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Interactions of gauge-invariant systems are severely constrained by several consistency requirements.

One is the preservation of the number of gauge symmetries, another is causal propagation. For lower-spin

fields, the emphasis is usually put on gauge invariance that happens to be very selective by itself. We

demonstrate with an explicit example, however, that gauge invariance, albeit indispensable for construct-

ing interactions, may not suffice as a consistency condition. The chosen example that exhibits this feature

is the theory of a massless spin-3=2 field coupled to electromagnetism. We show that this system admits an

electromagnetic background in which the spin-3=2 gauge field may move faster than light. Requiring

causal propagation rules out otherwise allowed gauge-invariant couplings. This emphasizes the impor-

tance of causality analysis as an independent test for a system of interacting gauge fields. We comment on

the implications of allowing new degrees of freedom and nonlocality in a theory, on higher-derivative

gravity and Vasiliev’s higher-spin theories.
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I. INTRODUCTION

Interacting theories of gauge fields are severely con-
strained. Powerful no-go theorems [1] prohibit minimal
coupling to gravity when the massless particle has spin
s � 5

2 , as well as to electromagnetism (EM) in flat space

when s � 3
2 . Nonminimal couplings are still allowed. In

fact, trilinear vertices involving gauge fields of arbitrary
spins can be classified by using the light-cone formulation
[2] and their covariant forms can be obtained by employing
either the Noether procedure [3] or the Becchi-Rouet-
Stora-Tyutin (BRST) deformation scheme [4–6]. These
are higher-derivative interactions that result solely from
the requirement of gauge invariance. Is there anything that
ensures that these terms respect causality and do not give
rise to superluminal modes?

For low-spin systems the situation is somewhat differ-
ent. In Yang-Mills theory, for example, potentially bad
interaction terms containing second time derivatives are
eliminated by gauge symmetry itself [7]. Thus gauge
invariance implies causality, which is nonetheless an inde-
pendent consistency check. For higher spins this is no
longer true, so that requiring causality along with gauge
invariance becomes essential. The purpose of this letter is
to highlight this point by proving it for some specific
example.

Indeed, gauge invariance does not suffice as a consis-
tency condition. For massive higher-spin particles one can
introduce the Stückelberg fields to invent a fake gauge
invariance, and then exploit this symmetry to find defor-
mations of the free theory [8]. While this approach enables
us to find possible interactions for massive fields, it may

leave the coupling constants free. The requirement of causal
propagation then fixes some, if not all, of these couplings
[9]. The results of Ref. [9] reaffirm, among others, the fact
that the ‘‘Velo-Zwanziger acausality’’ [10] for a massive
charged spin-2 particle in an EM background can be cured
not for an arbitrary magnetic dipole term as the gauge-
invariant description might suggest, but precisely when the
gyromagnetic ratio is fixed to g ¼ 2 [11].
The organization of this letter is as follows. In Sec. II we

take the free system of a massless Rarita-Schwinger field
and a photon, and consider its gauge deformations. All but
one of the cubic couplings are eliminated either by the lack
of higher-order consistency or by the potential presence of
propagating ghosts. The only remaining vertex, however,
leads to acausal propagation for the spin- 3

2 field in a non-

trivial EM background, and we demonstrate this in Sec. III.
Finally, we make some remarks in Sec. IVon the implica-
tions of adding new degrees of freedom and admitting
nonlocality in a theory, and also on higher-derivative
(super)gravity and Vasiliev’s higher-spin theories as
opposed to string theory.

II. THE SYSTEM OF SPIN-3=2AND SPIN-1 FIELDS

Let us consider the free theory containing a massless
Rarita-Schwinger field c � and a photon A�. It is described

by the action1
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1We work in Minkowski space-time with mostly positive
metric. The Clifford algebra is f��; ��g ¼ þ2���, and ��y ¼
�����. The Dirac adjoint is defined as �c � ¼ c y

��
0. The

D-dimensional Levi-Civita tensor, "�1�2...�D
, is normalized as

"01...ðD�1Þ ¼ þ1. We define ��1...�n ¼ �½�1��2 . . .��n�, where
the notation ½i1 . . . in� means totally antisymmetric expression in
all the indices i1; . . . ; in with a normalization factor 1

n! .
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Lfree ¼ �i �c ��
���@�c � � 1

4
F2
��; (2.1)

which enjoys two Abelian gauge invariances:

��A� ¼ @��; �"c � ¼ @�": (2.2)

To construct covariant cubic vertices one may employ,
for example, the BRST deformation scheme for irreducible
gauge theories [4]. The possible couplings are all non-
minimal and may contain 1, 2 or 3 derivatives [2,6,12].
The parity-preserving covariant vertices are [6]

Lcubic ¼ g1 �c �

�
F�� þ 1

2
�����F��

�
c �

þ g2ð �����
��	
��	
ÞA� þ g3 ���	�

	
�F

��;

(2.3)

where the coupling constants gi’s are all real by
Hermiticity. The EM and spin- 32 field strengths are respec-

tively given by F�� ¼ @�A� � @�A� and��� ¼ @�c � �
@�c �.

The 1-derivative Pauli term is a non-Abelian deforma-
tion, i.e., it deforms the gauge algebra. The other two
Abelian pieces do not deform the gauge transformations.
The 2-derivative vertex, which exists in D � 5, is gauge
invariant up to a total derivative, while the 3-derivative one
is just a 3-curvature term (Born-Infeld type). The non-
Abelian piece faces obstruction in a local theory beyond
the cubic order [6]. In other words, if g1 � 0, the cubic
couplings (2.3) are killed by the quartic-order consistency
unless one adds new degrees of freedom and/or admits
nonlocality. If we demand locality, the original system
(2.1) of a spin- 32 gauge field and a photon has consistent

deformation up to all orders if and only if

g1 ¼ 0: (2.4)

Given this, the spin- 32 equations of motion (EoM) become

����@�c �þ ig2�
���	
F	
����2ig3@�ðF	½����

	Þ¼0:

(2.5)

These EoMs necessarily contain second time derivatives
for generic F��; this is due to the presence of the last term

in Eq. (2.5), which can be made explicit by writing

�2@�ðF	½����
	Þ ¼ F��ðhc � � @�@ � c Þ �F	
@�@	c 


þ lower time derivatives: (2.6)

As a result, the system may have propagating ghosts since
the gauge symmetry no longer guarantees the removal of
all but the physical polarizations. The remedy is simply to
remove the 3-derivative coupling, i.e., to set

g3 ¼ 0: (2.7)

With the only nonzero coupling constant g2 � g, the EoMs
now reduce to

½���� þ 2ig����	
F	
�@�c � ¼ 0: (2.8)

On the other hand, the spin-1 field obeys the EoMs

@�F
�� ¼ J�; (2.9)

where the current J� comprises some spin- 32 bilinears.

Below we will study a possible solution of the system of
equations (2.8) and (2.9).

III. CAUSALITYANALYSIS

Let us consider small fluctuations of the spin- 32 field.

The right-hand side of Eq. (2.9) can therefore be neglected,
so that the photon EoMs have the solution

F�� ¼ constant: (3.1)

In this EM background, we would like to investigate the
propagation of the spin- 32 field as a probe. Its dynamics is

governed by the Lagrangian equation (2.8), which has the
same number of components as the vector-spinor c �, i.e.,

D� 2½D�=2 components in D space-time dimensions, with
½D� � Dþ 1

2 ½ð�1ÞD � 1�. Now the � ¼ 0 component of

Eq. (2.8) does not contain any time derivative and hence

constitutes a constraint, which renders 2½D�=2 of the com-
ponents nondynamical. Because _c 0 never appears in
Eq. (2.8), c 0 is just a Lagrange multiplier, and thus one

gets rid of additional 2½D�=2 components. Finally, one can
do a complete gauge fixing by setting, for example,2

�ic i ¼ 0; (3.2)

to end up having a correct total of ðD� 3Þ � 2½D�=2
propagating degrees of freedom (fields and momenta) for
a massless spin- 32 field in D dimensions.

In order to see if the propagation of the physical com-
ponents is inside the light cone, we take recourse of the
shock-wave formalism [13]. The method relies on the fact
that characteristic surfaces for wave propagation are those
that support discontinuities in the highest-order derivative
terms in the EoMs. Let us denote the discontinuity across
the characteristic as

½@�c �� ¼ �� ~c �; (3.3)

where �� is a vector normal to the characteristic surface

and ~c � is some vector-spinor defined on the same. Thus

Eq. (2.8) yields

½���� þ 2ig����	
F	
��� ~c � ¼ 0: (3.4)

2Here i ¼ 1; 2; . . . ; D� 1 corresponds to the spatial compo-
nents. To see that this is indeed a complete gauge fixing, suppose
this is not the case. Then the residual gauge parameter must
satisfy the constraint �i@i" ¼ 0, and hence, in particular, the
Laplace equation: r2" ¼ 0. Given that the gauge parameter
should vanish at spatial infinity, the only possible solution is
" ¼ 0. Therefore, there is no residual gauge symmetry.
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If the wave propagation is causal, any component of ~c �

must vanish for a timelike �� unless it corresponds to an

unphysical or a nondynamical mode. Without loss of gen-
erality, let us choose the timelike vector �� ¼ ð1; 0; . . . ; 0Þ.
While the � ¼ 0 component of Eq. (3.4) is trivially sat-
isfied, the spacelike components give

½�ij þ 2ig�ijklFkl� ~c j ¼ 0: (3.5)

On the other hand, the discontinuity of the time derivative
of the gauge choice (3.2) across the characteristic sets

�i ~c i ¼ 0: (3.6)

Let us first implement this consequence of the gauge
choice in Eq. (3.5) to write

½1�ij � 2ig�ijklFkl� ~c j ¼ 0: (3.7)

If g vanishes, clearly all ~c i ¼ 0, so that the wave propa-
gation is causal as expected.3 When g � 0, we would like

to see if Eq. (3.7) could admit nontrivial solutions for ~c i.
For the rest of the analysis, let us consider D ¼ 5.

The components of the electric field ~E and the magnetic
field B, which is an antisymmetric rank-2 spatial tensor,
are given by

F0i ¼ Ei; Fij ¼ 1

2
"ijklBkl: (3.8)

In D ¼ 5, there are two independent EM field invariants:

TrF2 ¼ 2 ~E2 þ trB2;

TrF4 ¼ 2ð ~E2Þ2 þ trB4 � ð ~E� BÞ2;
(3.9)

where Tr and tr denote traces in 5-dimensional Minkowski

space-time and 4-dimensional space respectively, and ~E�
B is the spatial vector with the ith component "ijklEjBkl.

With a nonzero B field, one finds that trB2 is always
negative whereas trB4 is always positive.

Let us now consider Eq. (3.7) to see if there exist non-

zero solutions for ~c �. These equations involve only the

magnetic field, which we can choose to be

B ¼
0 B12 0 0

�B12 0 0 0

0 0 0 B34

0 0 �B34 0

0
BBBBBB@

1
CCCCCCA
; (3.10)

thanks to the spatial-isotropy-preserving gauge choice
(3.2). For simplicity, we stick to the special case B12 ¼
B � 0, and B34 ¼ 0. The only nonzero components of the
EM field strength are then F34 ¼ �F43 ¼ B. In this case,
Eq. (3.7) reduces to

1 �i� 0 0

i� 1 0 0

0 0 1 0

0 0 0 1

0
BBBBBB@

1
CCCCCCA

~c 1

~c 2

~c 3

~c 4

0
BBBBB@

1
CCCCCA ¼

0

0

0

0

0
BBBBB@

1
CCCCCA; (3.11)

where � ¼ 4gB�1234. From the block diagonal form of the
matrix it is clear that

~c 3 ¼ 0; ~c 4 ¼ 0: (3.12)

Then the consequence (3.6) of the gauge choice (3.2)
reduces to

�1 ~c 1 þ �2 ~c 2 ¼ 0: (3.13)

This enables us to write ~c 2 ¼ �12 ~c 1, so that Eq. (3.11)
gives

ð1þ 4igB�34Þ ~c 1 ¼ 0: (3.14)

The determinant of this coefficient matrix is

detð1þ 4igB�34Þ ¼ ½ð4gBÞ2 � 1�2: (3.15)

If g � 0, this will vanish if the magnetic field is

g2B2 ¼ 1

16
: (3.16)

Thus, indeed ~c 1;2 may have nontrivial solutions.

Note that we are interested only in small values of the
EM field invariants:

g2jTrF2j � 1; g4jTrF4j � 1: (3.17)

Otherwise, various instabilities appear [14] and the concept
of long-lived propagating particles ceases to make sense.

But the nontrivial solutions for ~c � show up even for

infinitesimally small values of the EM field invariants if

the electric field ~E is such that

~E2 ¼�1

2
trB2 þ �1; ð ~E�BÞ2 ¼ 1

2
ðtrB2Þ2 þ trB4 þ �2;

(3.18)

where j�1j � 1=g2 and j�2j � 1=g4. We conclude that
superluminal propagation takes place within the regime
of physical interest. To cure this pathology, one must set

g � g2 ¼ 0: (3.19)

Therefore, causal propagation in the absence of additional
degrees of freedom admits no cubic couplings at all,
although they are allowed by gauge invariance alone.

IV. REMARKS

In this paper, we presented an explicit example to make
the point that gauge invariance alone does not guarantee
the consistency of a theory of interacting gauge fields
and that causality must be added as an independent

3Because ~c 0 corresponds to a Lagrange multiplier, not a
dynamical field, it is irrelevant for our discussion.
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requirement. To the best of our knowledge, this is the first
time such an analysis has been done for massless fields.

As pointed out in Ref. [6], the g2 term analyzed here is
of Chern-Simons (C-S) type. Now, for bosonic fields with
free EoMs containing second-order derivatives, a C-S term
cannot lead to shock-wave acausal behavior because its
contribution to the EoMs contains only first-order deriva-
tives. The reason why the g2 term plays a critical role here
is that the free fermionic EoMs are first order in deriva-
tives, and so the C-S term competes with the unperturbed
Lagrangian in the shock-wave causality analysis.

The three cubic couplings appearing in Eq. (2.3) were
considered piecemeal in the subsequent discussion and it is
legitimate to do so from a gauge-theoretic point of view.
Note that the addition of a dynamical graviton in the theory
removes the obstruction of the non-Abelian piece at higher
orders while keeping locality intact. Indeed, this vertex is
present in N ¼ 2 gauged supergravity [15]. Decoupling
gravity by takingMP ! 1 kills this Pauli term because the
dimensionful coupling constant goes like 1=MP [15].
Given this, one may require that the consistency of the
gauge deformation itself should define the degrees of free-
dom to begin with. With the inclusion of gravity, all the
pieces in the vertex (2.3) may pass the quartic-order con-
sistency to give rise to some higher-derivative counterpart
of N ¼ 2 supergravity. One would like to know if this
higher-derivative supergravity theory is causal. On the
other hand, integrating out the massless graviton gives a
nonlocal theory of spin- 32 and spin-1 fields with the Pauli

term. Thus one can forgo locality for the sake of higher-
order consistency. In the resulting theory, however, the
issue of causality becomes very obscure.

Similarly, one can take ghost-free higher-derivative
gravity theories, i.e., Lanczos-Lovelock gravities [16], to
see if they suffer from superluminality. A canonical analy-
sis of this is intricate [17], but the existence of such a
pathology may not come as a surprise. After all, AdS/
CFT analysis shows that generic values of the higher-
derivative couplings in the bulk afflict the boundary theory
with superluminal modes [18]. While such higher-
derivative terms do exist in the 	0 expansion of string
theory,4 they show up with a plethora of other terms; in
the end, the theory contains infinitely many derivatives to

become essentially nonlocal. Ghost-free nonlinear theories
also exist for massive gravity [19], but they are plagued by
superluminal propagation [20]. The lack of contradiction
between ghostlessness and acausality in this case is very
similar in spirit to the fact that gauge invariance for mass-
less models and causality are independent requirements,
which must be checked separately.5

Neither does gauge invariance imply the consistency of
the S matrix. This issue is addressed in [21], and the
analysis uses cubic couplings in Minkowski space, just
like ours does. The conclusion of [21] is that essentially
all local higher-spin cubic vertices are ruled out in flat
space, even with an infinite tower of fields. Higher-spin
gauge theories on a flat background may still make sense if
they incorporate extended and possibly nonlocal objects,
like the stringy Pomerons [22]. It remains to be seen how
causality works in this case.
In view of our results, it would be interesting to see

whether Vasiliev’s higher-spin theories [23] pass the test of
causal propagation. One might, however, argue that in
these theories the metric itself and hence the light cone
have no gauge-invariant meaning. Therefore, the issue of
causality becomes tricky. Yet if the (infinite tower of)
higher-spin excitations are treated as perturbations, it
would still make sense to ask if they travel within the light
cone. Requiring causality for Vasiliev’s theories may shed
important light on string theory by telling us whether
consistent gauge theories for higher-spin particles neces-
sarily call for the full tower of string states in the tension-
less limit.
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