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Gravitational-wave signals from black-hole binaries with nonprecessing spins are described by four

parameters—each black hole’s mass and spin. It has been shown that the dominant spin effects can be

modeled by a single spin parameter, leading to the development of several three-parameter waveform

models. Previous studies indicate that these models should be adequate for gravitational-wave detection.

In this paper we focus on the systematic biases that would result from using them to estimate binary

parameters, and consider a one-parameter family of configurations at mass ratio 4 and for one choice of

effective single spin. We find that for low-mass binaries within that family of configurations, where the

observable waveform is dominated by the inspiral, the systematic bias in all physical parameters is smaller

than the parameter uncertainty due to degeneracies between the mass ratio and the spins, at least up to

signal-to-noise ratios (SNRs) of 50. For higher-mass binaries, where the merger and ringdown make a

greater contribution to the observed signal, the bias in the mass ratio is comparable to its uncertainty at

SNRs of only�30, and the bias in the measurement of the total spin is larger than the uncertainty defined

by the 90% confidence region even at an SNR of only 10. Although this bias may be mitigated in future

models by a better choice of single-effective-spin parameter, these results suggest that it may be possible

to accurately measure both black-hole spins in intermediate-mass binaries.
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I. INTRODUCTION

The inspiral and merger of black-hole and neutron-star
binaries are the most promising sources for the first direct
detection of gravitational waves (GWs) with the Advanced
LIGO (aLIGO) and Virgo (AdV) detectors [1–3], and are
expected to provide a wealth of astrophysical information
(see, e.g., [4]). The optimal technique to locate their signals
in the detector data is to cross-correlate the data against a
large bank of theoretical signal templates. A search across
the full parameter space of component masses, spins, sky
locations, orientations, and the distance is computationally
extremely challenging. Partly for this reason searches in
data from the initial LIGO and Virgo detectors [5–8]
focused on binaries with nonspinning components, for
which a two-dimensional template bank suffices, greatly
reducing the computational cost. The two dimensions
are defined by combinations of the component masses,
and the effects of the sky location, orientation, and distance
on the signal observed by a single detector can be absorbed
into an overall amplitude scale factor.

Such simplifications are not possible for generic spin-
ning binaries, where the components’ spins cause preces-
sion of the orbital plane and of the spins themselves,
leading to far more complex GW signals. However, if we
consider only spins aligned/antialigned to the binary’s
orbital angular momentum, then the only spin effects are
on the inspiral rate and the signal amplitude—the basic
waveform structure is unchanged from the nonspinning

case. Including the aligned/antialigned spin effects in the
waveform templates makes it possible to detect a much
larger volume of the binary parameter space, including in
some cases a significant fraction of precessing binaries
[9–11]. It is also possible that nonprecessing-binary mod-
els can be used as the basis for constructing generic wave-
form models [12,13]. Note that this study analyzes only the
l ¼ 2, m ¼ �2 modes of the gravitational wave signal.
The inclusion of the (nonprecessing) black-hole spins

doubles the dimensionality of the search parameter space
over nonspinning searches. However, studies of inspiral
dynamics using post-Newtonian (PN) expansions, and
of merger and ringdown with numerical solutions of
Einstein’s equations, show that the dominant spin effects
can be modeled with a single parameter [9,10,14]. This has
motivated the development of waveform models parame-
trized by only the binary’s mass ratio and effective total
spin (the binary’s total mass appears as a simple overall
scale factor) [9,10,14–16]. Also, recent work on imple-
menting nonprecessing-spin template banks has exploited
the partial degeneracy between the two spins [11,17].
The use of a single effective-spin parameter is also

motivated by the high computational cost of fully general
relativistic numerical simulations. Work to date on phe-
nomenological waveform models suggests that we require
at least four simulations in each direction of parameter
space that we wish to model. These models used spins in
the range ½�0:75; 0:75� up to mass ratio 3. They also
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included equal-mass binaries with spins�0:85 andþ0:85,
and a nonspinning q ¼ 4 binary. The variation in the model
coefficients with respect to physical parameters can be
modeled by cubic functions in the parameters, therefore
requiring (at least) four points in each direction. A model
of the full seven-dimensional parameter space of generic
binary waveforms would require 47 � 16; 000 simulations,
which are not feasible before the commissioning of aLIGO
and AdV [9,14,18–21]. The most ambitious study to date
includes ‘‘only’’�200waveforms, at moderate mass ratios
and black-hole spins [22]. It is therefore important that we
exploit any degeneracies that reduce the dimensionality of
the parameter space that we must model.

While single-effective-spin models are believed to cap-
ture the phenomenology of nonprecessing-binary signals
with sufficient fidelity for GW detection, little is known
about how well they would perform if used to estimate the
source parameters following a detection. The single-spin
approximation is only valid in the leading-order post-
Newtonian spin terms (although it holds to higher order
when both masses are equal, and for extreme mass ratios,
where the influence of the smaller black hole’s (BH) spin is
negligible), and does not hold through merger, where the
appropriate single spin becomes the total spin angular
momentum of the two black holes [23–26]. If we use a
single-effective-spin waveform model for parameter esti-
mation, what will be the bias in the measurement of the
black-hole masses, and of the spin parameter itself?
Obviously, if we approximate the two black-hole spins
with a single spin, thenwe cannot use this model tomeasure
the individual black-hole spins; on the other hand, if a
single-spin parameter models the dominant spin effects,
then both spins will be difficult to measure even if we did
use a double-spin model. We will return to this point later.

In this paper we explore the parameter biases due to the
use of a single-effective-spin model. Since we expect the
single-effective-spin approximation to become less valid
for higher mass ratios, we consider a set of configurations at
the highest mass ratio of the numerical simulations that
were used to calibrate current phenomenological models,
1:4 [9,14]. The computational cost of numerical simulations
precludes an exhaustive study, so we focus on one value
of the effective-spin parameter, �IMR :¼ ðm1�1 þm2�2Þ=
ðm1 þm2Þ ¼ 0:45. (Herem1 andm2 are themasses, and�1

and �2 are the Kerr parameters of the black holes). We
produce a set of five simulations with differing values of the
individual black-hole spins (�1 and �2), but with the same
value of �IMR. From the numerical-relativity (NR) wave-
forms we construct hybrid PN-NRwaveforms, which are in
turn compared against one of the phenomenological mod-
els, ‘‘IMRPhenomC’’ (see Sec. II B for a more detailed
description of the waveform model). By identifying the
IMRPhenomCwaveform that agrees best with each hybrid,
we estimate the parameter biases due to the use of a single-
effective-spin model.

There are a number of issues that make it difficult to
draw conclusions from this procedure. The results will be
skewed by artifacts in the construction of the particular
waveform model that we use (the details of the phenome-
nological ansatz, the coverage of the parameter space by
numerical waveforms, and the accuracy of the waveforms),
which may swamp the errors due to the single-effective-
spin approximation. Previous studies have shown that the
main source of uncertainty in hybrid PN-NR waveforms is
in the PN regime [27–30], and as such our results will
depend on the PN approximant we use in our hybrids, and
on the hybridization frequency. We discuss these issues
further, and the steps we have taken to mitigate them,
in Sec. V.
The layout of the paper is as follows. We summarize the

single-spin approximation, waveform models, and our nu-
merical waveforms in Secs. II and III. In Sec. IV we make a
preliminary study of biases in the inspiral regime, where
we can compare single- and double-spin PN models using
the same PN approximant, and do not have to concern
ourselves with issues of hybridization or phenomenologi-
cal modeling. In addition to quantifying the parameter
biases due to the single-effective-spin approximation for
low-mass binaries (for mass-ratio 1:4 and moderate spins),
this section also provides context and contrast to the full
inspiral-merger-ringdown results, which are in Sec. V.

II. PRELIMINARIES

A. The single-spin approximation

We consider black-hole binaries where the spins are
aligned or antialigned with the orbital angular momentum.
Under this assumption the spins and the angular momen-
tum do not precess, which leads to a considerable simpli-
fication of the GW signal over generic configurations.
These aligned-spin waveforms are parametrized by the
black-hole masses and spins.
A single effective-spin parameter �IMR :¼ ðm1�1 þ

m2�2Þ=M has been used in the construction of the non-
precessing phenomenological inspiral-merger-ringdown
(IMR) models presented in Refs. [9,14]. These models
parametrize the waveforms by their mass M, symmetric
mass ratio � ¼ m1m2=M

2, and the effective-spin parame-
ter �IMR. They incorporate a PN description of the inspiral,
while the merger and ringdown regimes are tuned using the
results of numerical simulations. A recent study [10] has
addressed how well a related ‘‘reduced spin’’ parameter
motivated by PN theory works for inspiral searches. This
PN model has been shown to be sufficiently accurate for
GW searches (‘‘effectual’’), and to agree well with the full
two-spin waveforms (‘‘faithful’’) when either the spins or
the masses are equal.
In constructing the PN reduced-spin parameter, we

note that all spin effects can be described by two parame-

ters �s � �s � L̂N � ð�1 þ �2Þ=2 and �a � �a � L̂N �
ð�1 � �2Þ=2, which remain constant throughout the
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evolution. The dimensionless spin parameters �i are
defined as �i ¼ Si=m

2
i , where Si is the spin of black hole

i. The leading-order spin term due to spin-orbit coupling
appearing at 1.5 PN order in the amplitude and the phase
can be represented by a single ‘‘reduced spin’’ parameter
(see e.g. [10,31])

�PN � �s þ ��a � 76�

113
�s; (2.1)

where � ¼ m1m2=M
2 and M ¼ m1 þm2.

In contrast, the ‘‘effective-spin’’ parameter used in the
phenomenological models for black-hole binaries with
nonprecessing spins [9,14] is defined as a simple mass-
weighted linear combination of the spins

�IMR � ðm1�1 þm2�2Þ=M ¼ �s þ ��a: (2.2)

For equal masses both spin parameters are a function of the
symmetric combination of the spins �s only. The only
difference is an overall factor. For unequal masses both
spin parameters depend on the symmetric and antisymmet-
ric spin combinations. The difference between the spin
parameters depends linearly on � and therefore goes to
zero for infinite mass ratio.

Historically, the nonprecessing phenomenological IMR
models to date have used the effective spin parameter �IMR

defined in Eq. (2.2) due to its simple form. While this
choice was sufficient to build effectual nonprecessing
waveform models, we will present evidence that suggests
that �PN is a better choice and should be used for future
models.

B. Phenomenological single-spin models

We can quantify the agreement between families of wave-
forms with the same value of �PN or �IMR, but in order to
estimate the parameter bias thatwould result from the single-
spin approximation, individual waveforms are not sufficient;
we require a waveform family. In this study we compare our
PN-NR hybrids with the phenomenological model for
black-hole binaries with nonprecessing spins presented in
Ref. [14]. For consistency with the labeling used within the
LIGO-Virgo Collaboration [32] we refer to this model as
‘‘IMRPhenomC.’’ (‘‘IMRPhenomA’’ refers to a model of
nonspinning binaries [18–20], and ‘‘IMRPhenomB’’ to an
earliermodel of nonprecessing binaries [9]; we choose to use
IMRPhenomC because it incorporates higher-order PN in-
formation in the inspiral phasing, but alsomake cross-checks
against the IMRPhenomB model.)

The model waveforms are parametrized by their
total mass M ¼ m1 þm2, symmetric mass ratio � ¼
m1m2=M

2, and the effective total spin parameter �IMR

defined in Eq. (2.2). The waveform is represented in the

Fourier domain as hðfÞ ¼ AðfÞei�ðfÞ. The amplitude AðfÞ
and phase�ðfÞ are modeled separately. The IMRPhenomC
amplitude is constructed from two parts: a PN inspiral
amplitude with the addition of a higher order frequency

term, and a ringdown portion, both of which are fit to the
model hybrids. For the inspiral portion of the phase
IMRPhenomC uses the complete TaylorF2 [33–36] PN
inspiral phasing (up to 3.5 PN order, although the spin terms
are complete only up to 2.5 PN). Only the late inspiral/
merger phase is fitted in a narrow frequency range
½0:1fRD; fRD� to numerical simulations, while the ringdown
waveform is obtained from analytically derived quasinor-
mal mode expressions for the frequency and attached con-
tinuously to the merger phase. For both the amplitude and
the phase smooth tanh -window functions are used to con-
nect the individual parts.
The model is a power series in the frequency f, and the

coefficients in the model are written as polynomials in
the two physical parameters � and �IMR (the total mass
is an overall scale factor), and it is the coefficients of these
polynomials that are then calibrated to hybrids of PN
and NR waveforms. There are 45 free parameters in
IMRPhenomC, although the final model is a function of
only fM;�;�IMRg. The hybrids used to construct
IMRPhenomC were produced in the frequency domain,
using TaylorF2 for the PN part and a rather broad
fitting window Mf 2 ½0:01; 0:02�. The construction of
frequency-domain PN-NR hybrids is discussed in more
detail in Sec. III B.

C. Matches, fitting factors, and confidence regions

We quantify the agreement between two waveforms,
h1ðfÞ and h2ðfÞ, with the standard inner product weighted
by the power spectral density SnðfÞ of a detector [37],
called the overlap

hh1jh2i ¼ 4Re
Z fmax

fmin

~h1ðfÞ~h�2ðfÞ
SnðfÞ df: (2.3)

The inner product is calculated in terms of the frequency-

domain waveforms ~hðfÞ. The frequency range in which
the detector is deemed sensitive is ½fmin ; fmax �. Let

ĥðfÞ � ~hðfÞ= ffiffiffiffiffiffiffiffiffiffiffihhjhip
be the normalized frequency-domain

waveform. The match between two normalized waveforms
is then defined as their inner product, maximized over time
and phase shifts of the waveform,

M ðh1; h2Þ ¼ max
�t;��

hĥ1jĥ2i: (2.4)

Given a signal waveform hð�Þ with physical parameters
� and a template xð�Þ with physical parameters � we
define the fitting factor

FF ¼ max
�t;��;�

hx̂ð�Þjĥð�Þi: (2.5)

Instead of the fitting factor we will often quote the fully
optimized mismatch

M ¼ 1� FF: (2.6)
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The match quantifies the physical agreement between
two waveforms (since the time of arrival and overall phase
of the waveform do not change the underlying physics of
the binary). The fitting factor is a measure of how well a
matched-filter search with a given waveform family can
perform in detecting a particular signal; a fitting factor
greater than 0.965 indicates that no more than 10% of
signals will be lost in a search. It does not tell us, however,
how well the parameters of the best-match template will
agree with the true source parameters of the signal.

Since we only consider the l ¼ 2 modes of nonprecess-
ing systems, the orientation of the sources does not matter
for the calculation of the match. For the stated SNRs we
assume optimal orientation.

A PN-NR hybrid binary waveform that has been pro-
duced for a given total massM can be trivially rescaled to a
different mass. Therefore, the match between two such
waveforms can be optimized over the total mass. The
phenomenological model IMRPhenomC used in this study
depends in addition on the symmetric mass-ratio � and the
effective-spin �IMR, which allows us to compute fitting
factors by optimizing matches over � ¼ fM;�;�g.

In this paper we compare PN-NR hybrids signals with
IMRPhenomC with reference to the expected sensitivity of
the Advanced LIGO detector [38–40]. Early science runs
are expected around 2015 [41]. At its optimum sensitivity
several years later, the anticipated sensitivity is given by
the ‘‘zero-detuned high-power’’ noise curve [42]. We use a
linear interpolation of this expected power spectral density
and choose fmin ¼ 15 Hz, and fmax ¼ 8 kHz.

For PN matches we choose the upper frequency of the
overlap integral as the frequency of the innermost stable
circular orbit (ISCO) of a test particle around a
Schwarzschild black hole fISCO ¼ v3

ISCO=ð�MÞ, where

vISCO ¼ 1=
ffiffiffi
6

p
just as in [10]. The Schwarzschild ISCO

is an arbitrary point at which to terminate the PN wave-
form, but it corresponds to the choice commonly made in
detector searches [43].

The model parameters for the waveform that best
matches the signal correspond to the parameters that
are most likely to be recovered in a GW measurement.
We are also interested in the range of parameters that
would be recovered in 90% of observations at a given
SNR, i.e., the 90% confidence region for that SNR, which
illustrates the statistical uncertainty in the measurement.

At high SNRs the confidence region can be estimated by
Fisher-matrix methods [31,34,44,45], while in general one
should construct the full posterior probability distribution
function [46–50]. The latter is computationally very ex-
pensive, but Ref. [51] shows that it is possible to produce a
good approximation to the correct confidence region by
computing matches between the model waveform with the
physical parameters of the signal, and model waveforms
with a range of neighboring parameters. All neighboring
waveforms that have a match greater than some threshold

are within the 90% confidence region. The threshold for a
given SNR � assuming a three-dimensional parameter
space is [51]

Mðhmð�Þ; hmð�0ÞÞ 	 1� 3:12=�2; (2.7)

where � are arbitrary waveform parameters (in this caseM,
�, and �PN or �IMR), and �0 are the correct parameters, and
hmð�Þ are the model waveforms.
We have computed fitting factors and the associated best

parameters with two different methods. The Nelder-Mead
amoeba [52] simplex method has been used to compute
fitting factors for a range of masses (see Sec. VB). For
selected masses we have computed 90% confidence
regions by sampling the matches on a suitably fine grid
in ðMc; �; �Þ space. The latter computation is a lot more
expensive, but more reliable—in some cases the amoeba
calculation can be trapped in a local minimum, especially
when the confidence region in question is not simply
connected. At low masses and high SNRs confidence
regions can be very elongated filaments and a transforma-
tion to rotate and squash the region into a more compact
form is then helpful to keep the computation within
a reasonable cost. This is related to the alternative
parameter-space coordinates that are being used in placing
waveforms in search template banks [11,53–55].

III. NUMERICALWAVEFORMS

A. Configurations and numerical setup

To fully test the single-spin approximation across the
binary parameter space, we would need to perform, for
each of a wide range of choices of � and �PN (or �IMRÞ, a
series of simulations for choices of different black-hole
spins that correspond to the same value of �PN (�IMR). In
doing so, we would have produced enough simulations to
construct a complete two-spin waveform model—but the
high computational cost of doing so is one of the motiva-
tions for producing a single-effective-spin model in the
first place.
We expect the single-effective-spin approximation to

become less accurate as the binary mass ratio increases,
and so in this study we focus on the largest mass ratio that
was considered in the numerical simulations used to
calibrate current phenomenological models [9,14], q ¼
m2=m1 ¼ 4. We choose an effective total spin of �IMR ¼
0:45; this is a relatively large total effective spin for which
we can also choose a wide range of individual black-hole
spins.
In our simulations we set the total mass M ¼ 1 and

using the convention m1 <m2 have m1 ¼ 0:2 and m2 ¼
0:8. We then have �IMR ¼ 0:2�1 þ 0:8�2. With our choice
of �IMR ¼ 0:45 we let �1 [the spin of the smaller BH] vary
between �0:75 and þ0:75. (Due to the large junk-
radiation content in Bowen-York initial data for highly
spinning binaries, we do not consider spins higher than
0.75.) Along this line of �IMR ¼ 0:45 in the ð�1; �2Þ plane
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we pick configurations for �1 ¼ �0:75,�0:25, 0.25, 0.75.
In addition we also add the configuration with equal spins
�1 ¼ �2 ¼ 0:45. The latter configuration is important
since IMRPhenomC [14] assumes equal spins for its PN
part. Our chosen configurations are summarized in Table I
(also see Fig. 1).

The numerical simulations were performed with the BAM

code [57,58], which evolves black-hole-binary puncture ini-
tial data [59,60] (generated using a pseudospectral elliptic
solver [61]), and evolves them with the � variant of the
moving-puncture [62–64] version of the Baumgarte-
Shapiro-Shibata-Nakamura [65,66] formulation of the 3þ
1 Einstein evolution equations. Spatial finite-difference
derivatives are sixth-order accurate in the bulk [58], Kreiss-
Oliger dissipation terms converge at fifth order, and a fourth-
order Runge-Kutta algorithm is used for the time evolution.
The gravitational waves emitted by the binary are calculated
from the Newman-Penrose scalar�4, and the details of our
implementation of this procedure are given in [57].

The basic grid setup for this study is based on a setup used
for a convergence series of q ¼ 4, �1 ¼ �2 ¼ 0:75 simu-
lations. In general, the mass ratio has the most significant
impact on choosing a grid setup, since the apparent horizons
(AH) of the black holes must be resolved by the finest grid
level.We have found that choosing the size of the innermost
box about a factor 1:5
 the size of theAHof the smaller BH
leads to good accuracy. Since the spin of the smaller BH
varies in the five configurations considered in this study, the
individual grid setup is tuned differently for each simula-
tion.We found that sufficient accuracy could be achieved by
using a minimum of 16 buffer zones (rather than the formal
requirement of 32) between mesh-refinement boxes. The
Courant factor has been reduced to C ¼ 0:4 (from C ¼ 0:5
in our previous work) to curb the contribution of time-
integration error to the overall NR error. A detailed study
of the accuracy of these simulations, and the effects of the
errors due to both the spatial finite-differencing and the time
stepping, will be presented in a forthcoming paper [67].

We have performed two iterations of the eccentricity
reduction method detailed in Ref. [56] for each of the
configurations. The final eccentricities are below 0.0015.

The numerical waveforms are obtained by extracting the
l ¼ m ¼ 2 mode of c 4 at r ¼ 180M.
While we have not performed convergence tests for the

NR waveforms, we expect that the results are robust
because we have used a ‘‘safe’’ grid setup that has led to
accurate results for related aligned-spin configurations
with q ¼ 4 and �1 ¼ �2 ¼ 0:75. In Sec. VB we show
how the numerical resolution affects fitting factors and
biases of the (0.45, 0.45) waveform with IMRPhenomC,
and find that it does not affect our overall results.

B. Construction and accuracy of
PN-NR hybrid waveforms

The NR waveforms we have computed for this study do
not cover the full aLIGO sensitivity band for lower-mass
binaries. Therefore we need to hybridize the NR waveform
with a PN approximant. Different choices are possible for
constructing such PN-NR hybrids (see Ref. [36] for a
summary). We wish to compare our IMR hybrids with
the IMRPhenomC model, in which the inspiral is modeled
by the TaylorF2 frequency-domain PN approximant. In
order to minimize effects arising from differing PN
approximants, we choose to create hybrids with TaylorF2.
We use a frequency domain hybridization method as

described in [14]. We include the NR c 4 waveform data
from the time immediately after the passage of the burst
of initial junk radiation, up to the point where the ringdown
is dominated by numerical noise, and apply a Planck
tapering window [68] of width 300 M at the start of the
data set. The waveform is further padded with zeroes
before computing the fast Fourier transform to increase
the frequency resolution. The NR strain is calculated in the

Fourier domain as ~hNRðfÞ ¼ ~c NR
4 ðfÞ=ð2�fÞ2. The match-

ing procedure aligns ~hPNðf; t0; �0Þ ¼ ~hF2ðfÞ þ 2�ft0 þ
�0 and ~hNRðfÞ by a least squares fit over a fitting interval
½f1; f2�, which we discuss in more detail below. We then
determine the matching frequency fm 2 ½f1; f2� at which
the NR and PN phases coincide by a root-finding algo-
rithm. The PN and NR amplitudes are aligned separately
without any freedom to adjust parameters.

TABLE I. The series of q ¼ 4, �IMR ¼ 0:45 configurations used in this study (also see Fig. 1).
We show the spin parameters of the individual black holes, the resolution on the finest grid level
with respect to the smallest black hole, m1=hmin , the number of GW cycles before the amplitude
maximum at merger, the initial separation D=M, the eccentricity e�;GW measured from the GW

phase [56], and the final mass and spin. For the equal-spin configuration only one step of
eccentricity reduction was performed.

Run �1 �2 m1=hmin Cycles D=M e�;GW Mf af=M

1 �0:75 0.75 44.4 29 10.739 0.0003 0.966 0.84

2 �0:25 0.625 38.5 28 10.782 0.0006 0.969 0.79

3 0.25 0.5 38.5 28 10.831 0.0007 0.971 0.74

4 0.45 0.45 38.5 28 10.853 0.0027 0.973 0.72

5 0.75 0.375 44.4 28 10.889 0.0014 0.972 0.68
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After having settled on an approximant and choice
of hybridization method we can still choose the fre-
quency region over which the hybridization is performed.
Intuitively it makes sense to hybridize at as low a fre-
quency as possible so as to extract as much useful infor-
mation from the NR data as we can, and to minimize errors
in the PN approximant, which increase with GW fre-
quency. It also stands to reason that the matching interval
½f1; f2� should not be too narrow as the fit would then be
prone to pick up spurious oscillations in the NR data. For
the hybrids considered in this study we have chosen an
interval length of M�!� 0:01 and a matching frequency
of about M!m � 0:07. This results in a relative matching
width of �!=!m � 0:14 and is consistent with the choice
advocated in Ref. [28].

One accessible measure to gauge the quality of a hybrid
are the parameter errors given by the least squares fit. At
first glance a high quality fit appears to be very desirable.
However, the PN model used in the fit gives a worse
approximation of the NR phase as we go to higher fre-
quencies and thus small standard errors in the fitting
parameters do not necessarily imply that the hybrid will
be very faithful.

In a practical sense it is useful to think of the difference
between hybrids with varying hybridization regions
(assuming reasonable comparison interval, i.e. not unrea-
sonably high frequencies) as a way of quantifying the error
in the hybrid caused by the PN and NR data. Wewould like
to know how such variations in the hybrid construction
manifest themselves in biases and uncertainties. In
Sec. VB we verify that our results are robust with respect
to hybridization artifacts.

IV. RESULTS FOR PN SINGLE-EFFECTIVE-SPIN
MODELS

A single-effective-spin PN model has recently [10] been
shown to be an effective search template (i.e., fitting fac-
tors >0:97) as well as ‘‘faithful’’ to two-spin signals (i.e.,
nonoptimized matches are also >0:97), when either the
spins or the masses are equal. Here we address the question
of biases and uncertainties incurred by the single-effective-
spin approximation. While there is a preferred ‘‘reduced-
spin’’ parameter �PN in the PN regime, we also generalize
the model used in Ref. [10] to arbitrary definitions of an
effective-spin parameter and compare with a model built
from �IMR, the effective-spin parameter used by current
phenomenological waveform models.
The construction of a single-effective-spin model is

straightforward. We choose one based on the TaylorF2
approximant. The model is based on the mapping
ð�1; �2; �; fÞ � ð�eff ; �; fÞ, where �eff ¼ �effð�1; �2; �Þ
is an arbitrary effective-spin parameter. To build the model
an inverse of this mapping is needed which requires a
relation between �1 and �2. We choose to use only the
symmetric part of the input spins (i.e., setting �a ¼ 0) and
define the frequency domain single-spin model strain as

~hMð�effð�1; �2; �Þ; �; fÞ :¼ ~hF2ð�s; �s; �; fÞ: (4.1)

With this definition the model represents equal-spin con-
figurations exactly. For the choice �eff ¼ �PN this model is
identical to the one defined in Ref. [10].
We choose the following mass-ratio q ¼ 4 configura-

tions for the comparison of single-spin PN models
(see Fig. 1). For the �IMR model we select the same cases
along �IMR ¼ 0:45 (orange dashed line) as used for NR
simulations. The configurations for the �PN model are
chosen along a line �PN ¼ 0:401575 (black solid line),
rather than �PN ¼ 0:45 (gray dot-dashed line). The reason
is that �PN ¼ 0:401575 intersects �IMR ¼ 0:45 at the
equal-spin ð�1; �2Þ ¼ ð0:45; 0:45Þ configuration, for which
both models are exact. For � ¼ 0:45 and �1 ¼ �0:75 the
symmetric combination of the spins �s vanishes and thus
�IMR ¼ �PN at this point. The largest deviation between
the spin parameters happens at the largest positive spin of
the smaller BH �1 ¼ 0:75 and is about 20%.
It is well known that �PN is the (almost) optimal single-

effective-spin parameter in the PN regime (this combina-
tion appears explicitly in the leading-order spin-orbit
coupling) [10,31]. The superiority of �PN over �IMR is
illustrated in Fig. 2 by how quickly matches between a
single-spin model (based on either �PN or �IMR) and
TaylorF2 signals (again at constant �PN or �IMR, respec-
tively) degrade when one moves away from the point
�1 ¼ �2, where the models are exact, along a line of the
respective �eff ¼ const.
As an example we compute fully optimized matches

(fitting factors) and parameter biases for TayorF2 signal
waveforms chosen as above with each of the single-spin

FIG. 1 (color online). Configurations on lines of constant
‘‘reduced’’ spin parameter �PN and ‘‘effective’’ spin parameter
�IMR chosen in this study for mass-ratio q ¼ 4. Two of these
configurations lie on the line �1 ¼ �2 (thin dotted line).
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models for a signal mass of M ¼ 7M�. To quantify the
statistical uncertainty we also calculate 90% confidence
regions in the three-dimensional space of model parame-
ters ðMc; �; �Þ.

From an astrophysical point of view, a compact binary
withM ¼ 7M� could correspond to an actual neutron star-
black hole (NS-BH) binary with component masses (1.4,
5.6). The NS would be expected to have very small spin
which is contrary to some of the configurations chosen
here. However, our goal is to compare how well the single-
spin approximation works in the PN and IMR regimes (see
Sec. VB) and therefore we choose the same range of spin
values for both PN and IMR models.

The results are summarized in Tables II and III. The
fully optimized mismatches [see Eq. (2.6)] have been

computed from 90% confidence regions at SNR 50 which
will be discussed later. We have performed a least-squares
fit to the elongated direction of the filamentlike confidence
regions and subsequently carried out a local minimization
starting from the best match found along the curve fit.
Although the knowledge of the confidence regions is not
needed to compute fitting factors this method leads to more
reliable results than simpler optimization methods.
We define biases as �� :¼ �recovered ��true, where �

is one of the model parameters ðMc; �; �Þ. Note that in
Tables II and III we have dropped the subscript PN/IMR in
the relative bias of the spin parameters. For ease of com-
parison we also give the absolute bias in the spin.
The fitting factors for both single-effective-spin models

arevery high,with the fully optimizedmismatchbelow0.1%.
The models are exact at the equal-spin configuration and
therefore the true parameters are recovered. As we move
away from the equal-spin configuration the mismatch be-
comes larger and the parameter biases increase. The bias in

the chirp mass Mc ¼ M�3=5 is overall very small, below
0.1%, consistent with standard results. This is expected since
the leading factor in the PN phase evolution for nonprecess-

ing binaries is proportional to 1=ðMc�fÞ5=3, which is domi-
nated by the chirp mass [44,45,51]. In contrast, there is
considerable bias in the spin parameter and symmetric
mass-ratio � for the very unequal-spin configurations. For
the�PN model themodulus of the biases in� and� increases
to about 15% for the configuration with�1 ¼ �0:75, which
is the farthest from the equal-spin case. The biases are worse
for the�IMR model and reach about 23% for the�1 ¼ �0:75
configuration. The absolute spin bias is at most ��� 0:05
for �PN, while it rises to twice that value for �IMR.
We know from PN theory that �PN provides a better

single-effective-spin approximation at low masses, but

FIG. 2 (color online). Matches of TaylorF2 signal waveforms
along lines of �eff ¼ const with single-spin PN models with
parameters �IMR ¼ 0:45 or �PN ¼ 0:401575 at 7M�. The
signal waveforms lie on lines �IMR ¼ 0:45 or �PN ¼
0:401575, respectively.

TABLE III. Fully optimized mismatches and biases between single-spin PN model using �IMR

and TaylorF2 signals along �IMR ¼ 0:45 for 7M�.

Case ð�1; �2Þ Mismatch M �Mc=Mc [%] ��=� [%] ��=� [%] ��IMR

(�0:75, 0.75) 5
 10�4 0.09 �20:5 25.2 0.113

(�0:25, 0.625) 2
 10�4 0.06 �14:1 16.4 0.074

(0.25, 0.5) 3
 10�5 0 1.1 2.2 0.01

(0.45, 0.45) 0 0 0 0 0

(0.75, 0.375) 5
 10�5 0 �0:5 �3:9 �0:018

TABLE II. Fully optimized mismatches and biases between single-spin PN model using �PN

and TaylorF2 signals along �PN ¼ 0:401575 for 7M�.

Case ð�1; �2Þ Mismatch M �Mc=Mc [%] ��=� [%] ��=� [%] ��PN

(�0:75, 0.685104) 6
 10�4 0.07 �13:7 13.4 0.054

(�0:25, 0.587144) 2
 10�4 0.04 �8:8 8.5 0.034

(0.25, 0.489184) 2
 10�5 0.01 �2:8 2.7 0.011

(0.45, 0.45) 0 0 0 0 0

(0.75, 0.391224) 4
 10�5 �0:01 1.3 �2:0 �0:008
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these results quantify the difference in parameter biases in
using either �PN or �IMR. The bias resulting from the use of
�IMR is up to twice as large as that due to using a model
parametrized by �PN.

At first glance, the results in Tables II and III suggest that
the single-effective-spin approximation is entirely inappro-
priate for parameter estimation: the uncertainty in the mass
ratio and the spin parameter can be as high as�15%, even
if we use the �PN approximation. This in turn suggests that,
if a single-effective-spin approximation behaves poorly,
then we may be able to accurately resolve the individual
black-hole spins with a complete two-spin model. Before
making this conclusion, we should consider the statistical
uncertainty in the parameter measurement for likely
aLIGO and AdV SNRs.

The nondetection of signals in first-generation detectors
suggests that events with SNRs higher than 30 will be rare
in second-generation detectors [69]. This should be borne
in mind when we consider Fig. 3, which shows the 90%
confidence regions [see Eq. (2.7)] for a much higher SNR
of 50. The confidence regions correspond to a 7M� binary,
and show results for both single-effective-spin PN models.

We project the three-dimensional confidence regions
in ðMc; �; �Þ onto the symmetric mass-ratio � and
effective-spin �. The optimal parameters are denoted by
colored symbols, while the true parameters are shown by
red stars. At this mass and high SNR the confidence
regions are very elongated filaments and we choose to
depict them by a curve fit through the center of the
regions. The regions shown for the equal-spin configura-
tion ð�1; �2Þ ¼ ð0:45; 0:45Þ (solid dark green line) are the
confidence regions in the proper sense as the signal is
exactly represented by the models at this point. For the
waveforms that do not lie in the model subspaces the
confidence regions are computed with the model wave-
form that has the best match with the given signal.
The very large uncertainty given by the extent of the
confidence regions in Fig. 3 is due to the (approximate)
degeneracy between mass ratio and spin [31,34,51,70].
One can see from the leading-order spin-orbit term that
it is possible to mimic the effect of spin by modifying the
mass ratio at constant chirp mass.
The uncertainties for the�PN model are about��� 0:35

and ��� 0:2. For the �IMR model the uncertainties are
comparable, but a bit larger, roughly��� 0:45 and���
0:25. For bothmodels the confidence regions extend into the
region of unphysical�> 0:25. If we project the confidence
regions onto the plane of component masses ðm1; m2Þ all
configurations lie on top of a line of constant chirp mass
Mc � 2:33. For both models the configurations range from
an equal-mass binary with total mass 5:4M� up to a mass-
ratio q ¼ 7 binary with total mass 9M�, as opposed to the
true parameters ðm1; m2Þ ¼ ð1:4; 5:6Þ. These results are
consistent with those shown in Ref. [70], and illustrate
the point made in that work, that we would not be able to
determine if such a source was a binary containing two
black holes, or a black hole and a neutron star.
We can quantify the additional uncertainty introduced

by the single-spin approximation with a given parameter
�PN or �IMR by comparing the ‘‘spread’’ in � between the
recovered parameters with the extent of the model con-
fidence region in the � direction. For the �PN model we
find a spread ��PN � 0:06 vs a spread of ��IMR � 0:13
for the �IMR model. The extent of the equal-spin confi-
dence regions in � is roughly 0.32 for �PN and 0.34 for
�IMR. For both models at the chosen mass of 7M� the
statistical uncertainties dwarf the spread in the biases, even
at this high SNR of 50. In addition, note that all of the
recovered parameters for the �PN model are within the
statistical error bars of the ‘‘true’’ parameters.
These results demonstrate that, while the systematic

parameter biases from the single-effective-spin models
may appear large, they are in fact much smaller than the
statistical errors, even at high SNR.We conclude, then, that
the reduced-spin model presented in Ref. [10] is likely to
be sufficient for parameter estimation of low-mass signals
from aLIGO and AdV.

FIG. 3 (color online). 90% confidence regions represented as
lines at SNR ¼ 50 and 7M� for a single-spin PN models using
�PN (top panel) and �IMR (bottom panel) and TaylorF2 signals
along �PN ¼ 0:401575. The recovered optimal parameters are
denoted by colored symbols, while the true parameters are
shown by a red star.
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V. RESULTS FOR IMR WAVEFORMS

We now analyze the set full of inspiral-merger-ringdown
waveforms described in Sec. III. Section VA deals with
unoptimized (‘‘faithfulness’’) matches between the PN-NR
hybrid waveforms, while in Sec. VB we compute fully
optimized matches of the individual IMR waveforms
against IMRPhenomC for a range of signal masses. We
also compute 90% confidence regions for IMRPhenomC to
contrast biases with uncertainties at relevant SNRs.

A. Matches between IMR waveforms

We now consider the family of �IMR ¼ 0:45 PN-NR
hybrid waveforms summarized in Table I.

In Fig. 4 we show matches between the TaylorF2
frequency-domain hybrid (see Sec. III B) of the reference
ð�1; �2Þ ¼ ð0:45; 0:45Þ case, with each of the other con-
figurations listed in Table I. As we would expect, the
further away the individual spins are from the fiducial
(0.45, 0.45) waveform the worse the matches become.

The degradation of the matches for low masses is ex-
pected due to the use of the �IMR parameter; the configu-
rations used in this study lie along a line of �IMR ¼ 0:45.
The (0.45, 0.45) configuration corresponds to �PN �
0:402. Figure 1 shows how these lines diverge. Those
configurations for which the spread between these lines
is the largest [i.e., those that are the farthest away from the
fiducial (0.45, 0.45) configuration] are therefore expected
to have the worst match. In fact, for low masses, the
matches between these IMR waveforms are very close to
the PN matches computed at 7M� in Fig. 2, as expected.

Around 50M� hybridization artifacts lead to a visible
kink in the matches. Note that these are not artifacts of
the hybridization procedure itself, but rather a result of the
disagreement between the TaylorF2 and fully general rela-
tivistic NR waveforms at the matching frequency; these
artifacts could be made arbitrarily small if we produced NR
waveforms of sufficient length to match to PN at arbitrarily

low frequencies. Previous studies of NR waveform length
requirement (in particular Ref. [30]), and the estimates
of statistical uncertainties in this study, suggest that the
measurement errors due to these effects do not have a
significant impact on the scientific information that can
be extracted from aLIGO and AdV GW observations.
As we go to higher masses the matches improve consid-

erably, which indicates that in the merger regime �IMR

performs well. Beyond 200M� the matches drop off as
we move away from the fiducial (0.45, 0.45) configuration
due to the different final spin and thus different ringdown
frequency of the remnant BHs.
It is very likely that the matches between waveforms

along a line of constant �PN would be far higher even
through the merger and ringdown. Again, our results are
consistent with our expectation from PN theory that future
phenomenological models should be parametrized by �PN.

B. Biases and uncertainties against IMRPhenomC

As with the TaylorF2 reduced-spin PN model in Sec. IV,
we now wish to study the parameter biases due to the use
of the single-effective-spin �IMR in full inspiral-merger-
ringdown waveform models. For this purpose we will
compare our family of constant �IMR ¼ 0:45 PN-NR
hybrids against one of the current phenomenological
IMR models, IMRPhenomC. Our goal is complicated by
a number of factors. One class of error sources in our
analysis is the accuracy of the hybrid waveforms: this
will depend on the accuracy of the NR waveforms, on
the frequency at which they are hybridized to PN wave-
forms, and the accuracy of the PN approximant that was
used. These errors are mitigated by choosing the same PN
approximant, TaylorF2, as was used for the inspiral part of
IMRPhenomC. The two other sources of uncertainty
(hybridization frequency and NR-waveform accuracy),
can be quantified, and we will show (in Figs. 12 and 13)
that they do not affect our conclusions.
A more serious source of error is in the IMRPhenomC

model itself. This model was calibrated to NR waveforms
up to mass ratio 1:4, but not spinning-binary waveforms at
that mass ratio. The hybrids that we compare with the
model are therefore at the very edge of the region of
parameter space over which the model was calibrated. In
addition, IMRPhenomC (and all current phenomenological
models in general) were designed with detection in mind,
and not as a tool for parameter estimation. There are
certainly errors in how well IMRPhenomC represents the
hybrid waveforms from which it was built, i.e. modeling
errors, as well as hybridization artifacts due to the wave-
form length, and errors in the NR simulations that were
used. From these combined error sources we expect a bias
in the parameters that we estimate using this model, which
will be nontrivially combined with the errors due to the use
of the single-effective-spin approximation, which are the
biases we wish to measure in this study. The other error

FIG. 4 (color online). Matches between unequal-spin TaylorF2
frequency-domain PN-NR hybrids with the equal-spin (0.45,
0.45) hybrid.
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sources can be reduced in future phenomenological
models, while the bias due to the single-effective-spin
approximation will be inherent in all such models.

Despite these complications, we are able to draw a
number of important conclusions from our results, which
we discuss in this section.

The first point to emphasize is that, despite all of the
shortcomings outlined above, the IMRPhenomC model
achieves its main purpose as a search template family.
We show fully optimized mismatches with IMRPhenomC
in Fig. 5. All of them are below 1%. This confirms the
effectualness of IMRPhenomC in this region of the
parameter space, and the suitability of the model for
aligned-spin GW searches. Let us contrast these results
of IMRPhenomC with its predecessor IMRPheomB: Due
to its simpler PN part IMRPhenomB is only effectual for
masses> 20M� for the configurations considered here.

Biases of the total binary mass, as a function of the total
mass of the signal, are shown in Fig. 6. This figure illustrates
well the complications that were discussed above in our
comparisons with IMRPhenomC. The reference waveform
has spins (0.45, 0.45), and should be identical to the �IMR ¼
0:45 waveform in the model. The bias in the total mass for
this case is therefore most likely due to modeling artifacts in
IMRPhenomC. Ifwe are to assess the bias due only to the use
of the single-effective-spin approximation, then we must
look at the spread of the parameters away from the (solid)
(0.45, 0.45) line in the figure. We then see that the spread in
the total mass can be as high as�5% at low masses (due in
most part, once again, to the parametrization by�IMR instead
of �PN) and no more than �2% at intermediate masses.
At high masses the spread in the total mass is around 1%.

The bias in the chirp mass is shown in Fig. 7. For inspiral
signals, we expect to be able to measure the chirp mass
extremely accurately, because it is the leading-order PN
contribution; that is the motivation for the definition of the
chirp mass. And indeed the bias in the chip mass is below
0.1% for masses below 10M�. However, the chirp mass has
little significance during merger and ringdown, and the

chirp-mass bias increases for higher-mass binaries; the
fractional error in the chirp mass is comparable to (and
in some cases larger than) that in the total mass above
50M�. Note that the dips in the curves in the figure are due
to the use of a logarithmic scale; these are points where
�M=M changes sign.
The biases in mass ratio and the symmetric mass ratio

are shown in Fig. 8. Once again, to interpret these figures in
terms of the bias due to the single-effective-spin approxi-
mation, we should consider the spread of values around the
(0.45, 0.45) lines. We see for the mass ratio, the spread in
values is around 20% for high-mass systems. (At low
masses, the results are again exaggerated by the use of
the �IMR parameter.)
The biases in the spin parameter and the recovered spin

values themselves are shown in Fig. 9. At low masses it
makes sense to compare the results with the findings of
Sec. IV where we studied single-spin PN models. The PN
model using �IMR is the relevant one to compare with. The
biases are in general consistent between our PN and IMR
studies: very low in Mc, of similar magnitude in � and �.
The spread in the � biases is a little smaller, about 15% for

FIG. 5 (color online). Fully optimized mismatches between
IMRPhenomC and TaylorF2 PN-NR hybrids.

FIG. 6 (color online). Biases in the binary mass for
IMRPhenomC and TaylorF2 PN-NR hybrid waveforms.

FIG. 7 (color online). Biases in the chirp mass Mc for
IMRPhenomC and TaylorF2 PN-NR hybrid waveforms.
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the IMR results, as opposed to 25% for PN. The difference
in the PN and IMR confidence regions, even at low masses,
was also noted in Ref. [70], and will be studied further in
future work.

As in the PN study in Sec. IV, the spread in biases needs to
be put into context with the statistical uncertainty in the
parameter measurements. For comparison, Fig. 10 shows
the 90% confidence regions [see Eq. (2.7)] for a 50M�
binary and Table IV summarizes the biases at this mass.
While the extent of the confidence regions is much more
confined than was the case for the PN models, the regions
are still elongated in a diagonal direction in � and � and
illustrate the degeneracy between mass ratio and spin [51].
We see that the uncertainty in themasses is in general larger
than the spread in the parameter biases. For example, the
spread in � values at 50M� was�5%, while the statistical
uncertainty in the mass ratio at SNR 30 is �10% (see
Fig. 10). We can conclude, then, that the single-effective-
spin approximation does not adversely affect estimation of
the black-hole masses at likely advanced-detector SNRs.

The situation is quite different for the spin parameter.
At 50M�, the recovered spin parameter has a spread of
��IMR � 0:2, while the statistical uncertainty in �IMR

becomes comparable at SNR 10. For higher SNRs the
spread in the spin bias dominates.

We focus on the bias in �IMR in Table V. We concentrate
on the spread of the biases and therefore ignore the offset in
the average bias of the IMR configurations from the true
value, due to the model not being faithful in this region of
the parameter space. The spread of recovered parameter
values gives us an indication of the additional uncertainties

FIG. 8 (color online). Biases in the mass ratio and the sym-
metric mass ratio for IMRPhenomC and TaylorF2 PN-NR hybrid
waveforms.

FIG. 9 (color online). Biases in the effective-spin �IMR for
IMRPhenomC and TaylorF2 PN-NR hybrid waveforms (top)
and recovered effective-spin �IMR (bottom). At SNR 10 the
statistical uncertainty from the 90% confidence region for
masses 20, 50, 100M� is roughly 0.15, 0.2, and 0.4, respectively.

FIG. 10 (color online). 90% confidence regions at SNR ¼ 10,
20, 30 (black, blue, red areas) and 50M� for IMRPhenomC with
IMRPhenomC (� ¼ 0:16, � ¼ 0:45).
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introduced by the single-effective-spin approximation. We
find that the single-spin approximation is valid for �IMR to
SNR 10 for masses 7, 20, 50M� and up to SNR 20 for
M> 100M�. Results for IMRPhenomB lead to compa-
rable conclusions.

We have noted in Sec. VA that the waveform from the
ringdown of the final black holewill be characterized by the
final spin, and not by either �PN or �IMR. We illustrate this
point in Fig. 11, where we overlay the curves of constant
�PN ¼ 0:401575 and �IMR ¼ 0:45 on the contours of con-
stant final spin, which can be predicted by a number of

formulas in the literature [23,25,26,71,72]. The results of
the various final-spin formulas agree towithin a few percent
with our numerical results for the final spins (see Table I)
with the largest disagreement at the (�0:75, 0.75) configu-
ration. We see that configurations with the same value of
either spin parameter during inspiral can lead to a black hole
with awide range of final spins, depending on the individual
spins of the progenitor black holes. (In Table I we see that
final spins for our family of �IMR ¼ 0:45 numerical simu-
lations ranges from 0.68 up to 0.84.)
Finally, we verify that our results are not qualitatively

changed by errors in the numerical-relativity waveforms or
artifacts due to the choice of hybridization frequency.
Figure 12 compares the variation in biases caused by chang-
ing the resolution of the numerical waveform used to con-
struct the hybrid, while Fig. 13 shows the effect of changing
the hybridization frequency. Changing the NR resolution
only manifests itself at higher masses (both hybrids have
been constructed at comparable matching frequencies
M!� 0:07), whereas changing the hybrid parameter
affects predominantly low to medium masses. While this
is not an in-depth error analysis, it gives an indication of
how sensitive our results are to these two sources of errors
that we can control. It is clear from the figures that neither of
these error sources appears to be a serious issue in most
cases, but does warrant further study in the future.

TABLE IV. Fully optimized mismatches and biases between IMRPhenomC and IMR signals
(frequency domain TaylorF2 hybrids) along �IMR ¼ 0:45 computed using local minimization in
the center of the confidence region for 50M�.

Case ð�1; �2Þ Mismatch M �Mc=Mc [%] ��=� [%] ��=� [%] recovered �IMR

(�0:75, 0.75) 4
 10�3 �0:1 17.65 5.15 0.473

(�0:25, 0.625) 4
 10�3 �0:34 15.35 �6:67 0.42

(0.25,0.5) 4
 10�3 �0:88 17.51 �28:93 0.32

(0.45,0.45) 4
 10�3 �0:89 15.56 �32:07 0.306

(0.75,0.375) 5
 10�3 �1:06 17.83 �44:06 0.252

TABLE V. We compare the spread in the � biases for the
five hybrids with IMRPhenomC against the extent of the
IMRPhenomC confidence region in the � direction at SNR 10
and 20 for M ¼ 20, 50, 100M�. We also show at which SNR
these numbers become comparable.

Mass 20M� 50M� 100M�
Spread in � biases 0.11 0.22 0.2

Extent of CR in � SNR 10 0.16 0.22 0.41

Extent of CR in � SNR 20 0.07 0.1 0.2

Comparable SNR 13 10 20

FIG. 11 (color online). Contours of constant final spin af=Mf

compared to lines of � ¼ const as shown in Fig. 1.

FIG. 12 (color online). Biases for the (0.45, 0.45) configuration
using a numerical resolution of N ¼ 80 (solid line) vs N ¼ 64
(dashed line) grid points.
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VI. CONCLUSIONS

Several nonprecessing-binary waveform models make
use of the observation that the effects of the black-hole
spins on the inspiral rate can be approximated by a single
effective spin parameter, either �PN in the case of a
reduced-spin inspiral model [10], or �IMR for phenomeno-
logical inspiral-merger-ringdown models [9,14]. [The two
parameters are defined in Eqs. (2.1) and (2.2).] These
models were developed primarily for use in template banks
for gravitational-wave searches, but they have also been
used for parameter estimation [50]. We have investigated
the systematic bias in parameter measurement due to the
use of these single-effective-spin approximations.

Our primary goal has been to explore the parameter bias
from phenomenological waveform models, and for this
purpose we focused on a family of numerical-relativity
simulations of binaries with mass ratio 1:4, and all with
�IMR ¼ 0:45 (but with different values of individual spins).
Figure4 shows that the noise-weighted inner product (match)
between these waveforms is in general larger than 0.97 for
masses greater than 200M�, but the match degrades signifi-
cantly at lower masses. We note that if we had parametrized
these waveforms instead by a constant value of �PN, then
their matches would be much better at low masses, since we
know that the waveforms are partially degenerate in �PN in
the low-frequency (post-Newtonian) regime.

In assessing systematic parameter biases, we first con-
sider the inspiral regime, and study two related families of
post-Newtonian waveforms, one with �PN ¼ 0:45 and the
other �IMR ¼ 0:45 (again, with varying individual spins).
Here we find that, for signal-to-noise ratios below 50
(and we expect most observations in aLIGO and AdV to
be below 30), the statistical uncertainty in the measurement
of both the masses and the spin (�PN) is significantly
larger than the parameter bias incurred by using the
single-effective-spin-approximation model to estimate the
parameters. This result is discussed in detail in Sec. IV, and
summarized here in the upper panel of Fig. 14. Although

limited to only one point in the ð�;�PNÞ parameter space,
this result suggests that the reduced-spin inspiral model is
sufficiently accurate for parameter estimation from GW
observations in aLIGO and AdV.
We then consider the hybrid PN-NR inspiral-merger-

ringdown waveforms (with constant �IMR ¼ 0:45), and
compare them against the IMRPhenomC model. Our first
observation is that, while the IMRPhenomC model per-
forms well for detection purposes, with all fitting factors
>0:99 (see Fig. 5), artifacts in the construction of the
waveform model cause a significant systematic bias even
for the equal-spin waveform that should be reproduced
by the model with �IMR ¼ 0:45. This problem can be
removed in the future by producing a model calibrated
against NR waveforms across a larger volume of parameter
space, and such work is already underway. The bias we

FIG. 13 (color online). Biases for the (0.45, 0.45) configuration
using TaylorF2-hybrids with matching frequencies of M!m ¼
0:07 (solid line) vs M!m ¼ 0:08 (dashed line).

FIG. 14 (color online). These plots compare the systematic
biases in measuring the effective-spin parameter � and the
symmetric mass ratio � with the corresponding statistical un-
certainties in the case of the reduced-spin PN model (top) and
the phenomenological IMR model IMRPhenomC (bottom). In
each panel, the star corresponds to the actual value of parameters
(� ¼ 0:16, �PN ¼ 0:401575 in the top panel and � ¼ 0:16,
�IMR ¼ 0:45 in the bottom panel) while the other markers
correspond to the parameters of the best-fit single-spin model.
The ellipses correspond to the statistical uncertainty in measur-
ing the parameters (90% confidence region) at different SNRs. In
the bottom panel, the recovered parameter values have been
shifted so that they coincide with the true parameters for the
equal-spin configuration.
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observe at low masses (see Figs. 6, 8, and 9) is consistent
with our choice of �IMR as our single-effective-spin
parameter, and suggests that future phenomenological
models should be parametrized instead with �PN.

Our main observation from these results is that at inter-
mediatemasses (around 50M�) the spread in recovered spin
values is far larger than the statistical uncertainty in �IMR,
even at an SNR of 10, which is close to the detection
threshold. This can be seen in Figs. 9 and 10, and is
summarized here in the lower panel of Fig. 14, which shows
the deviation in the parameter measurement from the value
obtained for the reference �1 ¼ �2 ¼ 0:45 waveform.

The small parameter bias due to the single-effective-spin
approximation at low masses implies that the approxima-
tion holds well at these masses, and therefore that it will be
difficult to measure the component spins in low-mass bi-
naries. This is the unfortunate corollary of the validity of
the single-effective-spin approximation: GW searches can
be more efficient, but parameter estimation is less accurate.

Since we observe large parameter biases at intermediate
masses, this implies that in these cases we may be able to
measure the individual spins. It is quite likely that there is a
strong degeneracy between the two spins and the mass
ratio at all stages in the binary’s evolution, but if we
observe a waveform in which the early part (the inspiral)
is characterized by �PN, and the late part (the ringdown) is
characterized by the final spin, then it is likely that to
describe the full waveform we require knowledge of both
black-hole spins. If this is the case, then it follows that
accurate measurements of both spins may be possible. This
is an interesting topic for further work.

This study analyzes only the l ¼ 2, m ¼ �2 modes of
the gravitational wave signal. The amplitude of higher
order modes is sensitive to the mass ratio, and thus could
serve to break degeneracies between � and � in parameter
estimation. However, it should be borne in mind that at the
mass ratios that this model is calibrated at the higher modes
are all much weaker than the 22 mode, and at the low SNRs
considered here we do not expect our results to change
appreciably.

Do these results imply that we should construct
a two-spin nonprecessing model? Not necessarily.

A single-effective-spin model is sufficient for detection,
and, following detection, if the source is a black-hole binary
with total mass �50M�, then we could perform additional
simulations with varying individual black-hole spins, and
produce a localized model for parameter estimation pur-
poses. We note that although it is possible to produce
sufficient waveforms to cover the nonprecessing-binary
parameter space in time for the commissioning of aLIGO
and AdV, a higher priority may be to produce models that
approximately cover the full precessing-binary parameter
space, for which it would be more efficient to model the
spins parallel to the orbital angular momentum by only a
single parameter. This is the approach taken in [73].
Further work is needed to verify the spread of the

parameter biases in the spin in the IMR waveforms, using
updated phenomenological waveform models and studies
across a larger volume of the parameter space. In assessing
our ability to measure either an effective-single-spin
parameter, or both black-hole spins, we also need to quan-
tify the influence of harmonics beyond the dominant
(‘ ¼ 2, jmj ¼ 2) modes.
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