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Anomalous symmetries induce currents which can be parallel rather than orthogonal to the hypermagnetic

field. Building on the analogy of charged liquids at high magnetic Reynolds numbers, the persistence of

anomalous currents is scrutinized for parametrically large conductivities when the plasma approximation is

accurate. Different examples in globally neutral systems suggest that the magnetic configurations minimiz-

ing the energy density with the constraint that the helicity be conserved coincide, in the perfectly conducting

limit, with the ones obtainable in ideal magnetohydrodynamics where the anomalous currents are neglected.

It is argued that this is the rationale for the ability to extend to anomalous magnetohydrodynamics the

hydromagnetic solutions characterized by finite gyrotropy. The generally covariant aspects of the problem

are addressed with particular attention to conformally flat geometries which are potentially relevant for the

description of the electroweak plasma prior to the phase transition.
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I. INTRODUCTION

There are physical situations were electric currents are
directed along the magnetic field itself. For instance, in the
analysis of ordinary hydromagnetic nonlinearities it is
customary to study the evolution of the magnetic field
averaged over the turbulent flow, be it compressible (as
in acoustic turbulence) or incompressible [1,2]. In the latter
case the effective current density is proportional to the
magnetic field as established in different situations and
extensively reviewed in a number of textbooks [3–5]. For
this to happen a necessary condition is the parity breaking
associated with the turbulent velocity field which has to be
globally non-mirror-symmetric for sufficiently large kinetic
Reynolds numbers. In this situation the averaged scalar
product of the bulk velocity of the plasma with the bulk
vorticity (sometimes called kinetic gyrotropy [1,5]) does

not vanish [i.e. h ~v � ð ~r� ~vÞi � 0] and the kinetic energy
of the plasma can be in principle transferred to the mag-
netic field.

Provided pseudoscalar species exist in the plasma, the
effective Ohmic currents can be oriented along the mag-
netic field even if turbulent flows are absent. For instance,
in the case of axions [6–8] the standard model is supple-
mented by a (global) UPQð1Þ. This symmetry is broken at

the Peccei-Quinn scale Fa and leads to a dynamical
pseudo-Goldstone boson (the axion) presumably acquiring
a small mass because of soft instanton effects at the QCD
phase transition. If an axionic density was present in the
early Universe, bounds can be obtained for the Peccei-
Quinn symmetry-breaking scale. These bounds together
with other constraints leave a window of opportunity of
Fa ’ Oð1010Þ GeV with many uncertainties concerning
the axion mass [7]. Pseudoscalar species can also arise in

the low-energy limit of superstring models, but in spite of
its specific physical origin the pseudoscalar field (say, c )
can couple to the Abelian gauge field strength Y�� as

ðc =MÞY��
~Y��, where ~Y�� is the dual field strength and

M is related, in the axion case, to the Peccei-Quinn scale.
In the symmetric phase of the electroweak theory the

hypercharge current can flow along the hypermagnetic
field. Both the current and the magnetic field are usual
vector fields and the proportionality factor is related to the
chemical potential of the anomalous charges. This effect
arises in gauge theories at finite density where it can
happen that cold fermionic matter with nonzero anomalous
Abelian charges is unstable against the creation of the
Abelian gauge field [9,10]. The existence of currents
parallel to the Abelian gauge field strength has been also
analyzed in the electroweak plasma [11] with the aim of
understanding how hypercharge fields may be converted
into fermions in a hot environment. A magnetic field
intensity parallel (or antiparallel) to the current density is
also thought to be one of the potential consequences
of the existence of the quark-gluon plasma and it has
been more recently studied in the context of heavy-ion
collisions [12] as well as in holographic approaches [13]
(see also Ref. [14]). Chiral anomalies alter the evolution of
the corresponding current but also the evolution of the
gauge fields and of the corresponding Ohmic currents.
This point is common to all the themes mentioned in this
paragraph.
In the present investigation the persistence of anomalous

currents will be scrutinized in globally neutral and con-
ducting plasmas at high temperatures, such as the ones
occurring prior to matter radiation equality or in the sym-
metric phase of the electroweak theory. The terminology
anomalous magnetohydrodynamics (AMHD in what
follows) refers to the evolution of hydromagnetic
nonlinearities in the presence of anomalous symmetries*massimo.giovannini@cern.ch
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both in cold and hot environments. While in standard
magnetohydrodynamics the particle currents are all con-
served, in AMHD there are charges which are anomalous
(i.e. not covariantly conserved because of the macroscopic
effects related to the triangle anomaly). The specific point
addressed in this paper concerns the highly conducting
limit of the anomalous plasma. In particular the idea is to
address various situations where there are (at least) two
currents: one anomalous and the other covariantly con-
served. The latter current has to be identified, in the present
approach, with the induced Ohmic current. In Sec. II the
case of ordinary hydromagnetic nonlinearities shall be
reviewed and some basic terminology will be introduced.
Section III is devoted to the birefringence induced by the
axial couplings with the aim of deriving the evolution of
the slow modes of the globally neutral and conducting
plasma in the simplified situation where the total energy-
momentum tensor of the system is covariantly conserved.
In Sec. IV we shall move to the case where there are two
currents—one anomalous and the other conducting—and
the global neutrality of the plasma is always assumed. It
will be shown that the second law of thermodynamics
constrains the conduction current which must contain
both magnetic and vortical components. In Sec. V the ideal
and the resistive limits of AMHDwill be studied in the case
of a conformally flat background geometry. Section VI
contains the concluding remarks. In the Appendix various
results shall be swiftly derived with the aim of easing the
derivations presented in the bulk of the paper. Unlike
previous analyses (bounded to a special relativistic treat-
ment) we shall privilege here the generally covariant ap-
proach which is more suitable for the applications to
curved space-times and, more specifically, to conformally
flat background geometries.

II. HYDROMAGNETIC NONLINEARITIES

Magnetohydrodynamics (MHD in what follows) can be
investigated within two different but in some sense comple-
mentary approaches: the ideal (or perfectly conducting) limit
where the conductivity goes to infinity (i.e. the�c!1 limit)
and the real (or resistive) limit where the conductivity is
finite (see, for instance, Refs. [15–17]). The ordinary mag-
netic diffusivity equation in ideal MHD can be simply
written as

@ ~B

@�
¼ ~r� ð ~v� ~BÞ þOð��1

c Þ; (2.1)

where ~v denotes the bulk velocity of the plasma and ~B is
the magnetic field intensity. Batchelor [18] pioneered the
general picture of the interaction between the magnetic
field and a conducting liquid by exploiting the analogy
with a bulk velocity vortex in an incompressible liquid.
Assuming—as is often done in statistical fluid mechan-
ics—that the bulk velocity of the charged fluid is stationary
and isotropic, the correlation function of the velocity field
can be written as [1,2]

hvið ~k; �Þvjð ~p; �0Þi ¼ ½A1ðkÞPijðk̂Þ þA2ðkÞ�ijkk̂k�
� �ð3Þð ~kþ ~pÞfð�; �0Þ; (2.2)

where Pijðk̂Þ ¼ ð�ij � k̂ik̂jÞ and k̂i ¼ ki=k. In the

Markovian approximation fð�; �0Þ is proportional to
�ð�� �0Þ and the power spectra can have different forms
which are not immediately relevant for the present consid-
erations. Using Eqs. (2.2) and (2.1) the effective evolution
equation for the magnetic field averaged over the bulk
velocity field is

@ ~H

@�
¼ � ~r� ~H; � ¼ � �c

3
h ~v � ð ~r� ~vÞi: (2.3)

Since the ideal hydromagnetic limit is a slow description
valid for large distances, the displacement current can be

neglected so that ~r� ~H is proportional to the current

density ~j. But then Eq. (2.3) implies that there is an

effective Ohmic current proportional to ~H [5]. In the
Zeldovich interpretation [5,19], Eq. (2.3) suggests that an
ensemble of screw-like vortices with zero mean helicity is
able to generate loops in the magnetic flux. Equations (2.2)
and (2.3) have been analyzed for a number of astrophysical
applications and describe the physical situation where
kinetic energy is transferred to magnetic energy.
The plasma description following from MHD can

also be phrased in terms of the conservation of two inter-
esting quantities, i.e. the magnetic flux and the magnetic
helicity [15–17],

d

d�

Z
�

~B � d ~� ¼ ��mag

Z
�

~r� ð ~r� ~BÞ � d ~�; (2.4)

d

d�

Z
V
d3x ~A � ~B ¼ �2�mag

Z
V
d3x ~B � ð ~r� ~BÞ; (2.5)

where V is a fiducial volume comoving with the conducting
fluid and � is the corresponding boundary surface; we
defined �mag ¼ 1=ð4��cÞ. Up to a gauge coupling constant
the magnetic helicity coincides with the Chern-Simons

number. The quantity ~B � ð ~r� ~BÞ is sometimes called mag-
netic gyrotropy in full analogy with the kinetic gyrotropy
already mentioned in the Introduction.
In a conducting plasma the kinetic and magnetic

Reynolds numbers are defined as Rkin ¼ vrmsLv=�kin and
Rmag ¼ vrmsLB=�mag, where vrms estimates the bulk veloc-

ity of the plasma while �kin denotes the coefficient of
thermal diffusivity; Lv and LB are, respectively, the corre-
lation scales of the velocity field and of the magnetic field.
In the ideal hydromagnetic limit (i.e. �c ! 1, �mag ! 0

and Rmag ! 1) the flux is exactly conserved and the

number of links and twists in the magnetic flux lines are
also preserved by the time evolution. If Rkin � 1 and
Rmag � Oð1Þ the system is still turbulent; however, since

the total time derivative of the magnetic flux and of the
magnetic helicity are both Oð�magÞ the terms on the right-

hand side of Eqs. (2.4) and (2.5) cannot be neglected.
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Finally, if Rmag � 1 and Rkin � 1 the fluid is not kineti-

cally turbulent but the magnetic flux is conserved. This
occurs, incidentally, after matter-radiation equality but
before decoupling [20]. The considerations developed
here are bound to the analysis of a number of toy models
but they are potentially relevant in more realistic situations
as long as the plasma can be considered globally neutral
and perfectly conducting. First-order phase transitions, if
they occurred in the early Universe, can provide a source of
kinetic turbulence and, hopefully, the possibility of inverse
cascades which could lead to an enhancement of the cor-
relation scale of a putative large-scale magnetic field [21].
Will AMHD help in connection with the possible onset of
inverse cascades in astrophysical environments? In the past
it has been argued that field configurations carrying
magnetic helicity may be effective in obtaining inverse
cascades [22]. These speculations are as complicated as a
precise modelling of turbulence itself. On top of that at the
electroweak scale the ratio between the magnetic and the
kinetic Reynolds numbers (the so called Prandtl number) is
very large. This is a further complication in comparison
with laboratory plasmas where magnetic and kinetic dif-
fusivities are typically of the same order (see also, in this
regard, Ref. [20]). The extension of the viewpoint con-
veyed in the present analysis to a kinetically turbulent
environment is not implausible but shall not be attempted
here. For the present ends what matters are the physical
analogies of the forthcoming discussions with the physics
of charged liquids at high magnetic Reynolds number.

III. DYNAMICAL PSEUDOSCALAR FIELDS

Turbulence at high Reynolds numbers is sufficient for the
existence of Ohmic currents flowing, on average, along the
magnetic field direction. Such a requirement is, however,
not necessary since similar phenomena can arise thanks to
pseudoscalar species. Denoting with Sc the pseudoscalar

contribution and with SY the gauge part, the corresponding
actions can be written as1

Sc þ SY ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
1

2
g�	@�c @	c �Wðc Þ � j�Y�

�

� 1

16�

Z
d4x

ffiffiffiffiffiffiffi�g
p �

Y�	Y
�	 þ c

M
Y�	

~Y�	

�
;

(3.1)

where j� ¼ j�ðþÞ � j�ð�Þ and j�� ¼ ~n�u��; the velocities

u�ð�Þ satisfy g�	u
�
ð�Þu

	
ð�Þ ¼ 1 and Y�	 is the gauge field

strength. The equations for c and Y�� are obtained by
minimizing the variation of the action (3.1) and they are

g�	r�r	c þ @W

@c
¼ � 1

16�M
Y�	

~Y�	; (3.2)

r�Y
�	 ¼ 4�j	 � @�c

M
~Y�	; (3.3)

where r� denotes the covariant derivative. The exchange
of energy and momentum between the charged species
is responsible for the existence of a finite conductivity.
The presence of an energy-momentum transfer � implies

r�T
��
ðþÞ þ �g��ðp� þ 
�Þu� ¼ Y��jðþÞ

� ; (3.4)

r�T
��
ð�Þ � �g��ðp� þ 
�Þu� ¼ �Y��jð�Þ

� ; (3.5)

where u� denotes the total velocity field and T��
ð�Þ is

T
��
ð�Þ ¼ ðp� þ 
�Þu�ð�Þu

�
ð�Þ � p�g��: (3.6)

The relation between u� and u�ð�Þ is

u�u� ¼ ð1þ �þÞ�þu
�
ðþÞu

�
ðþÞ þ ð1þ ��Þ��u

�
ð�Þu

�
ð�Þ;

(3.7)

where �� ¼ p�=
� and�� ¼ 
�=ð
þ þ 
�Þ; note also
that g�	u

�u	 ¼ 1. Equations (3.4) and (3.5) can be

summed and subtracted. From the sum we get the equation
for the total energy-momentum tensor of the charges, i.e.

r�T
��ð
; pÞ ¼ Y��j�; j� ¼ jðþÞ

� � jð�Þ
� : (3.8)

From the difference of Eqs. (3.4) and (3.5) (multiplied by
the corresponding charge concentrations) an evolution
equation for the total current can be obtained. In the limit
where the rate of interaction dominates against the rate of
variation of the geometry this combination leads to a
relation between the current and the gauge field strength,
i.e. Ohm’s law, which will be introduced in a moment.
For the subsequent applications it is useful to rephrase

the evolution of the system in terms of the evolution of the
energy-momentum tensors for T�

�ðc Þ and T�
�ðYÞ,

r�T
�
� ðc Þ ¼ � @�c

16�M
Y�	

~Y�	; (3.9)

r�T
�
� ðYÞ ¼ �Y��j

� þ @�c

16�M
Y�	

~Y�	; (3.10)

where

T�
�ðc Þ ¼ @�c @�c � ��

�

�
1

2
g�	@�c @	c �Wðc Þ

�
;

(3.11)

1The conventions will be the following. Greek indices run over
the four-dimensional space-time. Latin (lowercase) indices run
over three-dimensional spatial geometry. The signature of the
metric is mostly minus, i.e. ðþ;�;�;�Þ.
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T�
�ðYÞ ¼ 1

4�

�
�Y��Y

�� þ c

M
Y��

~Y�� þ 1

4
��
�ðY�	Y

�	

þ Y�	
~Y�	Þ

�
: (3.12)

Consider now a conformally flat geometry of the type
g�� ¼ a2ðxÞ���, where ��� is the Minkowski metric and

the scale factor can be a function of a generic space-time
point. The gauge field strengths can be written as Yi0 ¼
�a2ðxÞei and Yij ¼ �a2ðxÞbk�ijk and the equations for the
hyperelectric and hypermagnetic fields are given, in this
case, by

~r � ~E ¼ 4�ðnþ � n�Þ � 1

M
~rc � ~B; (3.13)

~r � ~B ¼ 0; ~r� ~E ¼ �@� ~B; (3.14)

~r� ~B¼@� ~Eþ 1

M
½@�c ~Bþ ~rc � ~E�þ4�½nþ ~vþ�n� ~v��;

(3.15)

where ~v� ¼ a ~u�; furthermore, ~E ¼ a2 ~e and ~B ¼ a2 ~b.
The expressions of the total charge and current density
appearing in Eqs. (3.13) and (3.15) come from the defini-
tion of the comoving concentrations of charged species
[i.e. n�ðxÞ ¼ a3ðxÞ~n�] and from the comoving velocity
field (i.e. ~v� ¼ a ~u�). The covariant conservations of the
currents leads to the evolution equations of the comoving

concentrations, i.e. @�n� þ ~r � ðn� ~v�Þ ¼ 0.
For the present ends the interesting situation concerns a

globally neutral plasma. From Eq. (3.13) ~r � ~E ¼ 0 pro-
vided nþ ¼ n� ¼ n0 and, at the same time, c is spatially

homogenous, i.e. ~rc ¼ 0. In the limit where the rate of
interaction between the charged species is larger than the
rate of variation of the geometry the total Ohmic current
can be expressed in covariant language as [23] j� ¼
�cY

��u�, where �c is the conductivity of the system.
From the expression of the Ohmic current j�u� ¼ 0 and
this is why we can also write j�h�� ¼ �cY

��u�. If we now

project the latter expression along u� we obtain an identity.

Conversely, if we project j�h�� along h	� ¼ ð�	
� � u�u

	Þ
we shall obtain, again, j� ¼ �cY

��u� since, by definition,

h��h
	
� ¼ h	�.

The value of the conductivity depends on the specific
properties of the plasma. In particular, defining m as the
mass of the lightest charge carrier we have that �c ’
T=�em for T � m and �c ’ ðT=�emÞðT=mÞ1=2 in the
opposite limit. The total Ohmic current is then given by

~J ¼ �

�
~Eþ ~v� ~Bþ

~rp
n0

� ~J � ~B

n0

�
; (3.16)

where n0 denotes the rescaled charge concentration while

� ¼ �ca and ~J ¼ a3 ~j. Dropping the third and fourth terms

on the right-hand side of Eq. (3.16) (i.e. the thermoelectric
and Hall terms which are of higher order in the spatial
gradients) the (hyper)electric field can be expressed in
terms of the total current.
In the resistive approximation, the hyperelectric field is

not exactly orthogonal to the hypermagnetic one. The
source of this mismatch depends on the specific dynamical
situation and, in the present case, the induced hyperelectric
field is

~E ’
~r� ~B

4��
� @�c ~B� ~rc � ð ~v� ~BÞ

4��

� ~v� ~BþOð��2Þ: (3.17)

The first term on the right-hand side of Eq. (3.17) is the
analog of the MHD contribution. The second and third
contributions contain both temporal and spatial derivatives
of c and describe the energy-momentum transfer from the
pseudoscalar field to the hypermagnetic field. Depending
on the initial topology of the hypermagnetic flux lines this
process can even produce hypermagnetic knots (see the
third and fourth papers of Ref. [11]). In Eq. (3.17) there are
various other terms proportional to the gradients of c and
carrying terms Oð��2Þ, Oð��3Þ and so on and so forth.
Using Eq. (3.17) into Eq. (3.14) we obtain the wanted form
of the magnetic diffusivity equation,

@ ~B

@�
¼

~r� ð@�c ~BÞ
4�M�

�
~r� ½ð ~rc Þ � ð ~v� ~BÞ�

4��M

þ ~r� ð ~v� ~BÞ þ r2 ~B

4��
: (3.18)

Equation (3.18) generalizes Eq. (2.2) and the first term on
the right-hand side can be interpreted as a current density
flowing along the magnetic field. From Eq. (3.18) it can be
immediately argued that whenever the conductivity is high
(and the ideal limit can be enforced) the magnetic current is
suppressed by the value of the conductivity.
The total energy-momentum tensor T

��
tot is covariantly

conserved, i.e. r�T
��
tot ¼ 0 as it can be easily argued by

combining Eqs. (3.4), (3.5), (3.9), and (3.10). Also the total
entropy of the system is covariantly conserved. However,
recalling the first principle of thermodynamics and the
fundamental thermodynamic identity, it can be easily
shown that the entropy of the global fluid of charged
species obeying Eq. (3.8) is not conserved and the corre-
sponding evolution equation of the entropy four-vector is

r�&
�
f ¼ �

T
Y�	Y

��u�u
	; &f ¼ 
þ p

�T
; (3.19)

where &
�
f ¼ &fu

� and the term appearing on the right-hand

side of the conservation equation is nothing but the relativ-
istic generalization of the heating due to the Joule effect;
�T ¼ aT denotes the comoving temperature. When the con-
ductivity vanishes gauge fields can be amplified thanks to
the coupling to the pseudoscalar field and this phenomenon
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has been studied in various space-times and, in particular,
during a quasi–de Sitter stage of expansion [24–26] (see also
the third and fourth papers in Ref. [11]). If we start with a
field configuration carrying zero magnetic helicity the pseu-
doscalar coupling discussed here can produce configurations
characterized by nonvanishing magnetic helicity which have
been dubbed hypermagnetic knots.

The presence of anomalous symmetries has some relation
to the so-called magnetogenesis problem (see Ref. [27] for
an explanation of this terminology). In short the punch line
of the discussion is that anomalous vertices cannot alone
produce sizeable magnetic fields. The reason for this state-
ment can be already appreciated from Eq. (3.15). The pump-
ing action of the axionic coupling carries a time derivative
of the axion, a wave number and one inverse power of M.
This term must overwhelm the contribution of the Laplacian
of the magnetic field if amplification is to take place. In short
this never happens except from a tiny slice of Fourier modes
concentrated around the event horizon (during the de Sitter
phase) or the particle horizon (during a decelerated phase)
[24–26]. In the case of a single chemical potential the
situation is even worse, in some sense, because any possible
breaking of conformal invariance is completely over-
whelmed by the contribution of the conductivity, as we shall
see in the forthcoming sections.

IV. ANOMALOUS SYMMETRIES
AT FINITE DENSITY

The derivation of the previous section assumed the
global neutrality of the plasma and the covariant conser-
vation of the total energy-momentum tensor. The latter
approach shall now be reversed by dealing directly with
the currents rather than with a specific form of the action.
In this respect the simplified model discussed in the present
section is instructive insofar as it contemplates the simul-
taneous presence of two currents, one anomalous and the
other nonanomalous (to be identified, in the language of
the previous section, with the hyperelectric current). The
logic is, in short, the following. The anomalous current j

�
R

is not covariantly conserved because of the anomaly
contribution,

r�j
�
R ¼ ARY��

~Y��: (4.1)

The equations of the energy-momentum tensor of the fluid
and the covariant conservation of the nonanomalous
four-current are instead

r�T
�� ¼ Y��j

�; r�j
� ¼ 0: (4.2)

The equation for T�� appearing in Eq. (4.2) can be split in
terms of the two projections along u� and along h�� ¼
��
� � u�u� [see Eqs. (A1) and (A2) of Appendix A].

The system of equations (4.1) and (4.2) approximately
describes different physical situations ranging from the
anomalous plasma in the symmetric phase of the electro-
weak theory [11], to the models of chiral liquids [12] which

are proposed as a simplified framework for the discussion
of the quark-gluon plasma. Indeed, above the critical tem-
perature of the corresponding phase transition the electro-
weak symmetry is restored, and the nonscreened gauge
field strength Y�� corresponds to the Uð1ÞY hypercharge

group. The system of equations (4.1) and (4.2) extends the
hydrodynamic approach described in Ref. [28] to the
extent that j� does not coincide with j

�
R and the ambient

plasma is globally neutral. As already mentioned, unlike
previous analyses bounded to a special relativistic treat-
ment, the generally covariant discussion is more suitable
for the class of problems addressed here.

A. Useful thermodynamic relations

Denoting with�R the chemical potential associated with
the anomalous species, the first principle of thermodynam-
ics implies

dE ¼ TdS� pdV þ�RdNR: (4.3)

Dividing the fundamental thermodynamics identity
(i.e. E ¼ TS� pV þ�RNR) by a fiducial volume we
obtain the well-known relation 
þ p ¼ T&þ�R~nR.
Differentiating the fundamental thermodynamic identity
and subtracting the obtained result from Eq. (4.3) a known
relation between the ordinary derivatives of the tempera-
ture, of the chemical potential and of the pressure can be
obtained and it is, in the present case,

&@�T þ ~nR@��R ¼ @�p: (4.4)

The anomalous current of Ref. [11] was associated with the
slowest perturbative processes related to the Uð1ÞY anom-
aly, namely the processes flipping the chirality of the right
electron which are in thermal equilibrium until sufficiently
late because of the smallness of their Yukawa coupling.
The origin of the anomalous current is not essential for
the present ends but what matters is the physical and
mathematical distinction between anomalous and conduc-
tion (possibly Ohmic) currents. According to this ap-
proach, the general expression of the anomalous current
must contemplate an inviscid contribution supplemented
by a viscous term, i.e. j

�
R ¼ ~nRu

� þ �
�
R , where �

�
R denotes

the dissipative coefficient. The four-velocity of the anoma-
lous species coincides with the bulk velocity of the plasma
and, therefore, u

�
R ’ u�. This assumption simplifies the

discussion a bit and corresponds to the logic followed in
this investigation (see also Ref. [11]) where the single-fluid
approach is privileged. As in the analysis of nonanomalous
plasmas (see Sec. II), in AMHD it is also possible to
discuss a multifluid approach entailing different velocities
for the different species.
Let us now pause for a moment and recall the main

features of the dissipative description adopted hereunder.
Whenever dissipative effects are included in both the
energy-momentum tensor and in the particle current
the physical meaning of the four-velocity u� must be
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specified. In the Eckart approach u� coincides with the
velocity of particle transport [29]. Conversely, in the
Landau approach [30] the velocity u� coincides with
the velocity of the energy transport defined by the (0i)
component of the energy-momentum tensor giving the
energy flux. The Landau approach shall be privileged
with the important caveat that in a perfect conductor
Lorentz invariance is broken and a preferred frame (i.e.
the plasma frame) arises naturally; in this frame hyper-
electric fields are exactly vanishing when the conductivity
goes to infinity. In the Landau approach we shall have that
the global charge neutrality of the plasma is enforced by
requiring that j�u� ¼ 0. If the plasma is not globally

neutral, i.e. j�u� ¼ ~n, then a second chemical potential

must be introduced so that Eq. (4.4) will be

&@�T þ ~nR@��R þ ~n@�� ¼ @�p; (4.5)

and w ¼ T&þ ~n�þ ~nR�R. The case of a plasma which is
not neutral will be treated in more detail in Appendix C
with the purpose of showing that the coefficients of the
magnetic and vortical currents are subjected to a higher
degree of arbitrariness, as we shall discuss more precisely
at the end of this section.

B. Joule heating

Equations (4.1), (4.2), and (4.3) can be rephrased in
terms of the entropy density. The projection of the first
expression reported in Eq. (4.2) along the four-velocity u�

implies—according to the results of Appendix A—the
relation

r�½ðpþ 
Þu�� � u�@�p� u�Y��j
� ¼ 0; (4.6)

which can be further modified by using Eq. (4.3) together
with the fundamental thermodynamic identity; the result of
this manipulation is

r�½&u� � ��R�
�
R � þ ��

R@� ��R þAR ��RY��
~Y��

¼ u�

T
Y��j

�; (4.7)

where ��R ¼ �R=T denotes the rescaled chemical potential.
Equation (4.7) can be manipulated by inserting the explicit
expressions of the Ohmic [23] and anomalous currents i.e.
j� ¼ �cY

��u� þ �� and j� ¼ nRu
� þ ��

R,

r�½&u� � ��R�
�
R � þ �

�
R@� ��R þAR ��RY��

~Y��

¼
�
�c

T

�
Y�	Y��u

�u	 � ��

T
u	Y	�: (4.8)

The second law of thermodynamics implies that the
covariant divergence of the entropy four-vector &� must
be positive semidefinite, i.e. r�&

� 	 0. Absent any

anomalous current, the entropy of the fluid obeys r�&
� ¼

ð�c=TÞY�	Y
��u�u

	, where the term on the right-hand side

is the relativistic generalization of the Joule effect. This is

indeed the same kind of relation already obtained in
Eq. (3.19) of the preceding section.
The specific definition of the entropy four-vector

depends on the chemical potential of the system. However,
since the coefficient AR does not have a definite sign, the
anomalous currents may even lead to violation of the second
principle of thermodynamics (e.g.r�&

� < 0). Starting from

a covariantly conserved total energy-momentum tensorwith-
out dissipative effects, the entropy four-vector is covariantly
conserved. The increase of the entropy signals the presence
of dissipative effects, as in the case of Joule heating.
Conversely the decrease of the entropy is the result of an
incomplete definition of the entropy four-vector which is not
sufficiently general, as argued in Ref. [28]. Two further
kinetic coefficients S! and SB will then be introduced so
that the generalized entropy four-vector &� will become

&� ¼ &u� � ��R�
�
R þ S!!

� þ SBB�; (4.9)

where S! and SB depend on the chemical potential and the
pressure, but the arguments of these functions shall not be
explicitly written to avoid tedious expressions.
The vorticity four-vector !� appearing in Eq. (4.9) is

defined as

!� ¼ ~f��u�; f	� ¼ r	u� �r�u	; (4.10)

where ~f�� ¼ E��	�f	�=2 is the dual tensor. In

Appendices A and B a collection of technical results on
the general relativistic treatment of the magnetic and
vortical currents has been included. The results reported
in the appendices are by no means exhaustive and are only
instrumental in easing the derivation of some expressions
appearing hereunder. In connection with Eq. (4.9) it is
interesting to notice that the appearance of the vortical
current in the relativistic treatment can be physically mo-
tivated from the observation that the sum of the vorticity
and of the magnetic field is conserved by the time evolution
in flat space-time and in the nonrelativistic limit. More
specifically in an electron-ion plasma, introducing the ion

mass M, the sum [ðM=eÞ ~!þ ~B] is conserved [31,32] and
this is essentially the Einstein–de Haas effect [31]. This
conservation law can be generalized in curved space-time
geometries [32]. Finally, by inserting the entropy four-vector
defined in Eq. (4.9) into Eq. (4.8) it is straightforward to
obtain the following result:

r�&
� � �c

T
Y�	Y��u

�u	

¼ r�ðS!!
� þ SBB�Þ þ ��u	

T
Y�	 � @	 ��R�

	
R

�AR ��RY�	
~Y�	: (4.11)

C. Hypermagnetic and vortical currents

The coefficients �� and ��
R appearing in Eqs. (4.8) and

(4.11) must also be expressible as a combination of the
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vortical current and of the hypermagnetic current. Four
different coefficients parametrize the relation between
ð��; ��

RÞ and ð!�;B�Þ,
�� ¼ �!!

� þ�BB�;

��
R ¼ �R!!

� þ�RBB�:
(4.12)

Provided that the coefficients introduced in Eq. (4.12) are
specifically related to S! and SB, the whole expression on
the right-hand side of Eq. (4.11) vanishes and the left-hand
side of Eq. (4.11) reproduces the standard result due to
Joule heating in a conducting plasma. The relation stem-
ming from Eq. (4.11) can be obtained with simple manipu-
lations and it is given by

!�@�S! þB�@�SB þ S!r�!
� þ SBr�B�

þ 4 ��RARE�B� ¼ E��
�

T
þ ��

R@� ��R: (4.13)

Exploiting the general results of Eqs. (A7) and (A8) in the
case of the Ohmic current supplemented by the dissipative
coefficient, the generally covariant four-divergences of !�

and B� are2

r�!
� ¼ � 2

w
!�@�p� 2

w
�	!�Y�	

� 2�c

w
Y	�Y�	u�!

�; (4.14)

r�B�¼2Y
�!

u�þ 1

w
~Y��u�@�pþ�c

w
~Y��Y	�Y�	u�u�

þ 1

w
~Y��Y�	�

	u�: (4.15)

Introducing the fields E� ¼ Y��u� and B� ¼ ~Y��u�,
Eqs. (4.14) and (4.15) can be further modified,

r�!
� ¼ � 2

w
!�@�p� 2

w
!�E��

	u	

� 2

w
u
B�!�½�	 þ �cE	�E�	
�; (4.16)

r�B� ¼ 2!�E� � 1

w
@�pB� � 1

w
u	�	E�B�: (4.17)

Concerning Eqs. (4.16) and (4.17) a simple comment is in
order. In the Landau approach the terms u	�

	 and u��
�
R

vanish exactly. This is of course also true when the dis-
sipative coefficients are defined as in Eq. (4.12) as can be
explicitly verified since, by definition, u	!

	 and u	B	

vanish exactly. Equations (4.16) and (4.17) can be finally
inserted into Eq. (4.13) with the result that

!�P � þB�Q� þ
�
2SB �

�
�!

T

��
!�B�

þ
�
4 ��RAR �

�
�B

T

��
ðE�B�Þ

� 2

w
�c!

�E	u�B�E�	��S! ¼ 0; (4.18)

where P � and Q� are defined, respectively, as

P � ¼ @�S! � 2

w
S!@p� @� ��R�R!; (4.19)

Q� ¼ @�SB � SB

w
S!@�p� @� ��R�RB: (4.20)

The last term in Eq. (4.18) contains the explicit dependence
on the conductivity. All the other terms of similar origin
vanish because of the symmetry properties of the various
currents. The results of Eqs. (4.18), (4.19), and (4.20)
follow easily if we recall that, by definition, u�!�, u

	E	

and u�B� are all vanishing.

In Eq. (4.18) there should also be a term containingSB and
corresponding to the one including the explicit dependence
on S! and on the conductivity (i.e. the term proportional to
!�E	u�B�E�	��). This term vanishes, as expected, since

it would have the same form as the last term of Eq. (4.18) but
with !� replaced by B�: the overall coefficient will there-
fore contain the contraction ofB�B� with E��	� (which is

totally antisymmetric) so that the final contribution of this
term will vanish exactly. It is relevant to stress here that the
possibility of a consistent analysis of the conducting case
rests on the inclusion of the electric degrees of freedom.
It would therefore be incorrect to set E� ¼ 0 from the
beginning since this would forbid a precise analysis of the
perfectly conducting limit which is one of the purposes of
the present investigation.

D. Consistency relations

To satisfy Eq. (4.18) the four-vectors multiplying !� and
B� must vanish together with the coefficients of the terms
multiplied by !�B� and E�B�. Moreover the supplemen-
tary term proportional to !�E	u�B�E�	�� must also

vanish. To preserve the second principle of thermodynamics
in a globally neutral plasma with anomalous currents and
Joule heating we must have that

P � ¼ 0; Q� ¼ 0; �B ¼ 4�RAR;

�! ¼ 2TSB; S! ¼ 0: (4.21)

If, as established, S! ¼ 0 then Eq. (4.18) also implies that
�R! ¼ 0. All the coefficients we ought to determine
depend on ��R and on the pressure. Thus the conditions
of Eq. (4.21) are equivalent to the following system of
equations:

2Recall that w denotes, in the present paper, the enthalpy
density.
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�
@SB

@p
� SB

w

�
@�pþ

�
@SB

@ ��R

��RB

�
@� ��R ¼ 0; (4.22)

�! ¼ 2TSB; �B ¼ 4AR ��RT: (4.23)

The standard thermodynamic relations giving the partial
derivatives of the pressure and of the rescaled chemical
potential with respect to the temperature are�

@p

@T

�
¼ w

T
þ ~nR

�
@ ��R

@T

�
;�

@ ��R

@T

�
¼ � w

~nRT
2
þ 1

~nRT

�
@p

@T

�
;

(4.24)

implying that the partial derivatives of each variable with
respect to the temperature (when the other variable is held
fixed) are�

@p

@T

�
��R

¼ w

T
;

�
@ ��R

@T

�
p
¼ � w

~nRT
2
: (4.25)

With the results of Eqs. (4.24) and (4.25), Eqs. (4.22) and
(4.23) can be explicitly solved,

SBð ��R; TÞ ¼ TaBð ��RÞ; �RB ¼ @

@ ��R

½TaBð ��RÞ�;
(4.26)

�!ð ��R; TÞ ¼ 2T2aBð ��RÞ; �Bð ��R; TÞ ¼ 4AR ��RT;

(4.27)

where aBð ��RÞ is an arbitrary function of the rescaled
chemical potential. Note also that �B is fully determined
in terms of the coefficient of the anomaly and it is, in
practice, only a function of the chemical potential itself
since, by definition, ��RT ¼ �R. These consistency rela-
tions will also be discussed in Sec. V.

All in all, the presence of an anomalous current induces—
thanks to the second principle of thermodynamics—two
further terms in the Ohmic current. Starting with a globally
neutral plasma with an anomalous current, the second prin-
ciple of thermodynamics implies that the nonanomalous
current must contain magnetic and vortical contributions
resembling the magnetic currents induced by pseudoscalar
fields. The induced current can be compared with the
effective action for the hypercharge fields at finite fermionic
density. In the case of right electrons AR ¼ �g02y2R=ð64�2Þ, where g0 denotes the gauge coupling and yR ¼ �2
is the hypercharge assignment of the right electrons. In the
comoving frame (seeAppendixB) the interaction induced by
the computed term is

�4
ffiffiffiffiffiffiffi�g

p
�RARY�

~Y�� g�0
g00

¼ g02

4�2
�R�

ijkYijYk: (4.28)

The results discussed so far refer to the globally neutral case
where the current is Ohmic. If the plasma is not globally

neutral the degree of arbitrariness in the determination of
the consistency relations increases since the coefficients S!

and SB will also depend on the chemical potential of the
global charge of the plasma. This analysis is reported, for
completeness, in Appendix C and has also been discussed,
from a different perspective, in Ref. [33].

V. IDEAL AND RESISTIVE LIMITS IN AMHD

The generally covariant discussion of the magnetic and
Ohmic currents will now serve as a starting point for the
analysis of conformally flat background geometries of
the Friedmann-Robertson-Walker type, g�� ¼ a2ð�Þ���,

which are just slightly more restrictive than the ones dis-
cussed in Sec. III. The evolution equations of the system
become particularly simple in terms of the rescaled electric
and magnetic fields already introduced in Eqs. (3.13),
(3.14), and (3.15),

~r � ~E ¼ 0; ~r � ~B ¼ 0; (5.1)

~r� ~Eþ @� ~B ¼ 0;

~r� ~B� @� ~E ¼ 4� ~J þ ��! ~!� ��B
~B;

(5.2)

where the two quantities ��! and ��B are defined as ��! ¼
4�a2�! and ��B ¼ 4�a�B. Using Eqs. (4.26) and (4.27)
their explicit form is

��! ¼ 8�a2T2aBð ��RÞ; ��B ¼ 16�TaAR ��R: (5.3)

From the projection of Eq. (4.2) in the direction orthogonal
to u� [as discussed in Eq. (A2) of Appendix A] the evolution
equations of the bulk velocity of the plasma are given by

@�½W ~v� þ ð ~v � ~rÞ½W ~v� þ ~v ~r �½W ~v�
¼ � ~rPþ ~J � ~Bþ �

�
r2 ~vþ 1

3
~rð ~r � ~vÞ

�
; (5.4)

@��þ ~r � ½W ~v� � ~E � ~J ¼ 0; (5.5)

where W denotes the rescaled enthalpy density and ð�; PÞ
are the rescaled energy density and pressure,

W ¼ a4w ¼ a4ðpþ 
Þ ¼ �þ P;

P ¼ a4p; � ¼ a4
:
(5.6)

Equations (5.4) and (5.5) can be simplified in the case of an

incompressible closure where ~r � ~v ¼ 0 even if this is
probably not the most physically justified closure prior to
matter-radiation equality (see e.g. Ref. [20]). For the slow
modes of the plasma the displacement current can be
dropped in Eq. (5.2) so that the generalized magnetic
diffusivity equation is

@� ~B¼ ~r� ð ~v� ~BÞ þ r2 ~B

4��
þ

~r� ð ��! ~!Þ
4��

�
~r� ð ��B

~BÞ
4��

:

(5.7)
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Equation (5.7) should be compared with Eq. (3.18) in the
pseudoscalar case. Focusing our attention on the terms
containing the conductivity, we have

��!

4��
¼ �T2

�
aBð ��RÞ;

��B

4��
¼ �T

4��
AR ��R; (5.8)

where �T ¼ aT denotes the comoving temperature and
� ¼ �ca is the comoving conductivity.

The rescaled chemical potential enters the infinitely
conducting limit of Eq. (5.8) since it is generally plausible
that ��R � 1 while �T and � are approximately constant in
time. The smallness of the particle asymmetries is the
rationale for the minuteness of the rescaled chemical
potentials in approximate thermal equilibrium. Positing,
for simplicity, that all the species can be treated as being
ultrarelativistic at temperatures larger than a certain refer-
ence temperature (e.g. the temperature of the electroweak
phase transition) and assuming the minimal standard
model of electroweak interactions with three families and
massless neutrinos, there are three conserved global
charges supplemented by the hypercharge and by the third
component of the weak isospin. If the plasma is hyper-
charge neutral the value of the chemical potential can be
estimated from the asymmetry in the case where all the
standard model charges are in complete thermal equilib-
rium [11]. If all the asymmetry is attributed to the right
electrons (which is, in some sense, the most favorable
situation) then ��R ¼ ð87�2=220ÞNeffðnR=&Þ, whereNeff ¼
106:75. This means that, indeed, ��R � 1.

Denoting with m the mass of the lightest charge carrier,

� / �0
�Tð1þma= �TÞ�1=2 and �0 can be estimated in ex-

plicit models like the ones of Ref. [34]. In the case of an
electromagnetic plasma �0 / ��1

em . The balance between
the two terms in Eq. (5.8) depends on the value of aBð ��RÞ
(which is not fixed), but in the limit of infinite conductivity
Eq. (5.7) leads to

@� ~B ¼ ~r� ð ~v� ~BÞ þO
�
��R

�

�
; (5.9)

which is qualitatively similar to the result of Eq. (3.18).
Defining the vector potential in the Coulomb gauge,

Eq. (5.9) becomes, up to small corrections, @� ~A ¼
~v� ð ~r� ~AÞ. The classic analysis of Woltjer and
Chandrasekhar [35] (see also Refs. [36,37]) can then be
exploited. The magnetic energy density shall then be mini-
mized in a finite volume under the assumption of constant
magnetic helicity by introducing the Lagrange multiplier
 . By taking the functional variation of3

G ¼
Z
V
d3xfj ~r� ~Aj2 �  ~A � ð ~r� ~AÞg (5.10)

with respect to ~A and by requiring �G ¼ 0, the configura-

tions minimizing G are such that ~r� ~B ¼  ~B. These
configurations have been used to describe hypermagnetic
knots (see the third and fourth papers of Ref. [11]); in this
case  has the dimension of inverse length and gives the
scale of the hypermagnetic knot, which is related to Chern-
Simons waves. Configurations with finite energy and finite
helicity can also be constructed [11,38]. The configurations
with constant  also represent the lowest state of magnetic
energy which a closed system may attain in the case where
anomalous currents are present, provided the ambient
plasma is perfectly conducting.
The limit� ! 1 canbecorroboratedby explicit solutions

that are valid in the presence of anomalous symmetries in
conformally flat space-time geometries and by minimizing,
asymptotically, the functional of Eq. (5.10). Let us now use
the configurations (5.10) and try to find solutions of our
system. For the sake of simplicity we shall assume the
constancy of the rescaled enthalpy W both in space and
time. This means that the rescaled energy density and pres-
sure are also constant in time provided that the plasma is
dominated by radiation and P ¼ �=3. For consistency the
fluid should be incompressible in the absence of the relativ-
istic fluctuations of the geometry (see, however, Ref. [20]).
Under these simplifying (but realistic) assumptionsEqs. (5.4)
and (5.7) can be rewritten as

@� ~v¼ ~v� ~!� ~r
�
P

W
þv2

2

�
þ ~J� ~B

W
þ �kinr2 ~v; (5.11)

@� ~B¼ ~r�ð ~v� ~BÞþ�!
~r� ~!��B

~r� ~Bþ�magr2 ~B;

(5.12)

where �kin ¼ ð�=WÞ and �mag1=ð4��Þ. Equations (5.11)

and (5.12) are symmetric for the generalized self-similarity
transformations

~x ! ‘ ~x; � ! ‘1���; ~v ! ‘� ~v; ~B ! ‘� ~B

(5.13)

in the so-called inertial range [i.e. when the magnetic
forcing is absent from the right-hand side of Eq. (5.11)]
and provided that ð�kin; �magÞ transform as ð�kin; �magÞ !
ð�kin�magÞ‘1þ�. The similarity transformation of Eq. (5.13)

holds true if ð�!; �BÞ transform as �! ! �!‘
� and �B !

�B‘
�. Recalling that �! / f!ð ��RÞ�mag and �B /

fBð ��RÞ�mag, then it also follows that f!ð ��RÞ and fBð ��RÞ
must scale as ‘�1 if the symmetry holds true. The latter
considerations generalize the similarity symmetry used by
Olesen (see e.g. the third paper of Ref. [21]) to analyze the
conditions for inverse cascades in the standard hydromag-
netic situation.

3Following the treatment of Ref. [35] (see also Refs. [36,37])
we assume that V is the fiducial volume of a closed system. In
the present case it could be identified, for instance, with the
volume of the particle horizon at a given epoch after the end of
inflation.
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Two solutions shall now be discussed. In the first case

the magnetic field is given by ~B ¼ ~H0 þ ~H, where ~H0 is a

space-time constant while ~H and ~v are inhomogeneous and

depend both on space and time. In the second case both ~B
and ~v will be taken to be fully inhomogeneous. Defining

the auxiliary fields ~h ¼ ~H=
ffiffiffiffiffiffiffiffiffiffiffi
4�W

p
and ~h0 ¼ ~H0=

ffiffiffiffiffiffiffiffiffiffiffi
4�W

p
,

Eqs. (5.11) and (5.12) are expressible as

@� ~v ¼ ~v� ð ~r� ~vÞ þ ð ~r� ~hÞ � ~hþ ð ~h0 � ~rÞ ~h

�
ffiffiffiffiffiffiffi
4�

W

s
�!�ð ~!� ~h0 þ ~!� ~hÞ þ �kinr2 ~v; (5.14)

@� ~h ¼ ~r� ð ~v� ~hÞ þ ð ~h0 � ~rÞ ~vþ �!ffiffiffiffiffiffiffiffiffiffiffi
4�W

p ~r� ~!

� �B
~r� ~hþ �magr2 ~h: (5.15)

After careful inspection of Eqs. (5.14) and (5.15) there are
two possibilities for a consistent solution. If �! ¼ 0 and
h0 � 0, Eqs. (5.14) and (5.15) are solved provided that the
functional of Eq. (5.10) is minimized and, consequently,
~r� ~h ¼ k ~h and ~r� ~v ¼ k ~v. The full solution can be
expressed in a specific Cartesian coordinate system as

~vðk; z; �Þ ¼ vð�Þ½cos ðkzÞêx � sin ðkzÞêy�;
~hðk; z; �Þ ¼ hð�Þ½sin ðkzÞêx þ cos ðkzÞêy�:

(5.16)

The functions vð�Þ and hð�Þ appearing in Eq. (5.16) must
then obey:

@�v ¼ kh0h� �kink
2v;

@�h ¼ �kh0v� �Bkh� �magk
2h:

(5.17)

As anticipated there is also a second solution of Eqs. (5.14)
and (5.15) which can be obtained by setting h0 ¼ 0 and
by demanding that the velocity and the rescaled hyper-

magnetic field are parallel, i.e. ~v� ~h ¼ 0 (i.e. ~vk ~h). In the
latter case, defining ~v ¼ vð�Þn̂ and ~h ¼ hð�Þn̂, we have
that

@�vþ k2�kinv ¼ 0;

@�hþ k2�magh ¼ � k2�!ffiffiffiffiffiffiffiffiffiffiffi
4�W

p v� k�Bh;

(5.18)

where, as before, ~r� ~h ¼ k ~h and Eq. (5.10) is minimized.
Equations (5.17) and (5.18) can be used to investigate the
limit of the solutions for infinite conductivity and check
that it coincides with the solution of the limit. For instance,
Eq. (5.17) in the infinite conductivity limit (i.e. �mag ! 0

and �B ! 0) for an inviscid fluid (i.e. �kin ! 0) can be
solved with the result that vð�Þ ¼ v
 cos ðkh0�þ ’
Þ and
hð�Þ ¼ �v
 sin ðkh0�þ ’
Þ, which is exactly the solution
expected in the absence of anomalous currents (see e.g. the
last two papers in Ref. [39]).

VI. CONCLUDING REMARKS

Hydromagnetic nonlinearities in charged liquids at high
magnetic Reynolds numbers lead to large-scale magnetic
fields which are parallel rather than orthogonal to the
current. Anomalous symmetries produce a similar effect
that may even interfere with standard hydromagnetic re-
sults in a turbulent environment. Two distinct but equally
plausible situations have been specifically scrutinized in
a globally neutral system at finite conductivity: a plasma
containing pseudoscalar species and the anomalous
currents induced by finite-density effects.
The analysis of pseudoscalar species is simplified by the

covariant conservation of the total energy-momentum tensor
of the system. The slow modes (i.e. the modes for which the
propagation of electromagnetic disturbances is negligible)
obey a generalized magnetic diffusivity equation where the
anomalous effects are suppressed as long as the plasma is
globally neutral, the pseudoscalar field is quasihomogene-
ous, and the conductivity is parametrically large. Instead of
positing a specific action it is possible to consider the
currents themselves as the building blocks of the physical
description of the plasma. The simplest case in the frame-
work of anomalous magnetohydrodynamics contains two
currents—one anomalous and the other nonanomalous—
that are both constrained by the canonical form of the
Joule heating and by the second principle of thermodynam-
ics. Supplementary terms have been shown to arise in the
Ohmic current. While this treatment resembles the hydro-
dynamic approach to anomalous symmetries, in the present
analysis, the hyperelectric current is not anomalous. The
generalized magnetic diffusivity equation has been shown to
also include terms proportional to the vorticity four-vector,
which is intuitively plausible by thinking of the Einstein–de
Haas effect in a globally neutral plasma. The anomalous
currents contribute to the evolution of the bulk velocity of
the plasma and to the generalized magnetic diffusivity equa-
tion. The perfectly conducting limit suppresses the anoma-
lous contributions and the configurations minimizing the
energy density with the constraint that the magnetic helicity
be conserved, which coincides with the ones obtainable in
ideal magnetohydrodynamics where anomalous currents are
absent. This observation has been used to derive hyper-
magnetic knot solutions in a hot plasma from their magnetic
counterpart.
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APPENDIX A: SOME USEFUL GENERALLY
COVARIANT RELATIONS

Consider a generally relativistic plasma characterized by
a gauge field strength Y�	, current j� and four-velocity u�.
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Using the equations of the gauge fields (i.e.r�Y
��¼4�j�

and r�
~Y�� ¼ 0) the conservation of the energy-

momentum tensor implies thatr�T
�� ¼ Y��j

�. The latter

relation can be projected along two orthogonal directions,
i.e. u� and h�� ¼ ��

� � u�u�, with the result

r�½wu�� � u�@�p ¼ Y��u
�j�; (A1)

wu�r�u� � @�pþ u�u
�@�p ¼ Y�	j

	 � Y�	u
�j	u�;

(A2)

where w ¼ ð
þ pÞ denotes the enthalpy density of the
fluid. The electric and magnetic fields are nonrelativistic
concepts, while in relativistic terms the correct quantity to
employ is the Maxwell field strength and its dual. It is
sometimes useful to decompose the gauge field strength in
terms of E� and B�,

Y�	 ¼ E½�u	� þ 1

2
E�	
�u

½
B��;

E�	
� ¼ ffiffiffiffiffiffiffi�g
p

��	
�;
(A3)

where ��	
� is the Levi-Civita symbol in four dimensions

and E½�u	� ¼ E�u	 � E	u�. From the definition of dual

field strength in a four-dimensional curved space-time, i.e.
~Y�� ¼ E��
�Y
�=2, we shall have, in terms of E� andB	,

~Y�	 ¼ B½�u	� þ 1

2
E�	
�E½
u��: (A4)

In full analogy with the gauge field strength we can also
define the vorticity four-vector,

!� ¼ ~f��u� � 1

2
E��	�u�f	�;

f	� ¼ r	u� �r�u	:
(A5)

Equation (A5) can be inverted in terms of f�	 and the

result is

f�	 ¼ �E�	��!
�u� þ u½�u�r�u	�: (A6)

Recalling Eqs. (A1), (A2), and (A6) the covariant derivative
of !� can therefore be expressed as

r�!
� ¼ � 2!�

w

�
@�pþ Y��j

�

�
: (A7)

In analogy with Eq. (A7) the covariant divergences of B�

and E� become

r�B� ¼ 2Y
�!

u� þ u�@�p

w
~Y�� þ u�Y�	

w
j	 ~Y��;

(A8)

r�E� ¼ 4�j�u� � ~Y�
!�u
 þ Y	�
u	@�p

w

þ Y	�u	Y��j
�

w
: (A9)

In the special case where the plasma is not globally neutral
and the electric current is j� ¼ ~nu�, Eqs. (A7) and (A8)
become, respectively,

r�!
� ¼ �2

!�@�p

w
� 2~n

E�!�

w
; (A10)

r�B� ¼ 2E�!
� �B�@�p

w
� ~n

w
E�B�; (A11)

r�E� ¼ 4�~n�!�B� � E�@�p

w
� ~nE�E�

w
: (A12)

In the absence of gauge fields, the relativistic generalization
of the Helmholtz equation can be written as

u�r�!
� þr�u

�!� �!�r�u
� þ ðu�!� þ u�!�Þ

� @�p

w
¼ 0: (A13)

APPENDIX B: COMOVING FRAME
AND PHYSICAL FIELDS

In comoving coordinates u� ¼ g0�=
ffiffiffiffiffiffiffi
g00

p
and u� ¼

�
�
0 =

ffiffiffiffiffiffiffi
g00

p
. In the comoving frame the auxiliary fields de-

fined in Eq. (A4) are E� ¼ ð0; EiÞ andB� ¼ ð0;BiÞ, where

Ei ¼ Yi0ffiffiffiffiffiffiffi
g00

p ; Bi ¼ ~Yi0ffiffiffiffiffiffiffi
g00

p : (B1)

Since Ei and Bi are not three-dimensional fields but rather
the spatial components of a contravariant four-vector, the
corresponding covariant components will be obviously
given by Em ¼ gmi

ffiffiffiffiffiffiffi
g00

p
Yi0 and Bm ¼ gmi

ffiffiffiffiffiffiffi
g00

p ~Yi0.

In a perfect conductor, i.e. when the conductivity is
infinite, the electric fields are completely screened.
Conversely, at finite conductivity electric fields are sup-
pressed. In both cases Lorentz invariance is broken and it is
convenient to introduce a frame (the so-called plasma
frame) where the electric fields vanish. The spatial compo-
nents of E� and B� do not coincide with the three-
dimensional fields ei and bi. The three-dimensional fields
can be defined as Yi0 ¼ g00ei and Yij ¼ �g00�ijkbk.
Since

ffiffiffiffiffiffiffi�g
p

Y�� and
ffiffiffiffiffiffiffi�g

p ~Y�� are both invariant under

Weyl rescaling, two Weyl-invariant combinations can be

introduced, i.e. �E� ¼ ffiffiffiffiffiffiffi�g
p

Y�� �u� and �B� ¼ ffiffiffiffiffiffiffi�g
p

Y�� �u�,
where �u� satisfies ��� �u

� �u� ¼ 1 and ��� is the Minkowski

metric. The comoving electric and magnetic fields in three-

dimensional notation are ~E ¼ g00
ffiffiffiffiffiffiffi�g

p
~e and ~B¼g00

ffiffiffiffiffiffiffi�g
p ~b.

Using the standard Arnowitt-Deser-Misner (ADM) decom-

position the comoving fields are ~E ¼ ð ffiffiffiffi
�

p
=NÞ ~e and
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~B ¼ ð ffiffiffiffi
�

p
=NÞ ~b and coincide with the ones discussed, for

instance, in Ref. [32]. Following the definitions spelled out
in this appendix and consistently followed in the paper we
have that

Y��
~Y�� ¼ 4B�E� ¼ �4

~E � ~Bffiffiffiffiffiffiffi�g
p ; (B2)

where
ffiffiffiffiffiffiffi�g

p ¼ N
ffiffiffiffi
�

p
in the framework of the ADM decom-

position. Finally, in the case of a conformally flat geometry

we can write that the metric is g�� ¼ ð�gÞ1=4��� and

the various definitions simplify so that, for instance,
~E ¼ ð�gÞ1=4 ~e, ~B ¼ ð�gÞ1=4 ~b, and so on and so forth.

APPENDIX C: THE CASE OFA
NON-NEUTRAL PLASMA

The results of Eqs. (4.26) and (4.27) hold in the case of a
globally neutral plasma where Ohmic and anomalous cur-
rents are simultaneously present. This situation will now be
compared with the case where—instead of an Ohmic
current—we have an ordinary particle current and the
plasma is not globally neutral. In this case we shall have
two chemical potentials: one related to the anomalous
current and the other related to the particle current. The
thermodynamical relations will therefore be modified and,
for instance, the enthalpy density will be given by w ¼
T&þ ~n�þ nR�R. Repeating the same steps discussed
before, we shall have that

r�½ð&� ��R � ��Þu�� þ ��
R@� ��R þ ��@� ��

� 4AR ��RE�B� þ ��E�

T
¼ 0: (C1)

The same steps outlined above can then be repeated. By
defining the entropy four-vector as in Eq. (4.9), the cova-
riant four-divergence of &� becomes

r�&
� ¼ r�ðS!!

� þ SBB�Þ � ��
R@� ��R � ��@� ��

þ 4AR ��RE�B� � ��E�

T
: (C2)

We can now recall, from the general expressions of
Appendix A and B, that

r�!
� ¼ � 2

w
!�@�p� 2

w
~nE�!

�;

r�B� ¼ 2!�E� � 1

w
@�pB� � ~n

w
E�B�:

(C3)

In this case the expressions of P� and Q� of Eqs. (4.19)
and (4.20) become

P� ¼ @�S! � 2

w
S!@p� @� ��R�R! � @� ���!;

(C4)

Q� ¼ @�SB � SB

w
S!@p� @� ��R�RB � @� ���B:

(C5)

Two further conditions can be derived by requiring the
coefficients of E�!

� and E�B� vanish. The two relations
are

2SB ��!

T
� 2

~n

w
S! ¼ 0;

4AR ��R ��B

T
� ~n

w
SB ¼ 0:

(C6)

In this case S! is not bound to vanish but, conversely, the
system depends on a number of arbitrary functions. More
precisely, we have that

S!ðT; ��; ��RÞ ¼ T2a!ð ��; ��RÞ;
SBðT; ��; ��RÞ ¼ TaBð ��; ��RÞ;

(C7)

�!ðT; ��; ��RÞ ¼ @

@ ��
½T2a!ð ��; ��RÞ�;

�BðT; ��; ��RÞ ¼ @

@ ��
½TaBð ��; ��RÞ�;

(C8)

�!RðT; ��; ��RÞ ¼ @

@ ��R

½T2a!ð ��; ��RÞ�;

�BRðT; ��; ��RÞ ¼ @

@ ��R

½TaBð ��; ��RÞ�:
(C9)

From Eq. (C6) it follows that

@aB
@ ��

¼ 4AR ��R;
@a!
@ ��

¼ 2aB: (C10)

After integrating the two equations of Eq. (C10) we have
that

aBð ��; ��RÞ ¼ 4AR ��R ��þ fð ��RÞ;
a!ð ��; ��RÞ ¼ 4AR ��R ��2 þ ��fð ��RÞ þ gð ��Þ; (C11)

where fð ��RÞ and gð ��Þ are two arbitrary functions of the
corresponding arguments. In the simplest situation we can
set both arbitrary functions to zero and, therefore,

�! ¼ 8AR��R

�
1� 2nT ��

w

�
;

�B ¼ 4AR��R

�
1� nT ��

w

�
:

(C12)

In a relativistic plasma in thermal equilibrium, both
corrections appearing in Eq. (C12) go as �=T.
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