from
(A6) and (A7)] that the discontinuity of the Einstein tensor
always satisfies

n�½G��� ¼ 0() n�½R��� ¼ 1

2
n�½R�; (A21)

so that its n normal components must be continuous across
�. Actually, the nðn� 1Þ=2 independent discontinuities of
the Riemann tensor can always be chosen in GR to be those
given by the discontinuities of the tangent components of
the Einstein tensor (and thus, in GR, of the energy-
momentum tensor). This is different in FðRÞ theories
with F00ðRÞ � 0, as then ½R� ¼ 0 necessarily.
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