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In a general metric theory of gravitation in four dimensions, six polarizations of a gravitational wave

are allowed: two scalar and two vector modes, in addition to two tensor modes in general relativity.

Such additional polarization modes appear due to additional degrees of freedom in modified gravity

theories. Also, graviton mass, which could be different in each polarization, is another characteristic of

modification of gravity. Thus, testing the existence of additional polarization modes and graviton mass can

be a model-independent test of gravity theories. Here we extend the previous framework of correlation

analysis of a gravitational-wave background to the massive case and show that a ground-based detector

network can probe for massive stochastic gravitational waves with its mass around �10�14 eV. We also

show that more than three detectors can cleanly separate the mixture of polarization modes in detector

outputs and determine the graviton mass.
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I. INTRODUCTION

In a past decade, direct detection experiments of a
gravitational wave (GW) have been well developed. The
next-generation kilometer-scale laser-interferometric GW
detectors such as advanced LIGO (aLIGO) [1], advanced
VIRGO (aVIRGO) [2], and KAGRA [3] are under con-
struction and will start observation within the coming three
to five years, aiming at the first detection of a GW. The GW
observation not only brings us valuable information about
astronomy and cosmology but also allows us to test a
gravity theory.

If a gravity theory deviates from general relativity (GR),
GWs are also modified in (i) the GW waveform, mainly
phase evolution, (ii) the additional polarization modes, and
(iii) the graviton mass or propagation speed (for a review,
see Refs. [4–6]). The first one is associated with the dy-
namics of a compact binary. A gravity test in this direction
has been investigated by many authors (see Ref. [6] and
references therein). However, most works rely on the
matched filtering technique [7], which requires accurate
wave templates in a specific model of a gravity theory and
is a model-dependent method. Some exceptions are model-
independent studies focusing on deviation from GR
[8–13]. Secondly, additional polarization modes arise due
to extra degrees of freedom appearing in a modified gravity
theory. In GR, a GW has two tensor polarization modes
(plus and cross modes), while in a general metric theory of
gravitation, the GW is allowed to have at most six polar-
izations, including scalar and vector modes [14,15]. The
number of polarizations in various gravity theories has
been studied in Refs. [16–18], and the model-independent
test has been proposed in Refs. [19–22]. In the third one,

graviton mass changes the propagation speed of a GW.
Namely, the dispersion relation of a GW is modified, and a
GW undergoes a mass-dependent phase evolution during
its propagation. Constraint on graviton mass from the
observation of compact binary coalescences was originally
proposed in Ref. [23] and later forecasted with more
accurate GW waveforms including spin-orbit and spin-
spin couplings and spin precession effects [24,25]
(see also the recent paper [26] and references therein).
Also, mass constraint will be obtained from the observa-
tion of a gravitational-wave background (GWB) in a pulsar
timing array [27]. Since the polarization and massive
graviton tests do not demand one to know neither dynamics
of astronomical objects nor exact waveforms, we are able
to perform a model-independent test of gravity.
Here we consider a stochastic GWB, which is the

incoherent superposition of gravitational waves produced
by many unresolved astronomical sources or by inflation
and reheating in the early Universe. The sensitivity of a GW
detector pair to a GWB with scalar polarization has been
investigated in Refs. [28,29]. However, their studies
assumed the existence of a single polarization (scalar)
mode. Thus, it is not manifest how the mixing with other
polarization modes (tensor or vector) affects the detector
sensitivity to the scalar mode and the mode separability.
Previously, we studied the detection and separation of
scalar-, vector-, and tensor-polarization modes of a GWB
using a network of ground-based laser interferometers [19]
(with the pulsar timing array, see Ref. [30]). We found that
with the correlation signals obtained from more than three
detectors, the scalar, vector, and tensor modes of a GWB
can be cleanly separated and detected without degeneracy
between polarizations. The mode separation has been ex-
tensively studied in Ref. [20], varying the detector relative
distance and orientation and the number of detectors.*nishizawa@tap.scphys.kyoto-u.ac.jp
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Then we found the general conditions required for success-
ful mode separation and that a current network of ground-
based detectors was accidentally nearly optimal. However,
the previous studies assumed that the graviton was mass-
less. It is likely that the graviton has mass if gravity is
modified and a GW has an additional polarization mode. In
fact, the tensor graviton is massless, and the scalar graviton
is massive in fðRÞ gravity [31,32] and the scalar-tensor
theory [33]. In this paper, we further extend our previous
formalism to a massive GWB containing scalar, vector, and
tensor polarizations and investigate what range of graviton
mass is searched by ground-based detectors and how accu-
rately the graviton mass is determined.

The organization of this paper is as follows. In Sec. II,
we briefly review the formulation of a GWB with scalar,
vector, and tensor polarizations and extend it to the massive
case. We also mention current constraints on graviton
mass. In Sec. III, the cross-correlation analysis of a
GWB is extended to the massive case, focusing on how
the standard analysis method in the massless case is
altered. Sec. IV is the main part of this paper and describes
parameter estimation accuracy based on the Fisher
information matrix. In Sec. V, we discuss the parameter
estimation accuracy in a more practical situation, that is, in
a mixture of three polarization modes of a GWB. We
devote Sec. VI to the summary of this paper.

II. GW IN MODIFIED GRAVITY THEORIES

A. GW polarization modes

In general, a metric gravity theory in four dimensions
allows at most six polarization modes of a GW [14,34]. Let
us define a wave orthonormal coordinate that is constructed

by a unit vector �̂ directed to the propagation direction of a

GW and two unit vectors ê� and ê� orthogonal to �̂ and

each other. With these vectors, the polarization modes are
defined as

eþ � ê� � ê� � ê� � ê�; (1)

e� � ê� � ê� þ ê� � ê�; (2)

eb � ê� � ê� þ ê� � ê�; (3)

e‘ � ffiffiffi
2

p
�̂ � �̂; (4)

ex � ê� � �̂þ �̂ � ê�; (5)

ey � ê� � �̂þ �̂ � ê�; (6)

where the symbol � denotes a tensor product. Theþ-,�-,
b-, ‘-, x-, and y-polarization modes are called the plus,
cross, breathing, longitudinal, vector-x, and vector-y
modes, respectively. Each polarization mode is orthogonal

to one another and is normalized so that eAije
ij
A0 ¼ 2�AA0 , A,

A0 ¼ þ, �, b, ‘, x, y. According to rotation symmetry
about the propagation axis of a GW, the þ and � modes
are identified with tensor-type (spin-2) GWs, the x and y
modes are vector-type (spin-1) GWs, and the b and ‘
modes are scalar-type (spin-0) GWs. Note that the breath-
ing and longitudinal modes are not traceless, in contrast to
the ordinary plus- and cross-polarization modes in GR.
A GW with the six polarizations is expressed as

hijðt; ~X; �̂Þ ¼ X
A

hAðt; ~XÞeAijð�̂Þ; (7)

where A ¼ þ, �, b, ‘, x, y. The antenna pattern functions
for each polarization mode [19,35] are defined as

FAð�̂Þ � DijeAijð�̂Þ; D � 1

2
½û � û� v̂ � v̂�; (8)

where the unit vectors û and v̂ are along two arms
of a laser-interferometric detector, and D is a so-called
detector tensor, which describes the response of the laser-
interferometric detector to the polarization tensors. With
these antenna pattern functions, a GW signal from a
detector is written as

hðt; ~X; �̂Þ ¼ X
A

hAðt; ~XÞFAð�̂Þ: (9)

For the derivation and the explicit expressions of the
antenna pattern functions, see Ref. [19].

B. Massive gravitational waves

Another characteristic of a GW in modified gravity is
graviton mass. If graviton possesses the mass mg, its

dispersion relation is altered as

!2 ¼ m2
g þ k2;

where! is the angular frequency and k is the wave number.
Consequently, gravitons propagate with the group velocity
slower than the speed of light,

vgð!;mgÞ � d!

dk
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�m2

g

!2

s
;

and the arrival time of the GW from a point source at each
detector is delayed. On the other hand, the phase velocity is
faster than the speed of light:

vpð!;mgÞ � !

k
¼

0
@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�m2

g

!2

s 1
A�1

: (10)

Then the plane wave solution of a GW is modified as

eið!t� ~k� ~XÞ ¼ ei!½t��̂� ~X=vpð!;mgÞ�; (11)

replacing the speed of light c in GR with vp. One may

regard the change of the phase velocity from c as the
change of the effective detector distance from the origin,
~x=c ! ~x=vp. Since c < vp, the effective detector distance

for a massive GW is smaller.
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For a stochastic GW background, the modification of the
group velocity is not relevant, but the phase velocity plays
an important role. The stochastic GW signal observed at a
position ~x at time t is written as

hðt; ~XÞ ¼X
A

Z
S2
d�̂

Z 1

�1
df~hAðf;�̂Þe2�ifðt��̂� ~X=vpÞFAð�̂Þ;

(12)

where ~hAðf; �̂Þ is the Fourier transform of the GW
amplitude in each polarization mode and the frequency is
f ¼ !=ð2�Þ. The Fourier transform of Eq. (12) is given by

~hðf; ~xÞ ¼ X
A

Z
S2
d�̂~hAðf; �̂Þe�2�if�̂� ~X=vpFAð�̂Þ: (13)

Another consequence of the dispersion relation is the
existence of the lowest angular frequency of a GW:

!min ¼ mg � 6:58� 10�14

�
fg

100 Hz

�
eV; (14)

where fg is the frequency corresponding to mg. This is

because below the frequency! ¼ mg, the wave number in

the dispersion relation becomes imaginary and GWs
become unstable. The reason is also understood directly
from the definitions of graviton phase velocity in Eq. (10)
and the plane wave solution in Eq. (11). As a result, a GW
spectrum has a steep cutoff at the low-frequency side,
independent of how the GW is generated.

C. Stochastic GW spectrum

In this paper, we assume that a stochastic GWB is
(i) isotropic, (ii) independently polarized, (iii) stationary,
and (iv) Gaussian, as discussed in detail in Ref. [36]. In
this case, all the statistical properties of the GWB are
characterized by

h~h	Aðf; �̂Þ~hA0 ðf0; �̂0Þi
¼ �ðf� f0Þ 1

4�
�2ð�̂; �̂0Þ�AA0

1

2
SAh ðjfjÞ; (15)

where �2ð�̂; �̂0Þ � �ð���0Þ�ðcos �� cos �0Þ and h� � �i
denotes the ensemble average. SAh ðfÞ is the one-sided

power spectral density of each polarization mode.
Conventionally, the amplitude of GWB for each

polarization is characterized by an energy density per
logarithmic frequency bin normalized by the critical
energy density of the Universe:

�A
gwðfÞ � 1

�c

d�A
gwðfÞ

d ln f
; (16)

where �c ¼ 3H2
0=8�G and the Hubble constant is

H0 ¼ 100h0 km s�1 Mpc�1. �gwðfÞ is related to ShðfÞ
by [36,37]

�A
gwðfÞ ¼

�
2�2

3H2
0

�
f3SAh ðfÞ: (17)

Note that the above definition is different from that in the
literature [36,37] by a factor of 2 since it is defined for each
polarization.
We assume that the þ and � modes are not polarized

(the detectability of circular polarizations in the polarized
case has been discussed in Refs. [38–41]). We also assume
that the x and y modes are not polarized. In most of the
cosmological scenarios, these assumptions are valid. Then
the GWB energy density of the tensor, vector, and scalar
modes can be written as

�T
gw � �þ

gw þ��
gw ð�þ

gw ¼ ��
gwÞ; (18)

�V
gw � �x

gw þ�y
gw ð�x

gw ¼ �y
gwÞ; (19)

�S
gw � 1

3

�
1þ 2�

1þ �

�
ð�b

gw þ�‘
gwÞ; (20)

where the ratio of the energy density in the longitudinal
mode to that in the breathing mode is characterized by the
parameter � � �‘

gw=�
b
gw. However, we cannot determine

� with a GW observation because the antenna pattern

functions for both modes scale just by a factor of
ffiffiffi
2

p
and

are completely degenerated. If a model of gravity theory is
specified, � can be calculated theoretically and one can
know the energy densities in the breathing and longitudinal
modes from GW observation. Our definition of �S

gw is

just for simplification of the formulation below. One
should keep in mind that �S

gw does not exactly correspond

to the physical energy density in the scalar mode but differs
from the actual value up to a factor of 3, depending on the
ratio �.
In this paper, we adopt the following parametrization for

the spectral shape of a GWB:

�A
gwðfÞ ¼ �A

gw;0sðfÞ
�
f

f0

�
nAt
�½f� fAg �; (21)

where �½�� is a step function. The shape function sðfÞ
strongly depends on the concrete generation mechanism
of the GWB and the later expansion history of the
Universe. In the standard cosmology with massless tensor
gravitons, the GWB spectrum produced in slow-roll infla-
tion has a nearly flat spectrum [42]. On the contrary, in
massive gravity theory, a GWB spectrum from de Sitter
inflation has an extremely sharp peak at f ¼ fAg when

plotted as a function of frequency [43]. If detected, one
could determine graviton mass very accurately from the
peak frequency. However, its detectability strongly
depends on the frequency resolution of a detector.
According to the estimation with realistic observation
time in Ref. [43], the peak would be smoothed in the
frequency band of ground-based GW detectors, �100 Hz
and difficult to detect. Our purpose in this paper is not to
constrain a specific gravity theory but forecast the detect-
ability of graviton mass with a detector network as general
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as possible. For this reason, hereafter we assume sðfÞ ¼ 1
for simplicity. In this case, the unknown parameters are the
amplitude of the spectrum �A

gw;0, spectral index nAt , and

mass of a graviton mA
g or equivalently corresponding

frequency fAg of each polarization mode. Since three

polarization modes are in general independent of each
other, we have nine parameters in total.

D. Constraints on graviton mass

Currently, graviton mass has been constrained by several
observations of galaxies [44], the Solar System [45], and
binary pulsars [46] (for a summary, see Ref. [26] and
references therein). These limits are so tight that we can
set graviton mass to zero in searching for stochastic GWs
in the observational frequency band of ground-based
detectors around �100 Hz. In other words, there is no
low-frequency cutoff of a GW spectrum and no difference
from a massless case. However, the constraints from the
Galaxy and the Solar System have been obtained from the
observations in static gravitational fields and cannot be
applied directly to GWs, while only the mass limit from
binary pulsars comes from dynamical gravitational fields.
According to the work by Finn and Sutton [46], the limit on
the mass of gravitons is mg < 7:6� 10�20 eV. From

Eq. (14), this dynamical bound is far below the observa-
tional frequency of ground-based detectors. However, the
bound can be applied to a tensor mode and not to scalar and
vector modes. If there are scalar and vector degrees of
freedom in a GW sector and their masses are so light that
GWs are emitted by the binary pulsar, they would extract
additional energy from the binary pulsars and the orbit
decays faster than predicted in GR. The absence of such
an observation means that their possible mass has to be
large enough to suppress gravitational radiation if the addi-
tional modes exist. Therefore, graviton masses of scalar
and vector GWs could be large enough to be detected with
advanced detectors on Earth without contradicting with
current observations.

On the other hand, if the suppression mechanism of the
fifth force, such as the chameleon mechanism [47,48],
works in order to elude the observational constraint from
the Solar System [49], then scalar and vector gravitons
could be much more massive beyond the reach of ground-
based detectors in the high-density environment of matter.
Also, another suppression mechanism called the Vainshtein
mechanism [50,51] might conceal the deviation from GR.
Additional degrees of freedom in gravity would alter the
strength of gravity at cosmological scales and the growth of
large-scale structure. This quasistatic perturbative regime
of gravity has been tested with current cosmological ob-
servations and will be tested in the future with GWs [52,53].
However, no experiment has ever confirmed whether such
suppression mechanisms work well in the perturbative and
dynamical regime of gravity, particularly in GW itself.
Thus, it would be worth searching for graviton mass

experimentally with GW detectors in order to directly test
the suppression mechanisms of the fifth force.

III. CROSS-CORRELATION ANALYSIS

We focus on a stochastic GWB and discuss cross
correlation between a pair of detectors. To distinguish the
GWB signal from stochastic detector noise independent in
each detector, one has to correlate signals between two
detectors. The correlation analysis has been well developed
by several authors [36,54,55]. In this section, we will
extend the formulation to massive GWs with tensor, vector,
and scalar modes.

A. Formulation

Let us consider the outputs of a detector, sðtÞ ¼ hðtÞ þ
nðtÞ, where hðtÞ and nðtÞ are the GW signal and the noise of
a detector. We assume that the amplitude of the GWB is
much smaller than the detector noise. The cross-correlation
signal Y between two detectors is defined as

Y �
Z T=2

�T=2
dt

Z T=2

�T=2
dt0sIðtÞsJðt0ÞQðt� t0Þ; (22)

where sI and sJ are outputs from the Ith and Jth detectors
and T is the observation time. Qðt� t0Þ is a filter function,
which is later introduced so that the signal-to-noise ratio
(SNR) is maximized. In the absence of intrinsic noise
correlation between detectors, the ensemble average of
the correlation signal � � hYi has a contribution only
from GW signals. The derivation for massless GWs in a
tensor-polarization mode has been given in Ref. [36]. The
formulation has been extended to massless GWs with
tensor, vector, and scalar modes in Ref. [19]. Further
extension to massive gravitons with the three polarization
modes is straightforward since the difference is merely
replacing c in the massless case with vpðfÞ as in

Eq. (13). Tracing the standard procedure of the derivation,
we obtain the following form:

� ¼ 3H2
0

20�2
T
X
A

Z 1

�1
dfjfj�3�A

IJðfÞ�A
gwðfÞ ~QðfÞ: (23)

In the above equation, we defined the overlap reduction
functions

�T
IJðf;mT

g Þ � 5

2

Z
S2

d�̂

4�
ðFþ

I F
þ
J þ F�

I F
�
J Þ

� exp

�
i
2�f�̂ � � ~X

vpðf;mT
g Þ

�
; (24)

�V
IJðf;mV

g Þ � 5

2

Z
S2

d�̂

4�
ðFx

IF
x
J þ Fy

IF
y
JÞ

� exp

�
i
2�f�̂ �� ~X

vpðf;mV
g Þ

�
; (25)
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�S
IJðf;mS

gÞ � 15

1þ 2�

Z
S2

d�̂

4�
ðFb

I F
b
J þ �F‘

IF
‘
JÞ

� exp

�
i
2�f�̂ �� ~X

vpðf;mS
gÞ

�
; (26)

where � ~X � ~XI � ~XJ. The overlap reduction functions
represent how much the degree of correlation between
the detectors in the GW signal is preserved and are
normalized so that they give unity in the low-frequency
limit for a coaligned detector pair.

The variance of the correlation signal is calculated by
assuming that the noises in two detectors do not correlate at
all and that the magnitude of the GW signal is much
smaller than that of noise. Again following the standard
procedure in Ref. [36], we obtain the variance of the
correlation signal

	2 � hY2i � hYi2 � hY2i
¼ T

4

Z 1

�1
dfPIðjfjÞPJðjfjÞj ~QðfÞj2; (27)

where the one-sided power spectrum density of noise is
defined by

h~n	I ðfÞ~nIðf0Þi �
1

2
�ðf� f0ÞPIðjfjÞ:

Now we can determine the form of the optimal filter
~QðfÞ and derive the SNR formula. Equations (23) and (27)
are expressed more simply, using an inner product

ðA; BÞ �
Z 1

�1
dfA	ðfÞBðfÞPIðjfjÞPJðjfjÞ;

as

� ¼ 3H2
0

20�2
T

�
~Q;
X
A

�A
IJðjfjÞ�A

gwðjfjÞ
jfj3PIðjfjÞPJðjfjÞ

�
; (28)

	2 � T

4
ð ~Q; ~QÞ: (29)

From Eqs. (28) and (29), the SNR for GWB is defined as
SNR � �=	. Therefore, the optimal filter function and the
SNR turn out to be

SNR ¼ 3H2
0

10�2

ffiffiffiffi
T

p
2
4Z 1

�1
df

fPA �
A
IJðjfjÞ�A

gwðjfjÞg2
f6PIðjfjÞPJðjfjÞ

3
51=2

;

(30)

and

~QðfÞ ¼ K
X
A

�A
IJðfÞ�A

gwðjfjÞ
jfj3PIðjfjÞPJðjfjÞ

; (31)

with an arbitrary normalization factor K.

B. Overlap reduction function

The overlap reduction functions in Eqs. (24)–(26) can
be written in a more convenient form by performing the
angular integrals after expanding with tensorial bases.
These expressions are basically the same as those in the
massless case except for the replacement of c with vp.

However, we summarize the expressions here for their
later use.
We introduce the coordinate system on Earth shown

in Fig. 1. The relative location and orientation of the
two detectors are characterized by the three parameters

, 	1, 	2. The 
 is the separation angle between two
detectors measured from the center of Earth. The
angles 	1 and 	2, are the orientations of the bisector
of two arms of each detector measured in a counter-
clockwise manner relative to the great circle connect-
ing the two detectors. The distance between the two
detectors is

j�Xj ¼ 2RE sin



2
;

where RE is the radius of Earth and we use RE ¼
6371 km. Defining new parameters 	þ � ð	1 þ 	2Þ=2,
	� � ð	1 � 	2Þ=2, and

�ðfÞ � 2�fj� ~Xj
vpðf;mgÞ ; (32)

instead of frequency f, the overlap reduction functions
in Eqs. (24)–(26) can be reduced in this coordinate
system to
(i) tensor mode

�Tð�;
;	þ; 	�Þ ¼ �Tþð�;
Þ cos ð4	þÞ
þ�T�ð�;
Þ cos ð4	�Þ; (33)

FIG. 1 (color online). Coordinate system on Earth for a detec-
tor pair.
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�Tþð�;
Þ��
�
3

8
j0�45

56
j2þ169

896
j4

�

þ
�
1

2
j0�5

7
j2� 27

224
j4

�
cos


�
�
1

8
j0þ 5

56
j2þ 3

896
j4

�
cos2
; (34)

�T�ð�;
Þ �
�
j0 þ 5

7
j2 þ 3

112
j4

�
cos 4

�



2

�
; (35)

(ii) vector mode

�Vð�;
;	þ;	�Þ ¼�Vþð�;
Þcos ð4	þÞ
þ�V�ð�;
Þcos ð4	�Þ; (36)

�Vþð�;
Þ��
�
3

8
j0þ 45

112
j2�169

224
j4

�

þ
�
1

2
j0þ 5

14
j2þ27

56
j4

�
cos


�
�
1

8
j0� 5

112
j2� 3

224
j4

�
cos2
; (37)

FIG. 2 (color online). Overlap reduction functions for real-detector pairs on Earth. The frequency corresponding to graviton mass is
set to fg ¼ 40 Hz (mg � 2� 10�14 eV) (vertical solid line) for illustration. The characteristic frequency fc, which is relevant for a

massless overlap reduction function, is also shown (vertical dashed line). Each curve shows the tensor mode (red, solid), vector mode
(green, dotted), and scalar mode (blue, dashed). The overlap reduction functions for the massless graviton case are also shown with
monochromatic curves just for reference.
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�V�ð�;
Þ �
�
j0 � 5

14
j2 � 3

28
j4

�
cos 4

�



2

�
; (38)

(iii) scalar mode

�Sð�;
;	þ;	�Þ ¼�Sþð�;
Þcos ð4	þÞ
þ�S�ð�;
Þcos ð4	�Þ;

(39)

�Sþð�;
Þ � �
�
3

8
j0 þ 45

56
j2 þ 507

448
j4

�

þ
�
1

2
j0 þ 5

7
j2 � 81

112
j4

�
cos


�
�
1

8
j0 � 5

56
j2 þ 9

448
j4

�
cos 2
;

(40)

�S�ð�;
Þ �
�
j0 � 5

7
j2 þ 9

56
j4

�
cos 4

�



2

�
; (41)

where jnð�Þ is the spherical Bessel function with the
argument �.

We plot the overlap reduction functions in Fig. 2 for the
existing detector pairs on Earth, whose relative coordinates
ð
;	þ; 	�Þ are listed in Table I.

Let us begin with the explanation for the massless
case. The overlap reduction functions start to oscillate
and decay rapidly above the characteristic frequency
given by fc � c=ð2�j�XjÞ. At low frequencies, the
functions approach constant values, which are deter-
mined by the relative orientations of the detector
pair. The difference between the polarization modes
starts to appear at around the characteristic frequency.
Mathematically, this is because in Eqs. (34)–(41) the
coefficients of j0 in the overlap reduction functions are
exactly the same, while the coefficients of j2 and j4 are
different. To this end, at the low-frequency limit (j0 ! 1,
j2 ! 0, and j4 ! 0) all the overlap reduction functions
degenerate.

On the other hand, in the massive case, the overlap
reduction functions have a cutoff at the frequency fg, at

which the phase velocity diverges and � is zero. At the
intermediate frequencies f > fg, the detector distance

j� ~Xj in � is effectively reduced because j� ~Xj=c in the

massless case is replaced with j� ~Xj=vp in the massive

case. That is, the signal correlation between the detectors
becomes stronger than the massless case at a fixed
frequency. At high frequencies, as the phase velocity ap-
proaches the speed of light more and more, the overlap
reduction functions finally coincide with those in the mass-
less case. As a result, the overlap reduction functions have
frequency dependence as if they have shrunk in frequency,
particularly at low frequencies. Interestingly, in the mas-
sive case, the detectors are much more sensitive to a GWB
at slightly higher frequencies than fg, compared with the

massless case.

IV. SENSITIVITY TO GRAVITON MASS

A. Fisher matrix

To estimate the measurement accuracy of graviton mass
from the detection of a stochastic GWB, we use the Fisher
information matrix derived in Appendix A:

Fabð ~�Þ ¼ C0T
XNpair

i¼1

Z 1

0

�ab;iðf; ~�Þ
N iðfÞf6

df; (42)

C0 � 2

�
3H2

0

10�2

�
2
;

�ab;iðf; ~�Þ �
X
A;A0

½�A
i �

A0
i ð@a�A

gwÞð@b�A0
gwÞ

þ ð@a�A
i Þð@b�A0

i Þ�A
gw�

A0
gw

þ �A
i ð@b�A0

i Þ�A0
gwð@a�A

gwÞ
þ �A0

i ð@a�A
i Þ�A

gwð@b�A0
gwÞ�: (43)

Here, @a is the derivative with respect to �a, and the
product of the noise spectra of the Ith and Jth detectors
is N iðfÞ ¼ PIðfÞPJðfÞ, which is defined for the i ¼ IJ
detector pair. In our model of the GWB spectrum given in
Eq. (21), each polarization is independent, and we have in

total nine model parameters: ~� ¼ f�A
gw;0; n

A
t ; m

A
g g for A ¼

T; V; S. Note that the free parameters mA
g are included not

only in �A
gw but also in �A

i so that we have four terms in

Eq. (43). Given the numerically evaluated Fisher matrix,
the marginalized 1-	 error of a parameter��a is estimated
from the inverse Fisher matrix

��a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fF�1gaa

q
: (44)

It is well known that parameter estimation with the
Fisher matrix is valid only when the SNR is high
enough, e.g., * 10 [56,57]. For a low SNR, the parameter

TABLE I. Relative positions and orientations of detector pairs
on Earth (in units of degrees) and the separation between the two
detectors and the characteristic frequency of the overlap reduc-
tion function.

Detector pair 
 	þ 	� Separation (km) fc (Hz)

K–H 72.4 25.6 89.1 7:52� 103 6.3

K–L 99.2 68.1 42.4 9:71� 103 4.8

K–V 86.6 5.6 28.9 8:74� 103 5.4

H–L 27.2 62.2 45.3 3:00� 103 16

H–V 79.6 55.1 61.1 8:16� 103 5.7

L–V 76.8 83.1 26.7 7:91� 103 6.0
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estimation is too optimistic. Therefore, as explained
later, we require at least a SNR ¼ 10 to estimate the
measurement accuracy of the parameters.

Assuming that only a single polarization exists and
explicitly assigning the components of the Fisher matrix,
the above expression of Fab is much simplified. In the
presence of multiple polarization modes, adopting the
method proposed in Refs. [19,20], we can separate
the mixture of polarization signals and obtain the correla-
tion signal with a single polarization mode. Thus, in this
section we assume that only a single polarization is present
and omit the superscripts A and A0 in the expressions below
in this section. The parameter estimation in the presence of
multiple polarization modes will be discussed in a later
section. Depending on whether or not the Fisher matrix
contains the derivative with respect to mg, it is classified

into three cases:
(i) �a;b ¼ f�gw;0; ntg,
(ii) �a ¼ f�gw;0; ntg and �b ¼ mg,

(iii) �a;b ¼ mg.

For �a;b ¼ f�gw;0; ntg, since �i contains only the

parameter mg, only the first term in Eq. (43) remains:

Fab ¼ C0T
XNpair

i¼1

Z 1

0

�2
i ð@a�gwÞð@b�gwÞ

N iðfÞf6
df for

�a;b ¼ f�gw;0; ntg:
(45)

For �a ¼ f�gw;0; ntg and �b ¼ mg, the second and fourth

terms in Eq. (43) vanish,

�am;iðf; ~�Þ ¼ �2
i ð@a�gwÞð@m�gwÞ

þ �i�gwð@m�iÞð@a�gwÞ; (46)

where @m denotes the derivative with respect to mg.

Using

@m�gwðfÞ ¼ � 1

2�
�gw;0

�
f

f0

�
nt
�½f� fg�; (47)

and performing the frequency integral in Eq. (42), we
have

Fam ¼ C0T
XNpair

i¼1

�Z 1

0

�i�gwð@m�iÞð@a�gwÞ
N if

6
df

� 1

2�

�
�gw;0

�
f

f0

�
nt �2

i ð@a�gwÞ
N if

6

���������f¼fg

�
; for

�a ¼ f�gw;0; ntg and �b ¼ mg: (48)

For �a, �b ¼ mg, substituting Eq. (47) for Eq. (42) and

again performing the frequency integral give

Fmm ¼ C0T
XNpair

i¼1

�Z 1

0

ð@m�iÞ2�2
gw

N if
6

df

� 1

�

�
�2

gw;0

�
f

f0

�
2nt �ið@m�iÞ

N if
6

���������f¼fg

þ 1

4�2

�
�2

gw;0

�
f

f0

�
2nt �2

i

N if
6
�½f� fg�

���������f¼fg

�
:

(49)

In the third term of the above equation, �ð0Þ appears
since the delta function has a support exactly at f ¼ fg
and otherwise zero. However, in a real detector we
cannot exactly measure the frequency fg and then we

ignore the third term.
To compute the Fisher matrix, what we need is the

expressions for @a�gw and @m�i. From Eq. (21),

@�gwðfÞ
@�gw;0

¼
�
f

f0

�
nt
�½f� fg�; (50)

@�gwðfÞ
@nt

¼ �gwðfÞ log
�
f

f0

�
: (51)

As for @m�i, first let us write the overlap reduction
functions in Eqs. (33)–(41) in a compact form as

�Að�;
;	þ; 	�Þ
¼ �Aþð�;
Þ cos ð4	þÞ þ�A�ð�;
Þ cos ð4	�Þ; (52)

with

�Aþð�;
Þ ¼ aA0 ð
Þj0 þ aA2 ð
Þj2 þ aA4 ð
Þj4;
�A�ð�;
Þ ¼ bA0 ð
Þj0 þ bA2 ð
Þj2 þ bA4 ð
Þj4:

Differentiating Eq. (52) with respect to mA
g and using the

recursion relation of the spherical Bessel functions, we
have

@m�
A ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2
p � 1

q
!c

½ð@��AþÞ cos ð4	þÞ þ ð@��A�Þ
� cos ð4	�Þ�;

@��Aþ ¼
�
�a0 þ 2

5
a2

�
j1 þ

�
� 3

5
a2 þ 4

9
a4

�
j3 � 5

9
a4j5;

(53)

@��A� ¼
�
�b0 þ 2

5
b2

�
j1 þ

�
� 3

5
b2 þ 4

9
b4

�
j3 � 5

9
b4j5;

(54)

where the coefficients ai, bi (i ¼ 0, 2, 4) are functions
of 
 and different for each polarization mode, and
!c � c=j�Xj.
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B. Signal-to-noise ratio

The parameter estimation with the Fisher information
is valid in a high-SNR regime. If the SNR is low, e.g.,
SNR< 10, the measurement accuracy of the parameters
could be overestimated. To make the results derived with
the Fisher matrix reliable, we will first check the SNRs for
a stochastic GWB.

Using the SNR formula in Eq. (30), we evaluate the SNR

for each polarization mode with a detector pair, assuming

that only one polarization mode (tensor, vector, or scalar

mode) exists and a 3-yr observation time. As for the power

spectra of the detector noise PIðfÞ, we use for simplicity

that of aLIGO for all advanced detectors (K, H, L, V),

which is based on Ref. [58] and given by Ref. [41]

PðfÞ ¼

8>>>><
>>>>:

10�44
	

f
10 Hz


�4 þ 10�47:25
	

f
100 Hz


�1:7
Hz�1 for 10 Hz 
 f 
 240 Hz;

10�46
	

f
1000 Hz



3
Hz�1 for 240 Hz 
 f 
 3000 Hz;

1 otherwise:

The lower and higher cutoffs of the frequency integral are set to flow ¼ 10 Hz and fhigh ¼ 1 kHz.
For a detector network, ðSNRÞ2 is given by the squared sum of SNR of each detector pair,

ðSNRÞ2 ¼ XNpair

i¼1

ðSNRiÞ2;

FIG. 3 (color online). SNR and the parameter estimation accuracy as a function of a fiducial value of fg in Hz in the presence of a
single polarization mode. The fiducial values of the other parameters are h20�gw;0 ¼ 10�7 and nt ¼ 0. The top left is the SNR, the top

right is ��gw;0=�gw;0, the bottom left is �fg=fg, and the bottom right is �nt. The red, green, and blue curves are the tensor, vector,

and scalar modes, respectively.
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where Npair is the number of detector pairs. In Fig. 3, we
show the SNR of a detector network (K, H, L, V) for a
stochastic GWB of h20�

A
gw;0 ¼ 10�7 and nAt ¼ 0 as a func-

tion of graviton-mass frequency fAg . At low fg, since the
GWB spectrum is indistinguishable from the massless
case, the SNR coincides with that in the massless case.
As fg increases, the SNR gradually decreases due to the
low-frequency cutoff at f ¼ fg of the GWB spectrum. For
the fiducial parameters h20�

A
gw;0 ¼ 10�7 and nAt ¼ 0, if we

require SNR ¼ 10 for reliable detection, this implies that
massive GWB with fg less than�300 Hz is detectable. As
is clear from the SNR formula in Eq. (30), the SNR scales
linearly with �gw;0. For h20�

A
gw;0 ¼ 10�8, the SNR is

degraded but is detectable if fg & 150 Hz.

C. Sensitivity to graviton mass

We calculate the Fisher matrix with free parameters,
f�A

gw;0; n
A
t ; m

A
g g, A ¼ T, V, S, assuming that only a single

polarization mode exists (the superscript A is omitted
below). The parameter estimation accuracy with a detector
network is computed by adding the Fisher matrices of all
detector pairs. The pivot frequency f0 of the spectral index
nt is chosen as f0 ¼ 1 Hz, which is outside of the obser-
vation frequency band in order to avoid insensitivity to nt
at f ¼ f0. The fiducial parameters are set to h20�gw;0 ¼
10�7 and nt ¼ 0.

The results are shown in Fig. 3 as a function of the fiducial
values of fg. The measurement errors of �gw;0 and nt are

smaller at low fg and approach those in the massless case at

the limit of fg ! 0. This is because the contribution to the

Fisher matrix is an integrated quantity in frequency. As fg
increases, the measurement accuracies of �gw;0 and nt are

deteriorated. At fg slightly below the high-frequency cutoff

required by the SNR threshold 10, i.e., �200 Hz, the pa-
rameters �gw;0 and nt are still measurable. On the other

hand, for the measurement accuracy of mg or fg, the detec-

tor network is most sensitive to the value of fg around the

minimum of the detector noise curve,�100 Hz. This means
that the dominant contribution to the Fisher matrix comes
from the frequencies around f� fg. Interestingly, the pa-

rameter fg is well determined for all fg in the frequency

band of a ground-based detector.
From the above results, we conclude that graviton mass

is detectable for a massive GWB of h20�
A
gw;0 ¼ 10�7 and

nAt ¼ 0 if the graviton mass is in the range

6:6� 10�15 eV 
 mA
g 
 1:8� 10�13 eV;

for A ¼ T; V; S: (55)

When the amplitude of a GWB is different from h20�
A
gw;0 ¼

10�7, the Fisher matrix just scales with the square of the
amplitude. Thus, the measurement accuracy of fg in-

versely scales with the amplitude, namely, �fg=fg /
ð�gw;0Þ�1. We also have another criterion for mass

detection, SNR> 10, which guarantees reliable parameter
estimation based on the Fisher matrix. As seen in Fig. 3, the
SNR criterion is tighter in our calculation. Then, we obtain
the detectable parameter region of mg and �gw;0 when

nAt ¼ 0, which is shown in Fig. 4. Below the curves, the
GWB is not detected with a sufficient SNR and graviton
mass cannot be determined. The slight differences of
the detection threshold of graviton mass are due to the
small differences of the antenna pattern function of each
polarization mode.
One might wonder how the detectable parameter region

of graviton mass is changed if the fiducial value of nt
deviates from zero. Since our choice of the pivot frequency
of the GWB spectrum is f0 ¼ 1 Hz, the blue (red) tilt of
the spectrum just increases (decreases) the SNR more at
high frequencies. Then, positive (negative) nt expands
(reduces) the detectable parameter region of graviton
mass in Fig. 4.
Finally, we remark that we can set an upper limit

on graviton mass if a GWB is detected but the lower
frequency cutoff is not detected. In this case, the lower
frequency cutoff of the GWB spectrum is at least below
the frequency band of a detector. Therefore, we find the
mass limit fg < flow, where flow is the lower cutoff of the

detector noise curve and say,�10 Hz. In this case, the mass
limit will be mg < 6:6� 10�15 eV. For the tensor

mode, this mass constraint is much weaker than what was
obtained from the observation of binary pulsars,mg<7:6�
10�20 eV [46]. However, it is worthy to note that the bounds
on graviton mass are obtained from different observations of
GWs at completely different environments at binary pulsars
and on Earth, because it is possible to give gravitons larger
mass on Earth if an environment-dependent screening effect
such as the chameleon mechanism would occur.

FIG. 4 (color online). Detectable parameter region of mg and
�gw;0 when nAt ¼ 0. The red, green, and blue curves are the

detection thresholds for the tensor, vector, and scalar modes,
respectively. The region above the curves is detectable with a
detector network.
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V. MIXTURE OF POLARIZATION MODES AND
ITS SEPARABILITY

In the previous section, we computed the parameter
estimation accuracy of the GWB spectrum, particularly
focusing on the measurement accuracy of the graviton
mass, in the presence of a single polarization mode.
However, if there exist massive polarization modes due
to the modification of gravity theory, what we observe is
likely to be a mixture signal of different polarizations. For
example, if a gravity theory has an additional scalar degree
of freedom, a GWB would be composed of an ordinary
massless tensor mode and massive scalar mode. To this
end, in this section we investigate the parameter estimation
in the presence of a mixed GWB. We assume that a tensor
graviton is massless, mT

g ¼ 0 [59] since graviton mass in a

tensor mode has already been tightly constrained, as men-
tioned in Sec. II D. Also, for simplicity we consider the
case of flat GWB spectra, nAt ¼ 0, A ¼ T, V, S. With these
fiducial values, we estimate the measurement accuracy of
five parameters: �A

gw;0 (A ¼ T, V, S), mV
g , m

S
g.

To do so, we need extra terms of the Fisher matrix
arising from cross correlation between different polariza-
tion modes, in addition to the autocorrelation terms pro-
vided in Sec. IVA. The explicit forms of the elements of
the Fisher matrix are obtained in the same way as in
Sec. IVA and are given in Appendix B.

First, we study the effect of mass degeneracy. The fiducial
values of the spectral amplitude are set to h20�

A
gw;0 ¼ 10�7

for all polarization modes. The vector and scalar graviton
masses are set to different values. The result is shown in
Fig. 5.When the vector and scalar graviton masses are equal,
there is weak degeneracy of the parameters, which slightly
worsens the measurement accuracies of fVg and fSg. If the

vector graviton mass is set to fVg ¼ 40 Hz, the measurement

accuracy of fSg is improved because of the broken degener-

acy of the parameters and is almost the same as the one we
obtained in the previous section in the presence of a single
scalar polarization mode. This indicates that in general the
mixture of polarization signals can be well separated by
data-analysis procedures unless the parameters are degen-
erated. Such a method has been already proposed and
investigated in Refs. [19,20] in the case of the massless
GWB. The authors have shown that at least three correlation
signals allow one to separate three polarization modes,
without any degeneracy between polarizations in the case
of advanced ground-based detectors that we consider in this
paper, so the good separability of the polarization modes is
manifest even if the graviton has its mass.

Second, we investigate how different amplitudes be-
tween the polarization modes affect the measurement ac-
curacy of graviton mass. In Fig. 6, the result is shown. If a
GWB spectrum is the sum of the large tensor mode with
h20�

T
gw;0 ¼ 10�7 and small vector and scalar modes with

h20�
V;S
gw;0 ¼ 10�8, the measurement accuracies of fVg and fSg

just inversely scale with the power amplitude. Again, we
can conclude that the mixture of polarization signals can be
well separated by a data-analysis procedure even if the
GWB spectrum of each polarization mode has different
amplitude.

FIG. 5 (color online). Measurement accuracy of graviton mass
when all polarization signals are mixed and each mode has
different graviton mass. In the legend, fgVSeq V and fgVSeq
S are the measurement accuracies of fVg and fSg when both have

equal masses fg ¼ fVg ¼ fSg. While fgV40Sxx S is the measure-

ment accuracy of fSg when the vector graviton mass is fixed to

fVg ¼ 40 Hz and fg ¼ fSg. The dashed curve is the one we

obtained in the previous section in the presence of a scalar
polarization mode. In all cases, the fiducial amplitude is
h20�

A
gw;0 ¼ 10�7 for all polarization modes.

FIG. 6 (color online). Measurement accuracy of graviton mass
when all polarization signals are mixed and each mode has a
different GWB amplitude. Vector and scalar graviton masses are
set to fg ¼ fVg ¼ fSg. In the legend, 777 V and 777 S represent

the measurement accuracies of fVg and fSg when the fiducial

amplitude is h20�
A
gw;0 ¼ 10�7 for all polarization modes; 788 V

and 788 S are those when the fiducial amplitudes are h20�
T
gw;0 ¼

10�7 and h20�
V
gw;0 ¼ h20�

S
gw;0 ¼ 10�8.
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VI. CONCLUSIONS

We studied the search method for a massive stochastic
GWB, extending the ordinary method for massless gravi-
ton to that for massive graviton and allowing the tensor-,
vector-, and scalar-polarization modes of the GWB. If a
GWB is massive, the phase velocity, which is faster than
the speed of light, affects the cross-correlation statistics by
changing the effective distance between the detectors.
Also, there is a lower frequency cutoff on a GWB spectrum
that corresponds to graviton mass.

To investigate the detectability of graviton mass with
ground-based detectors, we used a generically parame-
trized model of a GWB spectrum and estimated the mea-
surement accuracies of the parameters with the Fisher
information matrix. As a result, we found that if a GWB
is detected at the level of h20�gw;0 ¼ 10�7, we could

determine the mass of graviton in the range of 7�
10�15 eV & mg & 2� 10�13 eV for each polarization

mode with ground-based detectors. We also showed that
even if the GWB signal is a mixture of three polarization
modes, we could safely separate them and determine the
mass of the graviton. Even if a GWB is detected but the
lower frequency cutoff is not detected, we can set an upper
limit on graviton mass, which is the lower cutoff of the
detector noise curve, say, �10 Hz or �7� 10�15 eV.

Finally, note that our method to search for graviton
mass can be a quite generic and model-independent test
of an alternative theory of gravity because we did not
assume any specific model of gravity theory in the recon-
struction of a GWB spectral shape. The constraints on the
polarization degrees of freedom, graviton mass, spectral
index, and spectral amplitude would help select out or
exclude some specific models of gravity. In this paper,
although we focused on ground-based detectors such as
aLIGO, aVIRGO, and KAGRA, it would be interesting to
consider the constraints obtained in the future with other
detectors such as ET [60], LISA [61], DECIGO [62], BBO
[63], and pulsar timing array [64], since different observa-
tional frequency bands correspond to different mass ranges
of a graviton. In particular, among GW detectors, LISA is
sensitive in the lowest frequency band as low as
�10�4 Hz, which is roughly 5–6 orders lower than the
frequency band of a ground-based detector. If a GWB is
detected by LISA but the low-frequency cutoff of the
spectrum is not detected, the graviton mass constraint for
the tensor mode would be comparable to the binary pulsar
constraint less than �10�20 eV.
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APPENDIX A: DERIVATION OF FISHER MATRIX

Here we will derive the Fisher matrix for estimating the
measurement accuracy of the parameters of a GWB. When
one correlates the detector signals in a frequency bin �f,
the estimated value of the correlation signal of the ith
detector pair (for Ith and Jth detector pair, i ¼ IJ) �̂iðfÞ
fluctuates around the true value, �iðf; ~�Þ, where ~� is a set
of estimated parameters. Assuming the width of a single
frequency bin that we analyze is much larger than the
frequency resolution of the data but small enough to ne-
glect the frequency dependence of physical quantity, a
likelihood function for �̂iðfÞ is expected to be a
Gaussian distribution, owing to the central limit theorem.
Then the multidimensional likelihood function for Npair

detector pairs is written as

L½f�̂iðfÞg� / exp

�
� XNpair

i¼1

f�̂iðfÞ ��iðf; ~�Þg2
2	2

i ðfÞ
�
: (A1)

Suppose that ~�ML are the maximum likelihood values
of the parameters and denote the small deviation from it

by � ~�. The likelihood function can be expanded around

its peak ~�ML and by neglecting the first derivative it
reduced to

L½f�̂iðfÞg� / exp

�
� XNpair

i¼1

X
a;b

@a�iðf; ~�Þ@b�iðf; ~�Þ
2	2

i ðfÞ
�
: (A2)

From this expression, the Fisher matrix reads

FabðfÞ ¼
XNpair

i¼1

@a�iðf; ~�Þ@b�iðf; ~�Þ
2	2

i ðfÞ
: (A3)

The correlation signal and noise variation are given in
Eqs. (23) and (27) as

�iðf; ~�Þ ¼ 3H2
0

10�2
Tf�3

X
A

�A
i ðf; ~�Þ�A

gwðf; ~�Þ�f; (A4)

	2ðfÞ ¼ T

2
N iðfÞ�f; (A5)

where we defined N iðfÞ � PIðfÞPJðfÞ. Note that these
quantities are defined in a positive frequency range, 0<
f <1, and a factor of 2 differs from Eqs. (23) and (27).
Substituting Eqs. (A4) and (A5) into Eq. (A3) and
integrating over frequency, we obtain

Fab ¼ XNpair

i¼1

2

�
3H2

0

10�2

�
2
T
Z 1

0

�abðf; ~�Þ
N iðfÞf6

df; (A6)
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�abðf; ~�Þ �
X
A;A0

½�A
i �

A0
i ð@a�A

gwÞð@b�A0
gwÞ

þ ð@a�A
i Þð@b�A0

i Þ�A
gw�

A0
gw

þ �A
i ð@b�A0

i Þ�A0
gwð@a�A

gwÞ
þ �A0

i ð@a�A
i Þ�A

gwð@b�A0
gwÞ�: (A7)

Here @a is the derivative with respect to �a.

APPENDIX B: CROSS-CORRELATED TERMS
OF FISHER MATRIX BETWEEN
DIFFERENT POLARIZATIONS

To calculate the measurement accuracy of graviton mass
for a mixture signal of GWBs in different polarization
modes, we need extra terms of the Fisher matrix arising
from cross correlation between different polarizations, in
addition to the autocorrelation terms provided in Sec. IVA.
Here we write down explicit forms of the cross-correlated
terms between different polarizations. The extra terms are
classified into three cases:

(i) �a ¼ �A
gw;0, �b ¼ �A0

gw;0, A � A0,
(ii) �a ¼ �A

gw;0, �b ¼ mA0
g , A � A0,

(iii) �a ¼ mA
g , �b ¼ mA0

g , A � A0.
Case (i) has the additional term

�AA0
��;iðf; ~�Þ ¼ �A

i �
A0
i ð@a�A

gwÞð@b�A0
gwÞ

¼ �A
i �

A0
i �½f� fAg ��½f� fA

0
g �

¼ �A
i �

A0
i �½f�max ðfAg ; fA0

g Þ�: (B1)

The frequency integral in Eq. (42) is performed above the

frequency max ðfAg ; fA0
g Þ. We have

FAA0
�� ¼ C0T

XNpair

i¼1

Z 1

max ðfAg ;fA0g Þ
�A
i �

A0
i

N iðfÞf6
df: (B2)

Case (ii) has the additional term

�AA0
�m;iðf; ~�Þ ¼ � 1

2�
�A0

gw;0�
A
i �

A0
i �½f� fAg ��½f� fA

0
g �

þ �A
i �

A0
gw;0ð@m�A0

i Þ�½f� fAg �: (B3)

After the frequency integration, we have

FAA0
�m ¼ C0T

XNpair

i¼1

�Z 1

fAg

�A
i �

A0
gwð@m�A0

i Þ
N if

6
df

��A0
gw;0

2�

�
�A
i �

A0
i

N if
6

���������f¼fA
0

g

�½fA0
g � fAg �

�
: (B4)

Case (iii) has the additional term

FAA0
mm ¼ C0T�

A
gw�

A0
gw

XNpair

i¼1

�Z 1

max ðfAg ;fA0g Þ
ð@m�A

i Þð@m�A0
i Þ

N if
6

df

� 1

2�

�
�A
i ð@m�A0

i Þ
N if

6

���������f¼fAg

�½fAg � fA
0

g �

� 1

2�

�ð@m�A
i Þ�A0

i

N if
6

���������f¼fA
0

g

�½fA0
g � fAg �

�
: (B5)
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