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I. INTRODUCTION

The question of the integrability of the test particle
motion in the Zipoy-Voorhees metric has recently
attracted some attention, with both numerical [1,2] and
analytical investigations [3]. The authors of Ref. [3] were
able to exclude the existence of some polynomial first
integrals, but they argue that some weaker form of inte-
grability might take place taking into account the results
of Ref. [1]. On the other hand, the results of Ref. [2]
indicate chaotic behavior of the system, but the region
where that happens is very small when compared to the
phase space dominated by invariant tori, and the inte-
gration was performed with the Runge-Kutta (R-K)
method of the fifth order only. Since it is known [4,5]
that integrable systems can exhibit numerical chaos
(particularly for the R-K method), the results of
Ref. [2] should be taken cautiously. Our own numerical
integration produced a Poincaré section visibly shifted
from the one in Ref. [2] (see the end of Sec. IV), and
since we used a more accurate method, it poses the
question of whether the picture would be further
deformed as the precision was increased. In other words,
to decide on the integrability of the problem, a rigorous
mathematical analysis is required rather than numerical
simulations.

The physical problem and its significance are the same
as in the classical paper by Carter [6]—that the existence of
an additional first integral in the Kerr space-time makes the
problem completely integrable. Carter’s integral is not
generated by a Killing vector, so it is not a usual symmetry
of the manifold, but it is quadratic in momenta, which
has important consequences. Such integrals translate into
the separability of the Hamilton-Jacobi equation and
d’Alembertian [7], which in turn appears in the
Teukolsky [8] equation. That is to say, both the classical

problem of particle motion in this space-time and the linear
perturbation equations governing the gravitational waves
and potentially quantum equations in that background
become considerably easier to solve. This fact is also
used in numerical approaches, when trying to determine
possible spectra of gravitational radiation in anticipation of
the observed data [9].
It is then natural to analyze other space-times which

could serve as models of compact objects, and the sta-
tionary axisymmetric ones are one direction to explore.
However, despite some numerical evidence [1], we find
that the particular Zipoy-Voorhees metric with the parame-
ter � ¼ 2 is not integrable. To be more precise, we consider
the motion of a test particle as a Hamiltonian system with n
degrees of freedom and ask for the existence of an addi-
tional constant of motion In that would yield Liouvillian
integrability with respect to the canonical Poisson bracket
f�; �g. That is, for all first integrals Ik we would have
fIk; Ilg ¼ 0, where the Hamiltonian is included as H ¼
I1, and I2; . . . ; In�1 are also already known. It turns out
that no such first integral can be found in the class of
meromorphic functions, and we will use the differential
Galois theory to prove that. Recall that a function is called
meromorphic when its singularities (if it has any) are just
poles, so by allowing first integrals that are potentially
singular at some points of the phase space we are consid-
ering a fairly wide class of functions.
The reason for using this particular theory is that it gives

the strongest known necessary conditions for the integra-
bility of dynamical systems. It was used for proving the
nonintegrability of the hardest problems of classical
mechanics, like the three-body problem [10,11], which
had been open for centuries. For an accessible overview
of applications, see Ref. [12].

II. FORMULATION OF THE PROBLEM

The Zipoy-Voorhees metric under consideration is
given by
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ds2 ¼ �
�
x� 1

xþ 1

�
2
dt2 þ ðxþ 1Þ3ð1� y2Þ

x� 1
d�2

þ ðx2 � 1Þ2ðxþ 1Þ4
ðx2 � y2Þ3

�
dx2

x2 � 1
þ dy2

1� y2

�
; (1)

where x, y and � form the prolate spheroidal coordinates.
Instead of working directly with the geodesic equations,
we take the Hamiltonian approach with

H ¼ 1

2
g��p�p�

¼� ðxþ 1Þ2
2ðx� 1Þ2p

2
0 þ

ðx2 � y2Þ3
2ðx� 1Þðxþ 1Þ5p

2
1

þ ðx2 � y2Þ3ð1� y2Þ
2ðx� 1Þ2ðxþ 1Þ6 p

2
2 þ

x� 1

2ðxþ 1Þ3ð1� y2Þp
2
3; (2)

where the canonical coordinates are

q0 ¼ t; q1 ¼ x; q2 ¼ y; q3 ¼ �: (3)

The equations then read

8<
:

dqi
d� ¼ @H

@pi
;

dpi

d� ¼ � @H
@qi

;
(4)

with i ¼ 0, 1, 2, 3, and the normalization of four-velocities
gives the value of the (conserved) Hamiltonian to be
H ¼ � 1

2�
2. The new time parameter is the rescaled

proper time �� ¼ s, which allows us to include the zero
geodesics for photons without introducing another affine
parameter but with simply � ¼ 0.

Since the metric has two Killing vector fields @t and @�,

the two momenta p0 and p3 are conserved. Together with
the Hamiltonian they provide three first integrals. The
question then is whether there exists one more first integral
that would make the system Liouville integrable. To
answer this question, we employ the differential Galois
approach to integrability. More specifically, we use the
main theorem of the Morales-Ramis theory [13].

Theorem 1.—If a complex Hamiltonian system is
completely integrable with meromorphic first integrals,
then the identity component of the differential Galois
group of the variational and the normal variational equa-
tions along any nonconstant particular solution of this
system is Abelian.

III. THEORETICAL SETTING

Let us try to explain the involved mathematics some-
what. For detailed exposition of the differential Galois
theory, the reader is referred to Refs. [14,15]. The
Morales-Ramis theory is exposed in Refs. [13,16], and a
short introduction with application to another relativistic
system can be found in Ref. [17].

To describe the differential Galois approach to the inte-
grability, we consider a general system of differential
equations

du

d�
¼ fðuÞ; u ¼ ðu1; . . . ; umÞ: (5)

We assume that the right-hand sides

fðuÞ ¼ ðf1ðuÞ; . . . ; fmðuÞÞ;
are meromorphic in the considered domain. Let ’ð�Þ be a
nonequilibrium solution of this system. Then the varia-
tional equations (VEs) along this solution have the form

d�

d�
¼ Að�Þ�; Að�Þ ¼ @f

@u
ð’ð�ÞÞ: (6)

It is not difficult to prove that if the original system has an
analytic first integral IðuÞ, then the variational equations
have a time-dependent first integral I�ð�; �Þ which is
polynomial in �. Similarly, one can show that if IðuÞ is
a meromorphic first integral, then the variational
equations (6) have a first integral I�ð�; �Þ which is rational
in �. The Ziglin lemma (see p. 64 in Ref. [16]) says that if
the system in Eq. (5) has 1 � k < m functionally indepen-
dent first integrals IjðuÞ, j ¼ 1; . . . ; k, then the variational

equations in Eq. (6) have the same number of functionally
independent first integrals Ij

�ð�; �Þ which are rational

functions of �.
In the considered theory, time is assumed to be a com-

plex variable, and for complex � 2 C, the solution ’ð�Þ
can have singularities. Assume that �0 2 C is not a singu-
lar point of ’ð�Þ. Then in a neighborhood of �0 there
exist m linearly independent solutions of the variational
equations (6). They are the columns of the fundamental
matrix �ð�Þ of the system [Eq. (6)]. This matrix can be
analytically continued along an arbitrary path � on the
complex plane avoiding the singularities of the solution
’ð�Þ. Assume that� is such a closed path, or loop, with the

base point �0. Let �̂ð�Þ be a continuation of �ð�Þ.
Solutions of a system of n linear equations form a linear
n-dimensional space. Thus, in a neighborhood of �0, each

column of �̂ð�Þ is a linear combination of columns of

�ð�Þ. We can write this fact in the form �̂ð�Þ ¼
�ð�ÞM�, where M� is a complex nonsingular matrix,
i.e., M� 2 GLðm;CÞ. In fact, the matrix M� depends
only on the homotopy class ½�� of the loop. Taking all
loops with the base point �0, we obtain a group of matrices
M � GLðm;CÞ which is called the monodromy group
of Eq. (6).
One can show that if I�ð�; �Þ is a first integral of Eq. (6),

then I�ð�; �Þ ¼ I�ð�;M�Þ for an arbitrary M 2 M, and
for an arbitrary � from a neighborhood of �0. In other
words, if the original system has a meromorphic first
integral, then the monodromy group has a rational invari-
ant. Hence, if the system possesses a big number of first
integrals, then the monodromy group of variational
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equations cannot be too big because it has a large number
of independent rational invariants. This observation can be
transformed into an effective tool if we restrict our atten-
tion to Hamiltonian systems and the integrability in the
Liouville sense (complete integrability). The above facts
are the basic ideas of the elegant Ziglin theory [18,19]. The
problem in applying this theory is that the monodromy
group is known for a very limited number of equations.

At the end of the previous century, the Ziglin theory
found a nice generalization. It was developed by Baider,
Churchill, Morales, Ramis, Rod, Simó, and Singer; see
Refs. [13,16,20] and references therein. In the context of
Hamiltonian systems it is called the Morales-Ramis theory,
and in some sense, it is an algebraic version of the Ziglin
theory. It formulates the necessary conditions for the inte-
grability in terms of the differential Galois group G �
GLðm;CÞ of the variational equations. It is known that it
is a linear algebraic group and that it contains the the
monodromy group. By definition, it is a subgroup of
GLðm;CÞ which preserves all polynomial relations be-
tween solutions of the considered system, see Ref. [21];
and for a wide class of equations it is generated byM. The
differential Galois group can serve for a study of integra-
bility problems on the same footing as the monodromy
group. Namely, first integrals of Eq. (6) give rational
invariants of G.

If the considered linear system is Hamiltonian, then
necessarily m ¼ 2n, and groups M and G are subgroups
of the symplectic group Spð2n;CÞ. It can also be shown
that the differential Galois group G is a Lie group.
If the system is completely integrable with n meromorphic
first integrals, then G has n commuting rational invariants.
The key lemma (see p. 72 in Ref. [16]) states that if the
above is the case, then the Lie algebra of G is Abelian.
This means exactly that the identity component of G is
Abelian.

Determination of the differential Galois group is a
difficult task. Fortunately, in the context of integrability,
we need to know only if its identity component is Abelian.
If it is not Abelian, then the system is nonintegrable. If we
find that a subsystem of the VEs has a non-Abelian identity
component of the differential Galois group, then conclu-
sions are the same. This is why, in practice, we always try
to distinguish a subsystem of the VEs. It is easy to notice
that c ðtÞ ¼ fð’ðtÞÞ is a solution of Eq. (6). Using it, we
can reduce the dimension of the VEs by 1. If the system
[Eq. (5)] is Hamiltonian, then first we restrict it to the
energy level of the particular solution. In effect, in
Hamiltonian context we can easily distinguish a subsystem
of variational equations of dimension 2ðn� 1Þ, which are
called the normal variational equations (NVEs).

The difficulty of investigation of the differential Galois
group of NVEs depends, among other things, on the form
of its matrix of coefficients, and so also on the functional
form of particular solution. Quite often, by an introduction

of a new independent variable z ¼ zð�Þ we can transform
the NVEs to a system with rational coefficients

d

dz
� ¼ BðzÞ� BðzÞ ¼ ½bi;jðzÞ�; bi;jðzÞ 2 CðzÞ:

(7)

The set of rational functionsCðzÞ is a field, and equipped
with the usual differentiation it becomes a differential field.
Solutions of a system with rational coefficients are typi-
cally not rational. The smallest differential field containing
all solutions of Eq. (7) is called the Picard-Vessiot exten-
sion ofCðzÞ. The differential Galois groupG of Eq. (7) tells
us how complicated its solutions are, i.e., if the equations
are solvable. Here solvability means that all solutions
can be obtained from a rational function by a finite number
of integrations, exponentiation and algebraic operations
[14]. This category of functions, called Liouvillian, in-
cludes all elementary functions, as well as some transcen-
dental, such as the logarithm or elliptic integrals, and is
commonly referred to as the ‘‘closed-form’’ or ‘‘explicit’’
solutions. The following classical result connects the group
structure of G with the form of the solutions.
Theorem 2.— System (7) is solvable, i.e., all its solutions

are Liouvillian, if and only if the the identity component of
its differential Galois group is solvable.
The connection of this theorem with integrability is the

following. If it is possible to show that either the NVEs, or
a subsystem of the NVEs are not solvable, then the identity
component of their differential Galois group is not
solvable, and so, in particular it is not Abelian. Thus, by
Theorem 1, the system is not integrable. The question of
whether a given system with rational coefficients is
solvable can be resolved completely for a system of two
equations (or one equation of second order). In this case
there is an effective algorithm by Kovacic for finding the
Liouvillian solutions [22]. This algorithm gives a definite
answer, and if Liouvillian solutions exist it provides their
analytical form. There exist a similar, almost complete
algorithm for systems of three equations and some partial
results for systems of four equations.

IV. PROOF OF NONINTEGRABILITY

The plan of attack is thus to look for particular solutions
for which the NVE system has a block structure so that a
two-dimensional subsystem can be separated. We then
rewrite it as a second-order linear differential equation
with rational coefficients and apply the Kovacic algorithm
to see if it has any Liouvillian solutions. Note that the
system has no external parameters, and only the values of
particular first integrals enter as internal parameters. They
are synonymous with initial conditions, so that if we
manage to find just one solution, for particular values of
�, p0 and p3, such that the respective NVE is unsolvable,
we will have proven that there cannot exist another first
integral over the whole phase space.
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It might so happen, unlike in the Carter case, that the
system exhibits some particular invariant set on which
there exists an additional integral. For example, one could
have _I4 ¼ H, which would mean that I4 is conserved on the
zero-energy hypersurface � ¼ 0, which is clearly a physi-
cally distinguished case. We will then have to look for
particular solutions on those sets to make the results even
more restrictive than just the lack of a global first integral.

The obvious particular solution to look at is a particle
moving along a straight line, through the center in the
equatorial plane, which in prolate coordinates means
y ¼ 0 and p3 ¼ 0. The nontrivial equations then read

dt

d�
¼ �ðxþ 1Þ2p0

ðx� 1Þ2 ;
dx

d�
¼ p1x

6

ðx� 1Þðxþ 1Þ5 ;
dp1

d�
¼ p2

1

x5ð3� 2xÞ
ðxþ 1Þ6ðx� 1Þ2 � p2

0

2ðxþ 1Þ
ðx� 1Þ3 :

(8)

Or, upon rescaling time by

d� ¼ ðx� 1Þ2ðxþ 1Þ3
x3

du; (9)

we have

_x¼ p1x
3ðx� 1Þ

ðxþ 1Þ2 ; _p1 ¼ p2
1

x2ð3� 2xÞ
ðxþ 1Þ3 � p2

0

2ðxþ 1Þ4
x3ðx� 1Þ ;

(10)

where the dot denotes differentiation with respect to u, and
we have omitted the first equation, as the other two do not
depend on t. This two-dimensional subsystem defines
the particular solution around which we will construct
the NVEs as mentioned before. The conservation of the
Hamiltonian now reads

� 1

2
�2 ¼ �p2

0ðxþ 1Þ8 þ p2
1x

6ð1� x2Þ
2ðx� 1Þ2ðxþ 1Þ6 ; (11)

which together with the equation for _x yields

_x2 ¼ ðx2 � 1Þðp2
0ðxþ 1Þ2 ��2ðx� 1Þ2Þ; (12)

so that xðuÞ is expressible by the Jacobi elliptic functions.
This fact is important, as we will change the independent
variable from u to x, which is permissible (does not
change the identity component of the Galois group) only
if the function xðuÞ defines a finite cover of the complex
plane [15].

The variational equations along this solution separate so
that the NVEs read

_�1 ¼ x3

ð1þ xÞ3 �2; _�2 ¼ 3p2
1

xðx� 1Þ
ðxþ 1Þ2 �1; (13)

where the variations � correspond to the perturbations of
variables y and p2. This is another step of the reduction
mentioned in the previous section—the particular solution

only has x and p1 components, and the NVEs only have
components in the orthogonal directions of y and p2.
Introducing a new dependent variable

� ¼ p1=2
0 x5=2ðx� 1Þ1=4

ðxþ 1Þ5=4ðp2
0ðxþ 1Þ2 ��2ðx� 1Þ2Þ1=4 �2; (14)

and taking x as the new independent variable, the NVEs
can be brought to the standard form of

�00ðxÞ ¼ rðxÞ�ðxÞ; (15)

with the rational coefficient r

rðxÞ :¼ RðxÞ
4x2ðx2 � 1Þ2ðp2

0ðxþ 1Þ2 ��2ðx� 1Þ2Þ2 ; (16)

where R is the following polynomial:

RðxÞ ¼ p4
0ð34x2 � 40xþ 3Þðxþ 1Þ4

� 6p2
0�

2ð6x2 � 10xþ 1Þðx2 � 1Þ2
þ�4ð22x2 � 20xþ 3Þðx� 1Þ4: (17)

Since for all physical particles we have p0 � 0, all the
others parameters can be rescaled by it:

� ! �=p0; p3 ! p3=p0; (18)

which we use in what follows.
As is customary, we will use the same notation as in

Kovacic’s paper, adhering exactly to the steps and cases of
the algorithm [22]. We note that a linear equation like
Eq. (15) has local solutions in some neighborhood of a
singularity x? of rðxÞ, which take the form

� ¼ ðx� x?Þ�gðx� x?Þ; (19)

where g is analytic at zero, gð0Þ � 0, and � is called the
characteristic exponent. The algorithm checks if it is pos-
sible to construct a global solution, which, in the simplest
case, is of the form

� ¼ Pe
R

!dx (20)

for a polynomial PðxÞ and rational !ðxÞ. The degree of
P is then linked with the exponents, and that provides
preliminary restrictions on the parameters’ values and
integrability.
The application of the algorithm itself is straightfor-

ward, and the only complication is that the singularities
and exponents might depend on parameters. Fortunately,
there are only several special values of� that influence the
outcome, and we outline the general steps in the two
subsections below. For details, the reader is referred to
Ref. [22], and another version of the algorithm, as applied
to the dynamical system of the Bianchi VIII cosmology,
can be found in Ref. [23].
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A. General rðxÞ
The poles of rðxÞ are

�
�1; 0; 1;

�� 1

�þ 1
;
�þ 1

�� 1

�
; (21)

and for all of them to be different we must have �2 � 1
and � � 0. All are of order 2, and the order at infinity is 4,
so that we need to check all the cases of the algorithm.

In case 1, the characteristic exponents ��
c of Eq. (15)

form the following set:

�
ð0; 1Þ;

�
9

4
;� 5

4

�
;

�
3

2
;� 1

2

�
;

�
3

4
;
1

4

�
;

�
5

4
;� 1

4

�
;

�
5

4
;� 1

4

��
;

(22)

where the first pair corresponds to1, and the combinations

d ¼ ��1 �X
c;s

�s
c (23)

give only nine non-negative integers (not all distinct) as
possible degrees of the appropriate polynomial P, which
enters into the solution of Eq. (15). However, the respective
test solutions of the form as in Eq. (20) require that� ¼ 0,
and have to be discarded so that this case cannot hold.

In case 2, the families of exponents Ec are

fð0;2;4Þ; ð9;2;�5Þ; ð6;2;�2Þ; ð3;2;1Þ; ð5;2;�1Þ; ð5;2;�1Þg;
(24)

which in turn give 131 possible integer degrees for the
appropriate polynomial. Checking them one by one, we
find that they require � ¼ �1 in order to form a solution,
so that this case can be discarded as well under the current
assumptions.

In case 3, the families Ec contain 6� 13 ¼ 78 numbers,
which make 4,826,809 combinations for d, out of which
230,856 are non-negative integers. We thus first resort to
checking for the presence of logarithms in the solutions,
which would prevent this case [15].

The only poles with integer difference in the exponents
are 0 and 1. Using the Frobenius method [24], we get the
two independent solutions around zero

v1 ¼ x3=2
�
1þ 5ð�2 � 2Þ

3ð1��2Þxþ
23�4 � 38�2 þ 65

12ð1��2Þ2 x2 þ�� �
�
;

v2 ¼ x�1=2

�
1

9
ð�2 � 1Þþ 5

9
ð�2 � 2Þxþ�� �

�

þð5��2Þ ln ðxÞv1: (25)

As can be seen, the logarithm is present when�2 � 5, and
since the solutions around1 do not have logarithms at all,
the only possibility for case 3 left here is with �2 ¼ 5.

B. Special subcases

In order to exclude the special energy hypersurfaces
� ¼ 0, �2 ¼ 1 and �2 ¼ 5, we have to resort to a more
general particular solution, namely one with p3 � 0. As
already mentioned, it is enough to find one solution for
each such surface, and that means we can take a specific
value of p3. The corresponding NVEs will only have
numeric coefficients, and checking for their Liouvillian
solutions is much easier, for it suffices to use one
of available implemented routines, for example the
‘‘kovacicsols’’ of the symbolic system MAPLE.
The solution will also be expressible by (hyper)elliptic

function as defined by the Hamiltonian constraint

_x2 ¼ ðx� 1Þðxþ 1Þ5 � ðx� 1Þ4p2
3 � ðx2 � 1Þ3 ��2

ðxþ 1Þ2 ;

(26)

and the counterparts of the NVEs given in Eq. (13)
will read

_�1 ¼ x3

ð1þ xÞ3�2; _�2 ¼ ðx� 1Þð3p2
1x

4�ðx2� 1Þ2p2
3Þ

x3ðxþ 1Þ2 �1:

(27)

We then proceed exactly as above, taking x as the inde-
pendent variable and reducing the system to one equation
of the form �00

2 ¼ r�2. For each hypersurface in question,
the value of p3 ¼ 1 leads to NVEs that are not solvable
with Liouvillian functions. This finishes the proof for all
possible levels of the Hamiltonian.
To further illustrate the complexity of this system, we

have also obtained a Poincaré section for the cross plane
y ¼ 0, shown in Fig. 1. The numerical integrator was based
on the Bulirsch-Stoer modified midpoint scheme with
Richardson extrapolation. We note that the special solution
defined by Eq. (12) lies entirely in the plane y ¼ 0 and is a
trajectory beginning and ending at the singularity, so it
does not contribute to the section. It also lies outside the
visible chaotic region, which is confined to a very small
subset of the phase space, as mentioned in Ref. [2].

V. GENERAL METRIC

The above results carry, to some extent, to the general
Zipoy-Voorhees metric given by

ds2 ¼ �
�
x� 1

xþ 1

�
�
dt2 þ

�
xþ 1

x� 1

�
�
�
ðx2 � 1Þð1� y2Þd�2

þ
�
x2 � 1

x2 � y2

�
�2

ðx2 � y2Þ
�

dx2

x2 � 1
þ dy2

1� y2

��
; (28)

where � 2 R. The main problem that arises for arbitrary
� is that the special solution might no longer be a
(hyper)elliptic function, because the Hamiltonian now
gives

NONEXISTENCE OF THE FINAL FIRST INTEGRAL IN . . . PHYSICAL REVIEW D 88, 064003 (2013)

064003-5



_x2 ¼ 1

x2

�
1� 1

x2

���2

ðxþ 1Þ�2�ððxþ 1Þ2�ðx2 � 1Þp2
0

� ðx� 1Þ2�p2
3 � ðx2 � 1Þ�þ1�2Þ; (29)

so the right-hand side is not necessarily a polynomial
or rational function. Accordingly, the rationalization of
the NVEs might not preserve the identity component
of the differential Galois group. However, when � is
rational we can still proceed by taking a new dependent
variable to be

w :¼ xþ 1

x� 1
; (30)

as this leads to the normal form [Eq. (15)] which involves
only integral powers of w and w�. Assuming then that � ¼
p=q, we can make the NVEs rational by taking w1=q as the
new variable if need be. Unfortunately, the number of poles
(and their values) now depends on p and q, so the Kovacic
algorithm has to be applied to each � separately, but
for each of them it is as straightforward as above to use
the MAPLE package, once suitable numeric values of the
parameters have been chosen. For example, we have veri-
fied that � ¼ 1=2 is also nonintegrable, confirming the
numerical evidence of Ref. [2] that for both � > 1 and

� < 1, the general metric does not admit additional first
integrals.

VI. CONCLUSIONS

Our main result can be stated as
Theorem 3.—There does not exist an additional, mero-

morphic first integral of the geodesic motion in the Zipoy-
Voorhees metric [Eq. (1)]; i.e., the system is not Liouville
integrable.
This confirms the previous considerations of Ref. [3] and

goes much further than excluding first integrals polynomial
in momenta up to a certain fixed small degree.
Meromorphic functions include not only the analytic func-
tions of both momenta and coordinates, but also rational
and transcendental ones as long as their singularities are
just poles. In particular, it follows that even if a conserved
quantity exists, it cannot be expressed by an explicit
formula of the above type. This result thus strongly reduces
the possibility of using constants of motion expansion in
solving the equations of geodesic motion or gravitational
waves because the decomposition in terms of normal
frequencies requires one to calculate their values
directly from the initial conditions of the coordinates
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FIG. 1. Poincare section for the system in Eq. (2) at y ¼ 0. The parameter values were p0 ¼ 0:95, p3 ¼ 3, � ¼ 1.
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and momenta [9]. Of course, further techniques can be
used to better understand and describe the motion, espe-
cially in the region where the dynamics is regular, but the
fundamental physical property of this space-time is that no
additional conservation law holds.
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