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Final spin and radiated energy in numerical simulations of binary black holes
with equal masses and equal, aligned or antialigned spins
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The behavior of merging black holes (including the emitted gravitational waves and the properties of
the remnant) can currently be computed only by numerical simulations. This paper introduces ten
numerical relativity simulations of binary black holes with equal masses and equal spins aligned or
antialigned with the orbital angular momentum. The initial spin magnitudes have |y;| = 0.95 and are
more concentrated in the aligned direction because of the greater astrophysical interest of this case. We
combine these data with five previously reported simulations of the same configuration, but with different
spin magnitudes, including the highest spin simulated to date, y; = 0.97. This data set is sufficiently
accurate to enable us to offer improved analytic fitting formulas for the final spin and for the energy
radiated by gravitational waves as a function of initial spin. The improved fitting formulas can help to
improve our understanding of the properties of binary black hole merger remnants and can be used to
enhance future approximate waveforms for gravitational wave searches, such as effective-one-body

waveforms.
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I. INTRODUCTION

Binary black holes are an important source for
gravitational-wave detectors such as the Laser
Interferometer Gravitational-Wave Observatory (LIGO),
GEO, and Virgo [1-3]. Searches for gravitational-wave
signals have been able to constrain the event rate for binary
black hole mergers, but a direct detection of gravitational
waves has not yet been made [4,5]. These searches require
predictions (‘“‘templates”) of the expected gravitational
waves; so far, only nonspinning templates have been in-
cluded [S5]. However, there is evidence that spin is relevant
in astrophysical black holes, from both theoretical predic-
tions [6—8] and observational data [9-11].

Therefore, LIGO and other gravitational-wave detectors
need to include spin as a parameter in their template wave-
forms; otherwise, the search space (and thus the detection
rate) is reduced because of an insensitivity to spinning
sources [12,13]. Accurate simulations of spinning binary
black hole mergers are also needed to infer the properties
(e.g. masses and spins) of binaries from the detected wave-
forms (‘“parameter estimation”) [14].

For both detection and parameter estimation, numerical
simulations are too computationally expensive to generate
waveforms for the entire parameter space of binary black
hole mergers. Instead, numerical simulations are used to
calibrate and validate the approximate, analytic models
that are actually used to generate template waveforms.
For instance, the effective-one-body (EOB) model, cali-
brated using numerical simulations that include merging
black holes with spins aligned or antialigned with the
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orbital angular momentum [15], is used by the LIGO
Collaboration to estimate how sensitive their search is to
waveforms from spinning systems [5]. However, Ref. [15]
has shown that the EOB model poorly predicts configura-
tions with large aligned spins, and that more numerical
relativity simulations are needed in this region of spin
parameter space to improve the calibration of the model.

Binary black holes whose spins are aligned (or antia-
ligned) with the orbital angular momentum involve far
fewer parameters than generic binaries with arbitrary
spin directions, but nevertheless they can be used to con-
struct templates capable of detecting a sizable fraction of
precessing binaries [12]. Furthermore, aligned-spin sys-
tems are astrophysically motivated by studies including
observations of the microquasar XTE J1550-564 [16],
models of gas-rich galaxy mergers [17], and population
synthesis models [18].

In this paper, we introduce ten new simulations of binary
black holes with equal masses and equal spins aligned or
antialigned with the orbital angular momentum. We use the

u

notation i(l to refer to specific cases, where the subscript

is approximately the dimensionless spin magnitude at
t =0, and the superscripts indicate whether each black
hole has the aligned (+) or antialigned (—) spin orienta-
tion. The new simulations are S¢ g5, Sgq » Sqas> S > So »
S35+ Soz» Sag » Sos » and Sy

To more fully cover the aligned-spin space, we include
data previously reported for Sa 9+7 [19], 805 [20], Sy [21],
Soaa [22], and Sg,;; [23] in our analysis. The Sjg5 case
joins the two simulations from Refs. [19,20] as the only
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simulations to date of merging black holes with spin
magnitudes above y = 0.93 (the ‘“Bowen-York limit™)
[24-26]. We use this combined data set to improve on
prior phenomenological fitting formulas for the final spin
of the merger remnant [27-29] and the radiated energy
from inspiral through ringdown [29-31]. These improved
formulas can be used to reduce EOB waveform phase
errors in the ringdown [see Eq. 19 and surrounding text
in Ref. [15]] and therefore provide more accurate templates
for gravitational-wave searches [31].

The remainder of this paper is organized as follows. In
Sec. II, we discuss the numerical methods that we employ
in our simulations. In Sec. III, we report on the values and
convergence of the constraint violations, masses, and spins.
In Sec. IV, we use the horizon data to improve the phe-
nomenological fitting formulas for final spin and radiated
energy as a function of initial spin. Section V contains our
conclusions, and the Appendix details our method for
constructing the fitting formulas.

II. SIMULATION METHODS

All simulations used in this paper were generated with
the Spectral Einstein Code (SpEC) [32]. In this section, we
describe the methods for the ten new simulations. For
detailed methods of the previously reported SpEC simula-
tions, see Refs. [19-23] and references therein. Throughout
this paper, we use units where G = ¢ = 1, and we report
lengths and times in units of M, the total Christodoulou
mass in the initial data.

To produce initial data, we solve the extended conformal
thin-sandwich equations with quasiequilibrium boundary
conditions [33-38]. We adopt free data based on a
weighted superposition of two Kerr-Schild black holes,
which enables us to construct initial data containing black
holes with nearly extremal spins [39,40]. The constraint
equations are solved using a spectral elliptic solver [41],
and the free parameters are iterated until the target masses
and spins are achieved to within some tolerance.

We evolve the initial data on a “cut-spheres” domain
[42] using spectral adaptive mesh refinement, which will
be detailed in a forthcoming paper. On a time scale of S0M,
we change smoothly from the initial data gauge to damped
harmonic gauge [43-45], which helps prevent coordinate
singularities. We use a fifth-order Dormand-Prince dense
adaptive time stepper.

To reduce eccentricity, we first evolve each system for
2.5 orbits beyond the time when the spurious “junk”
radiation is sufficiently far from the black holes so as to
have a negligible effect on the black hole trajectories. Then
we fit the time derivative of the orbital frequency ) to find
improved initial angular and radial velocities ({); and
dy/d,) [46]. We iterate this procedure until an eccentricity
below 1073 is achieved.

We use the dual-frames technique to do spectral excision
of the singularities [47]. As described in other papers
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reporting high spin simulations using SpEC [19,20], the
most important aspect of this excision technique is careful
control of the excision boundary. This must accomplish
three tasks. First, it must distort the shape of the boundary
so that it matches the shape of the apparent horizon.
Second, it must regulate the fractional separation between
the excision surface and the apparent horizon—if the sepa-
ration is too small, then the horizon falls out of the com-
putational domain, but if the separation is too large, then
the excision surface falls far inside the horizon, where large
gradients are computationally expensive to resolve. Third,
it must keep all characteristic speeds on the excision
surface positive; i.e., the excision surface must be a pure
outflow boundary. This is because we do not impose
boundary conditions on the excision surface. Instead, we
monitor the characteristic speeds; if they ever become
negative, then our evolution system becomes ill posed,
and we terminate the simulation. These three tasks are
challenging for high spin systems, in part because of the
additional distortion of the horizons (see Fig. 1), and they
are especially challenging for large aligned spins because
such systems spend more time in the dynamic regime
before merger.

Using the fast-flow method described in Ref. [48], we
find the apparent horizons as an expansion in spherical
harmonics, truncated at a given maximum order €. As the
system evolves, we adaptively change € to satisfy accuracy
criteria for the resolution of the horizon. After a common
horizon is found during merger, the evolution continues on
a new domain with a single excision surface that subsumes
the two individual excision regions [45].

We measure the quasilocal spin S on each horizon using
the approximate Killing vector method described in
Ref. [39]. The dimensionless spin is then

FIG. 1 (color online). Effect of spin on horizon geometry. This
image shows the intrinsic Ricci scalar on the apparent horizons
in simulation Sg45. The proper separation of the horizons along
the line connecting their centers is about 1.7M. Both spin effects
(gradients as a function of polar angle) and tidal bulges (dark
regions near the intersection with the line connecting the horizon
centers) can be seen.
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X = Mi%h (D
where My, is the Christodoulou mass,
S2
ME, = M2 + TR (2)

r

and M;,, is the irreducible mass, which is a function of the

horizon area,
’AAH
M. = 4—. 3
i Tom (3)

With these definitions, y = 1 represents an extremal black
hole [49].

We choose an integer k to characterize the resolution of
each simulation. We call k the resolution level (or “Lev”).
It sets the resolution by defining the target maximum
truncation error for the adaptive mesh refinement and
adaptive horizon finding as

€ = 1074k, @)

Around the excision boundary, where the most resolution is
required, we reduce the target maximum truncation error
for adaptive mesh refinement by a factor of 102

III. SIMULATIONS

There are ten new simulations presented in this paper:
Sidhe S35 St Sie Sids i3 Sox. Syqs Spp. and
Soo - Initial data were generated with a target
Christodoulou mass for each hole M, = 0.5, target spin
for each hole x,, and target Arnowitt-Deser-Misner linear
momentum p)y = 0. We fix the initial separation at dy =
15.366M, and then we iterate as summarized in Sec. II to
obtain the initial radial velocity d,/d, and angular velocity
Q. The targets are met to within an absolute error of
0O(107®), and the resulting initial data parameters are
reported in Table I. We construct our initial data with a target
total Christodoulou mass of M = 1 so that our evolution
code units are essentially interchangeable with units of M.

At least three different resolutions were evolved for each
case to check convergence. Figure 2 shows convergence of
the (normalized) volume-averaged L’-norm of the gener-
alized harmonic constraint energy [50] for a representative
case.! Each time the domain structure is changed to alle-
viate grid compression, the constraints jump because of
interpolation errors, but then slowly decay back to their
baseline levels.

"Note that we observe poor convergence of the constraints in
the late ringdown, which indicates that the simulations may need
to be rerun to provide accurate waveforms. However, this issue
occurs in the wave zone well after the black hole has settled
down to its final mass and spin, and so it does not affect the
results of this paper.
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FIG. 2 (color online). Normalized constraint violations for
Sgo - For each resolution level k, we plot [[C]|, the volume-
averaged L2-norm of the generalized harmonic constraint energy
divided by the volume-averaged L?-norm of the dynamical field
gradients. This measure is defined in Eq. (71) of Ref. [50]. As the
resolution level increases, the constraints decrease. Jumps in the
constraints are attributed to changes in the domain structure, and
the spike around # ~ 3500M corresponds to the merger.

Additional simulations are used in our analysis of
masses and spins in Sec. IV: Sgg; [191, Sg4; [231, Soo
[21], Sy44 [22], and S o5 [20]. Although these have been
previously reported, we include them below for complete-
ness. It should be noted that Sg;, and S, are older
simulations and therefore used different initial data and
evolution machinery than described in Sec. II. Simulations
Soos: Soo » and Si g used the initial data methods of Sec. IT
but earlier implementations of the evolution methods.

A. Mass and spin

We define the initial spin y; to be the spin after the
system has relaxed from the initial data and the junk
radiation at the apparent horizon has become negligible.
The spin before this time is not physically relevant to the
rest of the evolution. There are subtle issues to consider
when choosing the time to measure y;. If we choose too
early a time, then junk radiation effects will still be present.
If we are overly cautious and choose too late a time, then
the system will have emitted enough gravitational radiation
to significantly change the spin.

We use a histogram method to determine y;. Let {x;} be
the set of spin measurements during the inspiral. The range
of {x,} is split uniformly into N bins, where N is the size of
{x/}, and then each element of {y;} is put into the appro-
priate bin.> We choose x; = x(t,), where 1; is the latest
time when the spin is in the bin containing the most

2If the time interval between spin measurements is not equally
spaced, we weight each measurement by the average of the two
adjacent time intervals.
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TABLE I. Initial data parameters (radial velocity d, and
angular velocity (),) at separation dy = 15.366M for the ten
new simulations with target spin, y,. Also included is the
approximate number of orbits until merger. Here M is the sum
of the Christodoulou masses at time ¢ = 0.
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TABLE II. Dimensionless spin measurements. For each case,
we provide the initial spin magnitude of each hole and the final
spin magnitude of the remnant at the highest resolution. Note
that the number in parentheses is not an error estimate, but it
provides the value at the next highest resolution when added to
the last two significant digits.

X0 Mdy/dy < 10* MQ, Norbits
0.95 7.26420673 001395360 254 Case il Lyl
0.9 5.48222492 0.01419573 249 S0.05 0.949053(—30) 0.37567(—18)
0.85 4.33347923 0.01437107 24.7 Soo 0.899569(—11) 0.392748(—12)
0.8 3.54332917 0.01450430 24.2 Sos 0.7997602(59) 0.4268932(30)
0.6 1.65215665 0.01487274 22.8 So6 0.59993163(71) 0.4942327(—31)
0.2 0.09507527 0.01525060 19.9 So.aa 0.437568970(—10) 0.547851(20)
—-0.2 —0.69081937 0.01538827 17.2 Soa 0.1999802(—40) 0.6242202(—61)
—0.6 —1.95883097 0.01527384 14.6 Soo 64(—29) X 1078 0.686445(—52)
—0.8 —3.60252091 0.01501397 13.3 SJ; 0.200035(—19) 0.7464314(—96)
—-0.9 —5.42657163 0.01474328 12.8 S&L 0.4365505(95) 0.8140(10)
Sag 0.5999635(14) 0.857808(15)
Safg’ 0.7998737(—44) 0.907526(14)
measurements. In the initial relaxation, the spin is oscillat- S(ES 0.849826(15) 0.919088(30)
ing, and during the inspiral, the spin changes more rapidly S(ﬁ 0.8997371(—15) 0.930212(23)
as the holes approach each other. Under these conditions, So0s 0.9495863(—25) 0.940852(29)
Sa;; 0.969504(13) 0.944964(11)

this method selects the spin just after the junk radiation,
when the spin is nearly constant for a long interval.
Figure 3 shows the evolution of the mass and spin as a
function of time for a representative case, and identifies our
choice of #; by the dots in the early inspiral.

We compute ¢; from y because the behavior of the mass
is not as simple during the inspiral. The histogram method
applied to the mass will pick out the local maximum late in
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FIG. 3 (color online). Plots of the apparent horizon quantities
as a function of time for a representative case, Sg4 . The top
panels display the dimensionless spin and the bottom panels
display the Christodoulou mass. From left to right, the panels
display the inspiral, merger, and ringdown. We normalize the y
scales separately so that the differences between each resolution
can be clearly seen. The discontinuity in the middle panel
indicates where we begin to measure the mass and spin on the
common horizon. The dots in the early inspiral identify our
choice of ¢; for each resolution level.

the inspiral that is present in most of our cases (see Fig. 3).
We define the initial mass to be M; = M(¢;), the sum of the
Christodoulou masses at time #;.

The final spin and Christodoulou mass, y, and M, are
measured at the last observation time, when the merger
remnant is in quasiequilibrium and approximates a Kerr
black hole. We report the initial and final spins in Table II,
and the initial and final Christodoulou masses in Table III.

TABLE III. Christodoulou mass measurements. For each case,
we provide the total initial mass of the black holes, the final mass
of the remnant, and the radiated energy computed from Eq. (5) at
the highest resolution. Note that the number in parentheses is not
an error estimate, but it provides the value at the next highest
resolution when added to the last two significant digits.

Case M; M, E,04(%)
Soos  0.999856(68) 0.968134(33) 3.1727(33)
Soo  1.00016197(73) 0.967909(—27) 3.2248(28)
Sos  1.0000859(—11)  0.9665941(—16)  3.348894(50)
Soe  1.00002292(—78)  0.963769(—14) 3.6253(13)
Soas  2.2470608(—22)  2.159561(—49) 3.8940(21)
Son 0.999956(26) 0.9564383(84) 4.3519(17)
Soo  0.9999971(—43)  0.9516182(—74)  4.83791(33)
Sos 0.999961(22) 0.945471(16) 5.44923(46)
Sgin  2.2451548(28) 2.10099(—44) 6.421(20)
Sge 1.00001907(—96)  0.926868(—19) 7.3149(18)
Sgs  1.0000765(—22)  0.911275(—28) 8.8794(26)
Sges  1.000108(—12) 0.906168(—73) 9.3931(62)
Sgs 1.0001513(—29)  0.900366(—48) 9.9770(46)
Sges  1.00021743(77) 0.893703(—65) 10.6492(66)
Sgo;  1.0002384(—94)  0.890691(—22) 10.9521(14)
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FIG. 4 (color online). Differences in the final masses and spins
between resolution levels. For each case, we compare y and M
of the highest resolution to the two lower resolutions. Note that,
except for the older S simulations, all differences are < 1074
Differences in the initial masses and spins behave similarly.

From the initial and final Christodoulou masses, we can
infer the fraction of the black hole energy that is radiated in
gravitational waves during the evolution:

M
Epa=1--L.
rad M.

1

&)

We expect mass and spin measurements at higher reso-
lutions to be more accurate. However, as illustrated by the
comparisons in Fig. 4, these quantities are not strictly
convergent in a number of cases. For this reason, we
include measurements from all resolutions in our analysis
in Sec. I'V and weight the uncertainty in the error assigned
to a particular measurement by a function of resolution
level k.

As described in Sec. II, the most stringent resolution
requirements occur in the vicinity of the apparent horizons,
but the accuracy may be dominated by short, under-
resolved segments of the evolution. The initial masses
and spins appear to be randomly perturbed by the junk
radiation as the initial data relax. The final masses and
spins, which are already limited by the accuracy of the
initial masses and spins, appear to also be affected by the
details of the coalescence, where we see a spike in con-
straint violations (Fig. 2). Apart from these under-resolved
segments, we do see convergence in the time derivatives of
the masses and spins, but the absolute values remain offset
from one another.

We have investigated other potential sources of uncer-
tainty, but found them to lie below the resolution level
uncertainty. For example, one source of uncertainty in the
masses and spins is the resolution of the surface of the
horizon. In Fig. 5, we show a representative plot of error in
final spin as a function of € of the horizon finder. Let A y,
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FIG. 5 (color online). Convergence of the final spin for S, as
a function of the ¢ of the horizon finder. We plot the difference
between y (€) and y (€ = 20) for each resolution. The adaptive
horizon finder for this case chose £ = 8 at the final time of the
simulation.

be the resolution level error between the two highest
resolutions, and let A y, be the resolution error between
the € chosen by the adaptive horizon finder and the ¢ for
which the horizon is fully resolved. At the final time of
the simulation, we find that, in all cases, Ay, > Ay, by
several orders of magnitude.

A source of uncertainty in the radiated energy is the
energy that would have been radiated by the binary as it
proceeds from infinite separation to the separation d, at
which we start the simulation. As discussed in Ref. [19],
Alvi’s formula [51] estimates that the energy radiated from
d = o to d = d, is one part in 10°. Since this is smaller
than our resolution level uncertainty, it is safe to ignore this
difference, and we can think of E,,4 as the total radiated
energy from infinite separation through ringdown.

IV. RESULTS

Much effort has been put into constructing phenomeno-
logical formulas for the final spin [27-29,52] and radiated
energy [29-31,52] as a function of initial spin. Because the
SpEC code has the capability to generate and evolve initial
data of black holes with spins above the “Bowen-York
limit” of y = 0.93 [26], we are able to provide new data
points to test and improve these formulas.

We use a Bayesian nonlinear measurement error model
(described in the Appendix) to fit and compare new para-
metric formulas. This approach (1) accounts for uncertain-
ties in both the initial spin data and the output data
(i.e., final spin or radiated energy); (2) accounts for the
expected improvement in accuracy of results as the reso-
lution level increases; and (3) includes a simple systematic
error component quantifying the misfit between a chosen
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formula and the curve the data are converging toward.> The
framework lets us predict an output as a function of initial
spin, with prediction uncertainties that account for the
uncertainties in the parameters of the chosen formula
(including correlated uncertainties) and the typical scale
of the systematic error.

The new fitting formulas that we provide here are only
applicable to equal mass binary black hole configurations
with equal spins aligned or antialigned with the orbital
angular momentum. More general formulas exist (see e.g.
Refs. [28,29,53,54]), but they are less accurate at high spins
because of the scarcity of simulations with both unequal
masses and high spins in random orientations.

A. Final spin

Using the data from Table II, we construct a new fitting
formula for the final spin as a function of initial spin. We fit
to a fourth-order polynomial,

Xr=aot ax;t ax:+ax +axt (6)

The best fit to our data has the parameters a,, and associ-
ated covariance X :

ag 0.686402(60)
a; 0.30660(14)
a=|a, | =| —0.02684(33) @)
as —0.00980(19)
ay —0.00499(35)
3.6 031 —-14 -045 11
0.31 21 —48 —26 6.0
.= —14 —-48 110 7.1 —110 | x 107°.
—-045 —-26 7.1 36 —9.5
11 6.0 —110 -95 120
®)

The uncertainty in a,, given in parentheses in Eq. (7), is

estimated by \/E_{,’" . However, the parameter estimates are
highly correlated; therefore, the full covariance matrix is
used in the computation of the fit uncertainty o, in
Eq. (A12). In Fig. 6, we show the fit and residuals using
Eq. (6) with the parameters from Eq. (7).

We fit to a fourth-order polynomial because the high
accuracy of our data set enables us to identify significant
third- and fourth-order trends in the residuals of a fit to a
second-order polynomial, which is the fitting function used
in Refs. [27-29]. The difference between the logarithm of
the marginalized likelihood function (LML) for the best-fit

*To keep the calculations analytically tractable, the systematic
error component accounts only for the typical magnitude of
misfit (essentially, the root mean square of the residuals) and
does not account for correlations or patterns in the residuals.
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FIG. 6 (color online). In the top panel, we plot our preferred
fitting formula (solid line), the fourth-order polynomial in Eq. (6),
and a comparison with a second-order polynomial (dashed line)
for s as a function of ;. Our data points are plotted as polygons,
where more sides indicates higher resolution level. In the bottom
panel, we plot the residuals of the fourth-order polynomial. We
indicate our fit parameter (dotted line) and total prediction
(dashed line) uncertainties (defined in the Appendix), which in
this case are nearly identical. Note that the residuals for the two
lower resolution runs for Sg;, are too large to fit in this panel.

fourth-order and second-order polynomials is ~40, indicat-
ing that the fourth-order polynomial provides a significantly
better fit. If the 2 additional degrees of freedom were fitting
noise, rather than some underlying structure in the data, then
we would only expect a change in maximum LML of O(1).*
The estimated systematic error magnitude d, (defined in
the Appendix) for the fourth-order polynomial formula is
negligibly small, suggesting that the significant behavior is
captured as well as could be expected. However, the resid-
uals, especially at large aligned spins, display trends suggest-
ing that there is additional structure not captured by the
fourth-order polynomial (such trends are ignored by our
simple systematic error model). This encouraged us to ex-
plore a fifth-order polynomial formula, but it did not reduce
the residuals enough to justify the additional degree of free-
dom. This does not rule out the possibility that a different
formula could capture the behavior even more accurately.
We compare our data to existing fitting formulas for the
final spin in Fig. 7. The y, data corroborate the existing

“The leading-order term in the maximum LML is proportional
to a chi-squared-like quantity, so for nested models, such as the
second- and fourth-order polynomials, the change in the maxi-
mum LML should roughly mimic the asymptotic statistics of
likelihood ratio tests, as given by Wilks’s theorem [55]. Two
models are said to be nested if the simpler one is a special case of
the more complicated one.
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FIG. 7 (color online). Final spin as a function of initial spin. In
the left panels, we plot our data (circles) along with the fitting
formula (red line) with error estimates (dashed line) from several
other studies. The top panel is from Ref. [29], the middle is from
Ref. [27], and the bottom is from Ref. [28]. In the right panels,
we plot the difference between our data and the corresponding
fitting formula on the left. The value r quantifies the size of the
systematic error compared to the fourth-order polynomial.

fitting formulas but indicate deviations at large spins
(especially in the aligned direction). This is an expected
consequence of the scarcity of high spin numerical relativ-
ity data heretofore. In the figure, we provide a quantity for
each fit, r, that measures how much larger its systematic
error is than that of our fourth-order polynomial. This is
essentially a ratio of the root-mean-square residuals (more
precisely, r is the ratio of the 6 values). The previously
reported formulas have roughly 100 to 250 times as much
systematic error as our fourth-order polynomial fit. While
the formula in Tichy 2008 [29] performs best, we note that
it has a large uncertainty.

B. Radiated energy

Following the procedure in Sec. IVA, we use the data
from Table III to construct a new fitting formula for the
radiated energy fraction E,4 as a function of initial spin.
We fit to a hyperbolic function,

b,

Epg=by+———.
rad 0 b2+Xi

€))

The best fit to our data has the parameters b, and associ-
ated covariance 3,

by 0.00258(29)
b=1| b, | =] —0.07730(79) (10)
b, —1.6939(59)
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—— 3-parameter hyperbola

---  2nd-order polynomial

Residuals

-5e-4

FIG. 8 (color online). In the top panel, we plot our preferred
fitting formula (solid line), the hyperbolic function in Eq. (9),
and a comparison with a second-order polynomial (dashed line)
for E4 as a function of y;. Our data points are plotted as
polygons, where more sides indicates higher resolution level.
In the bottom panel, we plot the residuals of the hyperbolic
function. We give our fit parameter (dotted line) and total
prediction (dashed line) uncertainties (defined in the Appendix).

0.83 22 16
S,=122 62 46 |x107". (11)
16 46 350

The uncertainty in b,, given in parentheses in Eq. (10), is
estimated by 1[22". In Fig. 8, we show the fit and residuals

using Eq. (9) with the parameters from Eq. (10).

We use a hyperbolic fitting function instead of a second-
order polynomial (as in Refs. [29,30]) or a constrained
second-order polynomial, e.g. E.q=co+ cix;+
(c1/4)x? (as in Ref. [31]). Parabolic fits show visible off-
sets in various regions of the initial spin space, which can
be seen in plots of the residuals in [31] and in the com-
parison plot in the top panel of Fig. 8. The difference
between the maximum LML for the three-parameter hy-
perbola and the second-order polynomial is ~36, indicat-
ing that the hyperbola is a dramatically better fit to the data.

In Fig. 9, we compare our data to existing fitting for-
mulas for E4. All previous formulas suffer from the same
systematic deficiencies as the best second-order polyno-
mial fit to our data shown in Fig. 8. The ratio of the
systematic error magnitude in these formulas to its magni-
tude in our three-parameter hyperbolic fit, r, is shown in
the figure and ranges from roughly 40 to 130. Note that it is
not meaningful to compare these r values to those shown in
Fig. 7, because we have not added any additional degrees
of freedom in our E,4 model compared to a second-order
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FIG. 9 (color online). E, 4 as a function of initial spin. In the
left panels, we plot our data (circles) along with the fitting
formula (red line) with error estimates (dashed line) from several
other studies. The top panel is from Ref. [29], the middle is from
Ref. [30], and the bottom is from Ref. [31]. In the right panels,
we plot the difference between our data and the corresponding
fitting formula on the left. The value r quantifies the size of the
systematic error compared to the three-parameter hyperbola.

polynomial (unlike in our final spin model, which adds
2 degrees of freedom).

C. Extremality

An important aspect of these fitting formulas is their
ability to predict remnant properties for nearly extremal
initial spins. How much of the initial mass can be radiated
as gravitational waves, and how fast can the remnant hole
spin? Our prediction for the radiated energy and final spin
for an extremal initial spin configuration, y; = 1, is

E.4(1) = 0.11397(18), (12)

X7(1) = 0.951383(85), (13)

where the uncertainty (in parentheses) is o, the total
prediction uncertainty defined in Eq. (A13), evaluated at
xi; = 1. The highest radiated energy predicted by any of
the formulas we compare against in this paper is E4(1) =
0.0995(8).

Previous estimates of E,,4 underestimated the mass loss
for large, aligned initial spins. The most extreme data point
in this paper, SO 7> Was identified as a potential outlier [31]
and E_,y was expected to be = 10% for an extremal,
aligned configuration inspiraling from inﬁnity Additional
data presented here, most notably S¢ 45 and Sgy, suggest
that Sg o7 is not an outlier. Furthermore, these cases indicate
that even a y; = 0.9 inspiral is capable of radiating = 10%
of its initial mass.

Simulations with y; > 0.93 are an important factor in
our fitting formulas. This high-spin regime is not acces-
sible with the most popular initial data methods for binary
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black hole evolutions, which assume conformal flatness
(cf. Ref. [39] and references therein). To assess the impact
of the high spin simulations, we compare our best fits to fits
of a subset of the data, omitting cases Sy o5, Sg o5, and Sg o7
We identify several key results.

For the ), formula, we find that Ay.(1)=
2.50%0(xs, 1). That is, the prediction of the final spin
with the full data set differs from the prediction with the
subset by more than 2.5 times the total prediction uncer-
tainty in the fit to the subset. The parameter uncertainty in
the full data set is smaller by a factor a'f/ a‘}“b = (.6,
which is much smaller than would be expected from add-
ing three data points randomly distributed in the initial spin
(the expected improvement based on the root-N rate would

e 4/12/15=0.9). In a random sampling context, one
would typically have to more than double the size of the
data set to get such a reduction in parameter uncertainties.
Of course, we have not chosen the subset randomly. Note
that because the systematic error magnitude is negligible,

A = 0, the total prediction uncertainty of Eq. (A13) has
the same behavior as the parameter uncertainty.

For the E,, formula, we find that AE, (1) =
3.50%(E,,q, 1); the lower spin subset poorly predicts the
extremal FE_4. Parameter uncertainties decrease only
slightly faster than the expected root-N rate for adding
three randomly placed data points, o/ a’““b =~ ().85.

However, the total prediction uncertainty at y; = 1 in-
creases, O /o =~ 1.15, because the additional high
spin data deviate most from the fitting formula that is based
on lower spin data. That is, E 4 for y; > 0.93 is unantici-
pated by the fit to the lower spin subset, causing the
systematic error magnitude &, to increase. While this
highlights the importance of the high spin data in assessing
the predictive power of the fitting formula for near-
extremal initial spins, it also suggests that we are unlikely
to capture the behavior of E 4 much better with our simple
fitting formula. Furthermore, neither manual nor algorith-
mic searches [56] have identified any better formulas,
which leads us to believe that for the best predictive results
at high spins, a nonparametric approach may be preferred.
Such an approach could be implemented using, for ex-
ample, a correlated Gaussian process [57], which would
provide a way to predict final masses and spins without the
use of a parametric fitting formula.

The analysis comparing the subset to the full data set
does not change in any appreciable way if we use a near-
extremal spin, e.g. xy; = 0.97, instead of the most extreme
case, y; = 1.

V. CONCLUSIONS

In this paper, we present and analyze a family of
numerical relativity simulations performed using SpEC
in order to construct improved fitting formulas for the final
spin and radiated energy as a function of initial spin. We
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consider a physically motivated, one-dimensional subset of
the binary black hole parameter space, in which the black
holes have equal masses and equal spins aligned or anti-
aligned with the orbital angular momentum. The improve-
ment in these fitting formulas is most dramatic in the
regime where the initial spin is above the ‘“Bowen-York
limit,” since for the first time data from simulations above
this limit have been included in the fits.

For the final spin, we improve on the second-order
polynomial fitting formula by using a fourth-order poly-
nomial to capture the statistically significant cubic and
quartic features. For the radiated energy, we find that a
three-parameter hyperbolic fitting formula is greatly pre-
ferred to a second-order polynomial. The qualitatively
different behavior at large, aligned spins in the new fit to
E.,q implies that there is somewhat more power in gravi-
tational waves from nearly extremal sources than previ-
ously thought, perhaps because of higher-order effects that
become relevant at very high spins.

We have shown that performing more nearly extremal
simulations is the most effective way to reduce the uncer-
tainty in the fitting formula parameters. However, we have
also observed that the systematic uncertainty in E,q may
prohibit a simple fitting formula from providing any further
significant improvement to the prediction uncertainty of
E,.q for high, aligned spins.

Analytic models, such as the aligned-spin EOB model,
are needed to generate templates for gravitational-wave
detectors (e.g. LIGO) because of the prohibitive expense
of generating sufficient numerical relativity data to ade-
quately cover the parameter space. The fitting formulas
we define in this paper can be used to better calibrate
these models, and therefore improve future template
waveforms.
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APPENDIX: METHOD FOR CONSTRUCTING
OUR FITTING FORMULAS

Our goal is to find a convenient but reasonably accurate
function that predicts the final black hole spin y, or the
fractional radiated energy E.4 as a function of the initial
spin y;. We will specify one or more simple parametric
candidate functions, find the best parameter values, quan-
tify uncertainties in the parameters and predictions, and
compare rival candidate functions. To treat both the y, and
E_.q problems in generic notation, we let & denote the
“predictor” (i.e., y;) and n denote the “response” we
seek to predict (i.e., xyy or Eq). We have one or more
parametric models for the relationship, = f(¢; 6), with
parameters 6 (we sometimes suppress the parameter de-
pendence below to simplify notation).

The data for the analysis are from post-processing out-
puts from deterministic numerical calculations of the bi-
nary black hole merger. A complex computation produces
initial data (ID) targeting a specified value of £, but the
actual value of ¢ that the generated ID corresponds to
necessarily differs from the target value. A processing
algorithm estimates the actual value to be x. Evolution of
the ID produces high-dimensional outputs that are pro-
cessed to produce the computed response y that estimates
the result 7 that would be obtained by solving the PDEs
exactly. A set of (x, y) pairs constitutes the basic data we
must use to find f(&; 6).

A variety of parameters govern the accuracy of the ID,
evolution, and processing algorithms. These are summa-
rized via a resolution level & (defined in Sec. II) assigned to
each (x, y) pair, with the x and y values likely to be closer to
the £ and 7 values when £ is larger. For every choice of ID,
we have results for multiple values of k, comprising
repeated measurements of (&, ) of varying accuracy.

We have developed a Bayesian nonlinear measurement
error model for the analysis.” Letting the index n label the
choice of ID, the model specification is

Xnk = é‘:n + €nk> (Al)
Ynk = M + 6nk (A2)
= f(fn; 0) + An + 8nkr (AB)

for N ID cases (n =1 to N), and k € L,, for ID case n,
where L, denotes a set of levels run for case n (for most
cases, L, = {2, 3,4}, but for runs targeting y; = *+0.44,

SFor introductions aimed at physicists, see Refs. [58-60] for
Bayesian inference and Ref. [61] for multilevel Bayesian mod-
eling. Multilevel measurement error models inspiring our ap-
proach here are covered in Refs. [62,63].
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L, =1{1,2,3}). Here €,, and §,; denote “level error”
terms reflecting the difference between numerical results
at finite resolution and the actual solution to the differential
equations we are studying. For Eq. (A3) we set 5, =
f(&,;60) + A, where A, is a “discrepancy” term repre-
senting the difference between the true response and the
prediction based on the fitting function.

To complete the model we must assign (prior) probability
density functions (PDFs), i.e. “priors”, to a number of ran-
dom variables: the level errors €,; and 6,,, the latent pre-
dictor variables &, and the latent discrepancy variables A,,.

We assign independent, zero-mean normal distributions
to the level error terms €, and J,,;, with standard deviations
o,/ and o,/ (respectively). We assign a; scale factors
to capture the notion that we expect the errors to be smaller
(on average) for higher levels. For the calculations here, we
took a; = (1/2)*7%, so the standard deviations for the
highest-resolution k = 4 results are o, and o, and the error
scales double for each decreasing level. We did not explore
this assignment except to verify that this choice has a much
higher likelihood than taking «; = 1; i.e., the data them-
selves show clear evidence for convergence as k grows.
Although in principle we could let the error scale be differ-
ent for each ID case, for simplicity we assign a common
error scale across ID cases; the modest amount of data we
have does not indicate a strong variation of error scale with
ID. We adopt normal distributions, partly for convenience,
but also because we are modeling relationships between
scalar quantities calculated from high-dimensional compu-
tational outputs with complicated algorithms. Presuming the
final errors result from numerous additive contributions
whose uncertainties have finite variance, the central limit
theorem motivates the normal choice.

We assign informative but relatively broad priors for the
&, values, reflecting the ability to produce ID correspond-
ing to a £, value close to a desired target value wu,. The
priors are normal with means w, (equal to the target value
for ID case n) and common standard deviation w = 0.002,
reflecting the typical change in mass and spin as a result of
the initial relaxation (as seen in Fig. 3). These values do not
strongly impact the results.

We also assign independent, zero-mean normal distri-
bution PDFs to the discrepancy terms, with common stan-
dard deviation 0. The quantity o, represents the typical
scale of systematic error magnitude in the model. A more
flexible and realistic choice would be to assign a correlated
Gaussian process prior over the space of discrepancy func-
tions, A(£,), and to identify A, = A(£,). This would
resemble the practice in the literature on Bayesian emula-
tion of input/output response surfaces, the prevailing
approach in the literature on the statistical analysis of the
results of deterministic numerical simulations (see, e.g.,
[64,65]). But the goal of that literature is not to find simple
and tractable fitting functions; it instead builds nonpara-
metric emulators that, while simpler than the simulators
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being emulated, are still computationally nontrivial.
Moreover, the vast majority of existing work on emulation
addresses cases with precisely known inputs, which is not
the case here; uncertainty in the predictor significantly
complicates implementation of Gaussian process regres-
sion [66,67]. The independent normal PDF for A, will
enable us to invoke a simple approximation leading to
analytical results.

Finally, we adopt flat priors for the fitting function model
parameters, 6.

The conditional dependency structure of such a multi-
level model can be represented by a directed acyclic graph
(DAG). A graphical model of this type can be readily
coded in a DAG-oriented statistical modeling language
(e.g., WinBUGS or JAGS) to enable Bayesian computation
via Markov chain Monte Carlo (MCMC) posterior sam-
pling. Here the focused goal (finding a simple fitting
function) and the small uncertainties in the level error
terms (well below 1% for nonzero spins) motivated an
analytical approach based on linearization of f(£). This
lets us avoid the complexity of MCMC, producing a fast
algorithm that is relatively simple to use.

Figure 10 shows the DAG for our model. Circles denote
random variables (RVs, uncertain quantities with assigned
or computed PDFs). Shaded circles are the data (x, y), and
shaded squares are fixed constants that help define the
model. We marginalize over the error RVs (€,;, 0,, and
A,) and the uncertain input variables (£,), and then we
solve for the remaining nonshaded variables simulta-
neously. The plates (enclosing boxes) denote parts of the
graph that are replicated, as indicated by the quantity in the
lower right corner of each plate.

Dashed circles indicate RVs that play the role of “hyper-
parameters’, i.e., parameters defining prior PDFs for
lower-level RVs. Formally, we could account for uncer-
tainty in the hyperparameters by assigning them priors of
their own and marginalizing over them (the ‘“hierarchical
Bayes” approach). As a simpler approximation, we opti-
mized these hyperparameters (the “‘empirical Bayes”
approach), using constant prior PDFs for them.

{ o

!

Y
Hn w 6nk
' N\
En > Ynk
L,
N N

FIG. 10. Directed acyclic graph displaying the conditional
dependence structure of the Bayesian nonlinear measurement
error model adopted for the fitting function analysis. See text for
a detailed description.
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Directed edges (arrows) in a Bayesian network DAG are
used to indicate the dependency structure. The top-level
RVs have no dependencies (incoming arrows); their PDFs
would be specified a priori for a full hierarchical Bayesian
analysis. The conditional PDFs of lower-level RVs depend
only on the values of their dependencies. The full joint PDF
for all RVs is the product of the prior and conditional PDFs.
Therefore, Fig. 10 indicates that the joint PDF for the RVs
comprising our model may be written as

p0, 0,0, 04E A0 €8, %)

N
= pO)p(o)p(e)p(os) [T] pléalin wp(A,lors)

n=1

X l_[ P(fnk|0'x)l7(xnk|'fm 6,,k)p(5nk|0'y)
kEL,

X p(ynklay gnr Anr Bnk)]’ (A4)

where (&, A, €, 6, x, y) is shorthand notation for the indexed
collections of those variables. Since we are adopting a
constant prior PDF for 6, and an empirical Bayes treatment
of the hyperparameters ¢y = (o, 0y, 05), the quantity of
interest is the conditional PDF for the data, (x, y), and the
latent parameters, (&, A, €, 8), given the fitting function
parameters and the hyperparameters,

p(f’ A’ €, 5’ X, y|0: L//)

N
= l-ll:p(é:nl/-l’m W)p(Anlo-A) l-[ p(enklo-x)
n=1

kEL,

X p(xnklgm Enk)p(anklo-y)p(ynkle’ gm An’ 5nk) :|

(A5)

The model Egs. (A1) and (A3) imply that the conditional
PDFs for x,;, and y,; in these equations are &-functions.
This lets us trivially marginalize over € and J, giving a
marginal PDF for the remaining variables,

N

p(e. 8310, ) = T pléuln wp(a,los)

n=1

X l_[ p(enk = Xnk — fnlo-x)

kEL,
X p(ank = Ynk — f(gn’ 0) - Anla-y)]
(A6)
Marginalizing over £ and A gives the ““marginal likelihood
function” (the probability for the data, conditioned

on parameter values) for the fitting parameters and
hyperparameters,
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Lu(0, ) = ﬁ [ e, [an[ Mieatun N @ o)

X l_[ N(xnk - ‘fnlor a-x)

reL,
X N — f(E,:6) — A0, ay)], (A7)

where N (z| u, o) denotes the normal distribution PDF for
z with mean u and standard deviation o,

Nlw, o) = e~ w2207, (A8)

ag o
When f(£) is a nonlinear function of £, the ¢ integral in
Eq. (A7) is in general intractable. However, the x and y
errors are small, so we expect a local linear approximation
of f(£) to be very accurate over regions of &, that have
significant probability density. So we use

f(€,30) = f(£,50) + (€, — ENFI(E0)  (A9)

in Eq. (A7), where f'(£;0) denotes the derivative of the
fitting function with respect to &, and &, is a fixed reference
value of ¢, based on the x,,; values for a particular n (we
use a weighted mean of the x,;). With this linearization,
the integrals in the marginal likelihood function can be
performed analytically.

We estimate the parameters for a candidate fitting func-
tion by maximizing the marginal likelihood function over
both 6 and ¢:

(6, §) = argmax L,,(0, ).

For the fitting functions studied here, the # dependence
of the marginal likelihood function is approximately
multivariate Gaussian. To quantify the @ uncertainties,
we calculate the observed Fisher information matrix
(with ¢ fixed at ),

(A10)

62
L0 Wl

L = All
90,00, (AID

where 6, denotes the ath parameter of the fitting function.
The posterior PDF for 6 (conditional on L?/) is then
approximately a multivariate normal PDF with mean 0
and covariance matrix 3 = [ !,

To predict the value of the response at a specified value
of &, we calculate an approximate predictive distribution
(also conditioned on LZ) using the multivariate normal PDF
and the delta method (propagation of errors). The model
assumes the response is given by the sum of the fitting
function and a discrepancy term with zero mean. The most
probable value of the response is simply f(&; 6). There are
two components to the uncertainty in the prediction. One
comes from propagating the 6 uncertainty (accounting for
correlations between the parameters, which can be large).
The resulting standard deviation in the fitting function
evaluated at £ is o /(£), satisfying
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af(&0) . af(&;0)
"Jz‘(f)zzﬁ 50, —f 005

(A12)

The full uncertainty in the predicted response must also
account for the uncertainty in the discrepancy term, which
is given by the hyperparameter o, that we estimate from
the data. The full uncertainty in the prediction is

ow(é) = \/szf(f) + &ZA-

This calculation ignores the uncertainty in the value of o,
but that uncertainty is relatively small in our calculations.

To compare rival parametric fitting functions, a formal
model comparison could be implemented, e.g., using
Bayes factors (which would require assigning normalized
priors to 6 for each candidate fitting function, and
integrating the product of the prior and the marginal

(A13)
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likelihood function over #), or an information criterion
such as the Bayesian information criterion (BIC) or the
Akaike information criterion (AIC). The BIC and AIC rank
models according to their maximum likelihoods, penalized
by a term depending on the number of parameters in each
model (and the sample size in the case of the BIC). These
criteria were developed for comparing simple parametric
models, not multilevel models with many latent parame-
ters. We adopt a less formal approach here. We simply
calculate the logarithm of ratios of the maximum marginal
likelihood function. For the models we consider, the log-
ratio for the best model vs the next-best competitor is large
(well over 10), far larger than the typical penalty terms in
information criteria, so the choice of best model is
unambiguous.
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