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Here we consider the possibility of preheating the Universe via the parametric amplification of a

massless, Uð1Þ Abelian gauge field. We assume that the gauge field is coupled to the inflaton via a dilaton-

like coupling, a conformal factor with one free parameter. We present the results of high-resolution three-

dimensional simulations of this model and show that this mechanism efficiently preheats the Universe to a

radiation-dominated final state.
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I. INTRODUCTION

Apparently it is easy to inflate the Universe. There is no
lack of theoretical models that predict a de Sitter–like
expansion epoch in the early Universe [1–4]. The
present-day cosmic expansion appears to be inflating as
well [5,6]. Yet, reheating the cold Universe at the end of
primordial inflation is more of a challenge. In many mod-
els, inflation must be followed by a long phase in which the
inflaton oscillates at the bottom of its potential, slowly
transferring its energy to the rest of the Universe, to which
it is only weakly coupled. Although the old theory of
reheating [7–9] works, there has always been a desire to
reheat the Universe more efficiently, hence achieving a
large reheating temperature. One popular way to accom-
plish this is preheating, whereby classical field effects
[9–21] quickly and efficiently transfer the inflaton energy
to matter fields via three- or four-leg interactions despite
weak couplings and small decay rates.

In a typical preheating scenario, the inflaton � couples
g2�2�2 to another scalar field � whose mass is assumed to
be small compared to the expansion rate. The oscillation of
the inflaton amplifies particular modes of�, akin to theway
a child pumping her legs amplifies the harmonicmotion of a
playground swing. This driven instability creates strong
inhomogeneities in both � and�, whereafter it is generally
assumed that the � and� particles decay into the ultrarela-
tivistic species of the Standard Model. This is the largest
success of preheating; it is the mechanism through which
the Universe heats up to create the hot big bang.
Unfortunately, in most models of preheating, the Universe
is still matter dominated at the end of the resonance period
before thermalization takes place. Moreover, these same
models leave us with few observational signatures. It is
likely that the only observable consequence is in the form
of a stochastic gravitational wave background [13,22–29]
whose signal will be very difficult to detect unless inflation
occurred at a very low scale.

In this manuscript, we study the intriguing possibility
that the fields that undergo preheating are massless gauge

fields. We use electromagnetism with a dilaton-like cou-
pling to the inflaton that breaks conformal invariance as the
basis of our model, though more complicated gauge fields
may also be considered, e.g. Ref. [30]. Our model has long
been proposed as a mechanism for generating primordial
magnetic fields. (See e.g. Refs. [31–33] and Refs. [34–39]
for more recent articles and review.) New impetus to study
this model comes from general interest in a broader
range of interactions of the inflaton, particularly with
gauge fields, motivated in part by recent work on the
effective theory of inflation [40,41] and also new models
of inflation that directly utilize gauge fields [42–46].
Furthermore, our model has two novel features that attract
attention. First, it has recently been demonstrated that
fluctuations of the inflaton are correlated with the large-
scale magnetic field as a result of the coupling in our model
[47–50]. Second, the large-scale magnetic field breaks the
isotropy of space-time, even during inflation, and leaves an
asymmetry in the scalar fluctuation power spectrum [51].
Hence, a residual cross correlation or a power asymmetry
in the pattern of inhomogeneities in the sky may present a
signal as to the model of inflation and the mechanism of
preheating.
To put our model in context, we point out that there has

been a long line of work investigating the Higgs-like
coupling of the inflaton to gauge fields through the gauge
covariant derivative. Previous work has explored the dy-
namics of Abelian Uð1Þ gauge fields when coupled to a
scalar through the gauge covariant derivative [52,53]. Non-
Abelian gauge fields coupled to the inflaton, generally in
electroweak scale inflationary models, have been studied in
tachyonic preheating regimes [54–63]. These latter pro-
posals use exotic couplings that seek to explain the baryon
asymmetry. It has been further proposed [64,65] that the
gauge bosons, Z, W�, produced in these models source
large-scale intergalactic magnetic fields. The model we
present here is distinct from these: we use a conformal
coupling to an Abelian Uð1Þ gauge field and study the
dynamics of preheating in the parametric resonance regime.
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In our model, a single scalar degree of freedom, �, is
responsible for inflation and is coupled to electromagne-
tism via

S¼
Z
d4x

ffiffiffiffiffiffiffi�g
p �

�Wð�Þ
4

F��F
��� 1

2
@��@���Vð�Þ

�
;

(1)

where Wð�Þ and Vð�Þ are scalar functions and represent
the coupling strength and the inflationary potential, respec-
tively. Although we identify the Uð1Þ gauge field with
the usual electromagnetic field, there is no explicit need
that this be the case. We use a standard conformal metric
for an expanding Friedmann-Lemaı̈tre-Robertson-Walker
space-time:

ds2 ¼ a2ð�Þð�d�2 þ d~x2Þ: (2)

The scalar field, �, is subject to a quadratic potential
parameterized by a mass scale m�,

Vð�Þ ¼ 1

2
m2

��
2: (3)

For the majority of the work presented here, we fix m� ¼
10�6mpl, where we define the Planck mass in terms of the

gravitational constant as mpl ¼ 1=
ffiffiffiffi
G

p
. The coupling func-

tion Wð�Þ has the form
Wð�Þ ¼ e�=M; (4)

where M is a free parameter which will ultimately take a
value near the geometric mean ofm� andmpl. As the scalar

field decays, the coupling goes to unity and standard
electromagnetism is recovered.

The equations of motion of the coupled scalar-vector
system are simply r�ðWF��Þ¼0 and h�¼V0þ1

4W
0F2.

Hence, the coupling functionW acts like a source of charge
and current density for the electromagnetic fields, which in
turn contribute an effective mass to the scalar field. To
simplify the system of equations, we impose the Lorenz
gauge condition

@��þ ~r � ~A ¼ 0; (5)

where A� ¼ ðA�; ~AÞ, and � ¼ �A� is the scalar potential.

The gradient operator is evaluated on the comoving
Cartesian space. Consequently, we find the equation of
motion for the electromagnetic potentials:

ð@2� �r2ÞA� ¼ J�; (6)

where J� ¼ ð��eff ; ~JeffÞ, and

�eff ¼ 1

M
~r� � ð@� ~A� ~rA�Þ; (7)

~Jeff ¼ � 1

M
½@��ð@� ~A� ~rA�Þ þ ~r�� ð ~r� ~AÞ�: (8)

These effective source terms are conserved, such that

@��eff þ ~r � ~Jeff ¼ 0. The equation of motion for � is

@2��þ 2H@���r2�þ a2V;�

¼ W;�

2a2
½ð@� ~A� ~rA�Þ2 � ð ~r� ~AÞ2�; (9)

whereH ¼ d lna=d�.
The energy density in the scalar field is

�� ¼ 1

2a2
½ð@��Þ2 þ ðr�Þ2� þ V; (10)

whereas the energy density in the vector field is

�EM ¼ W

2a4
½ð@� ~A� ~rA�Þ2 þ ð ~r� ~AÞ2�; (11)

which is the standard energy density for electricity and
magnetism enhanced by our conformal coupling, Wð�Þ.
We also solve for the cosmic expansion, via

H 2 ¼ 8�a2

3m2
pl

ð�� þ �EMÞ; (12)

to close the system of equations.

II. NUMERICAL SIMULATIONS

The art of three-dimensional lattice simulations is now
mature. A family of numerical codes—first LATTICEEASY
[66] and then DEFROST [67], PSPECTRE [68], and HLATTICE

[69]—have been used to explore linear and nonlinear
dynamics in expanding space-times. To improve efficiency
without reducing accuracy, these codes all employ clever
rescalings that reduce the Klein-Gordon equation to a
phase-separable equation, and hence, they can use sym-
plectic integrators which require a fraction of the physical
memory of other methods. Here, we push the problem
beyond the boundaries of these numerical techniques, since
Eqs. (6) and (9) are not phase separable under the same
coordinate transformation. The field values as well as the
time derivatives of the field must be known at the same
time. To deal with this, we employ the GRID AND BUBBLE

EVOLVER (GABE) [70], which uses a second-order Runge-

Kutta method of integration. This method requires about
twice as much physical memory (and longer runtimes) than
its symplectic cousins, but is more versatile and able to
adapt to our model.
We begin our simulations at the point when inflation

ends. The homogeneous modes of the field and its deriva-
tive, �0 ¼ 0:2mpl and @�� � 0:14m�mpl, are determined

by the inflationary dynamics. We set the fluctuations of the
field to be consistent with the Bunch-Davies vacuum,

hj ~�ðkÞj2i ¼
�
2a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

�

q ��1
; (13)

and we use the Fourier convention
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~f ¼ ð2�Þ�3=2
Z

d3xe�i ~k� ~xfðxÞ: (14)

The majority (usually all) of our modes are smaller than the
horizon when the simulations begin, and so we ignore any
effects that might arise for modes larger than the horizon
[67]. The initial fluctuations for Ai are set differently from
the fluctuations for �—we must scale the fluctuations by

1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Wð�0Þ

p
as in Refs. [43,47,48]. The power spectrums for

each component of the Ai are given by

hj ~AiðkÞj2i ¼ h ~AiðkÞ ~Ajðk0Þ�ij�ðk� k0Þi¼ ð2akWð�0ÞÞ�1:

(15)

For all of the results presented here, we use a 2563 lattice
and an initial box size of L0 ¼ 20m�1

� . We initialize all

simulations at � ¼ 0 and a ¼ 1. The computational method
sets initial conditions in momentum space, drawing the
magnitude and phase of modes from a distribution so that
the configuration space fields have the correct statistics. The
gauge condition is imposed as an additional constraint on
the initial conditions. We set A� ¼ 0, and then assign ran-
dom initial conditions (in momentum space) to the i, j, k
components of the gauge field that are consistent with
~k � ~A ¼ 0. In principle, satisfying the gauge condition on
the initial slice inmomentum space should satisfy the gauge
condition in configuration space. In practice, however, the
existence of high-frequency modes makes evaluating finite
spatial derivatives inaccurate. To solve this problem, we
apply a window function to our initial conditions,

FðkÞ ¼ 1

2
½1� tanh ðsðk� k�ÞÞ�; (16)

where k� sets the scale of the cutoff and the parameter s
dictates the smoothness of the cutoff. For the results pre-
sented in the following section, we chose k� ¼ knq=4 and

s ¼ 1

2

L0

2�
m�1

� � 1:56m�1
� : (17)

The scale knq is the Nyquist frequency for our box,

knq ¼ 256
ffiffiffi
3

p 2�

L0

� 140m�; (18)

and it is the largest wave vector we can resolve on our box.
Since the highest-frequency modes have a characteristic
comoving period of

Tmin ¼ 2�

!
¼ 2�

k
¼ L0

N
; (19)

we set the dimensionless conformal time step, h ¼ d�m�,

so that we have sufficient temporal resolution for this
highest-frequency mode. In other words, we want to make
sure that the ratio of the shortest period to the time step,

Tmin

d�
¼ L0

N

1

h
; (20)

is larger than 10 or so; thus, we have at least ten slices over
the course of one oscillation. To achieve this, we set
h ¼ 0:005, which ensures thatTmin=d� � 15.We terminate
the simulation when a � 15 or so, when most of the reso-
nant behavior in which we are interested ceases to occur.
The introduction of the window function, Eq. (16), and

its associated parameters is precautionary, too. Figure 1
shows how well the gauge condition is satisfied at a par-
ticular point in our box over the course of the simulation.
We see that as we decrease the cutoff frequency, k�, the
gauge condition is more accurately satisfied. Satisfaction
of the gauge condition is not sensitive to the value of the
smoothing parameter for the range of values we tested,
0:1 & s & 1. Although the existence of a window function
damps out the higher-frequency modes, and hence,
changes the average initial energy in the gauge field (as
can be seen in Fig. 5), there is little effect on the physics;
the evolution of the box, að�Þ, the existence of resonant
amplification of modes, and the final state of the simulation
are largely insensitive to k�, as we will show in the follow-
ing section.
Simulating gauge fields on a finite lattice is not always

as straightforward as we outline here. Evolving non-
Abelian fields on the lattice can lead to numerical inaccur-
acy, since the dynamics of the fields on the lattice do not
approach the continuum dynamics in the limit where the
lattice spacing goes to zero. Consequently, in most cases,
numerical simulations are developed to evolve link varia-
bles [71,72]. This approach is not necessary for Abelian
gauge fields, although it can be used to increase numerical
stability. Here we achieve our numerical stability with the
simplistic approach described earlier in this section. As a
measure of the degree to which the gauge constraint is
satisfied, we track the quantity

Gð�Þ ¼ j@��þ ~r � ~Ajffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð@��Þ2 þ ð@xAxÞ2 þ ð@yAyÞ2 þ ð@zAzÞ2

q ; (21)

which is the ratio of the gauge constraint to its Euclidean
amplitude, or the amplitude of the Lorentzian components
added in quadrature. As illustrated in the final panel of
Fig. 1, for the value of the cutoff that we use for our main
results, the gauge condition is satisfied to more than 2
orders of magnitude through the run, and more importantly,
it does not get worse over the course of the simulation.
When calculating this ratio using finite differencing in
configuration space, we are limited as to how small this
ratio can be; it is worth pointing out, however, that using
link variables or calculating the gauge constraint in a
different way could improve the amplitude of this ratio.

III. RESULTS

The inflaton is nearly homogenous and is preparing to
enter a phase of coherent oscillations at the beginning of
the simulations. It is usually this period of coherent
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oscillations that witnesses the resonance typical of preheat-
ing. At this early stage, jr�j � j@��j, so that the source
term �eff is negligible, which is consistent with the initial
condition A� ¼ 0. The current density at this time is ap-

proximately ~Jeff ’ �@��@� ~A=M. Although the source
term is nonlinear, we may approximate �ð ~x; �Þ ! �ð�Þ �
�� cos ðm��Þ at early times. In this case, the mode equations

for ~A are

@2� ~Aþ k2 ~A �
��m�

M
sin ðm��Þ@� ~A: (22)

The mode equation does not take the form of a Mathieu
equation, as commonly seen in preheating, but the oscilla-
tory inflaton very clearly pumps energy into the vector field

when the coefficient of @� ~A is negative. Hence, ~A grows and
sources fluctuations of�, which feed back into the sources

�eff and ~Jeff .
We expect the source term in Eq. (22) to become less

important as the ratio of �=M decreases. The inflaton can
be said to decouple from the gauge field when � � M
with negligible oscillations. This expectation is realized in
our simulations, as can be seen in Fig. 2. First, this figure
shows how the amplification of the modes of the gauge
field (parameterized by an increase in the variance of A�) is

strong when �=M is large. Second, the variance of the
inflaton also increases during this resonance period,
thereby amplifying high-frequency modes. Figure 2 illus-
trates that when � is comparable to M, this mechanism
begins to shut off, and the resonant production of energy in
the gauge field ceases. For the case of M ¼ 0:016mpl, this

occurs around �	 5m�1
� .

It is interesting to note that the time component of the
gauge field, A� (the blue curve in the middle plot of Fig. 2),
has a lower variance over the duration of the run, since A�

is initialized to identically zero at the beginning of the
simulation. Even still, the variance of all components of A�

grows by about 17 orders of magnitude by the time the
resonance period ends.
Although the growth in the variance of A� confirms the

existence of a period of resonance, it does not alone deter-
mine whether or not this resonance is sufficient to preheat
the Universe. To make this assessment, we consider how
much of the total energy of the simulation is transferred into
the energy density of the gauge field. We define the ratio

�EM=�tot ¼ �EM

�� þ �EM

(23)

to parameterize the efficiency of the process. The dramatic
conversion from the postinflationary period of coherent
oscillations to a radiation-dominated phase can be seen in
Fig. 3. Here, we see a comparison of the energy in
the inflaton sector, in the gauge sector, and the ratio of
the two. Figure 3 also shows how the equation of state
changes from an oscillatingw, consistent with a coherently
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FIG. 1 (color online). The top three panels show the four terms

that go into calculating the gauge constraint: �@�A� þ ~r � ~A
(red, solid line), consisting of @�A� (blue, solid line), @xAx

(green, solid line), @yAy (green, dashed line), and @zAz (green,

dotted line). The top three panels show the results for three
different simulations: the top panel shows the behavior in the
absence of a cutoff function, the second panel shows k� ¼ knq=2,

and the third panel shows k� ¼ knq=4. The bottom panel shows

Gð�Þ, a measure of how well the gauge constraint is satisfied, for
the case where k� ¼ knq=4. In all cases, m� ¼ 10�6mpl, M ¼
0:016mpl, and the field strengths are calculated at an arbitrary

point inside the box.
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oscillating scalar field, to w � 1=3. The energy density
ratio grows rapidly during the time of resonance, reaching
a maximum value of �EM=�tot ¼ 0:95. After the end of
resonance, �	 5m�1

� , the fields are essentially decoupled,

and the energy that was transferred to the gauge field
remains in the gauge field. Even though some 5% of the
total energy is still in the � sector, because some of the �
modes that remain populated are ultrarelativistic, with k 

m�, the total energy density remains radiation dominated.

We can also look at the distribution of energy in the
gauge sector. Figure 4 shows how the amplification of
electromagnetic energy occurs over time, using the power
spectrum, j�EMðkÞj2; resonance occurs broadly across the
lower-frequency bands during the early stages of reso-
nance, and higher-frequency modes are amplified toward
the end of resonance. We also see that after �	 10m�1

� , the

power spectrum, j�EMðkÞj2, changes very little. In addition,
we can compare the energy in the electric field,
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FIG. 2 (color online). Top: The mean value of � over the box
(green, solid line) with reference lines at � ¼ 0 (black, solid
line) and 0:016mpl (black, dashed line). Middle: The variance of

the gauge fields A� (blue, solid line) and ~A (green, solid line).
Bottom: The variance of the inflaton �.
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FIG. 3 (color online). Top: The energy density in the inflaton
(blue, dotted line), the gauge fields (red, dashed line), and the
total (green, solid line). Middle: The fraction of the total energy
in the gauge field. Bottom: The equation of state, w ¼ p=�,
during the simulation.
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�E ¼ W

2a2
j@� ~A� ~rA�j2; (24)

to the energy in the magnetic field,

�M ¼ W

2a2
j ~r� ~Aj2; (25)

as in Fig. 4. During the resonance period, the electric and
magnetic fields are amplified at slightly different times, but
by the end of the simulation the energy is split evenly
between the two contributions.

At this point we can look for any dependence that our
choice of cutoff, k�, might have on this outcome. In Fig. 5,
we see the energy density ratio �EM=�tot over time for
various choices of the cutoff k�. In other words, the scales
that play a role in preheating are well resolved by our
simulations, and the final state of the preheated Universe
is the same.

Next, we can quantify how the interaction parameter M
affects preheating. We explore values of M between
0:005mpl & M & mpl. Figure 6 shows the energy density

ratio �EM=�tot over the simulation time. The smaller M
values have faster growth of the energy density ratio
�EM=�tot. This plot shows us that larger M values corre-
spond to a more efficient (and faster) resonance period. We
note that runs with very highM * 0:04mpl terminate early,

since the resonance in the gauge field is so broad that power
builds up in high-frequency modes and destabilizes the
gauge field evolution. For the largest values of M that we
test, resonance occurs quickly and efficiently before the
end of the first full oscillation of the inflation. Marginal
values of 0:017mpl <M< 0:04mpl correspond to incom-

plete resonance, where the gauge field does not acquire
enough energy from the inflaton before the resonance
mechanism shuts off.
We can further probe the effectiveness of preheating on

the parameter M by looking at the maximum value of the
energy density ratio in Fig. 7. The green squares in Fig. 7
show the maximum value of the ratio �EM=�tot for different
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FIG. 4 (color online). Top: The power spectrum of the energy
density in the gauge field at � ¼ 0 (black, dotted line), � ¼ 2m�1

�

(blue, dotted line), � ¼ 5m�1
� (red, dashed line), � ¼ 10m�1

�

(gold, dot-dashed line), and � ¼ 15m�1
� (green, solid line).

Bottom: The energy density in the electric field �E (blue, dotted
line), the magnetic field �M (red, dashed line), and the total
electromagnetic energy �EM (green, solid line).
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FIG. 5 (color online). The energy density ratio �EM=�tot with-
out a cutoff (blue, dotted line), with cutoff k� ¼ knq=2 (red,

dashed line), and with cutoff k� ¼ knq=4 (green, solid line). In

these simulations, m� ¼ 10�6mpl and M ¼ 0:08mpl.
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FIG. 6 (color online). Plot of the energy density ratio
�EM=�tot, where m� ¼ 10�6mpl, and for M> 0:04mpl (dotted

lines), for 0:017mpl <M< 0:04mpl (dashed lines), and for M<

0:017mpl (solid lines). The green solid line is M ¼ 0:016mpl.
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simulations, each with a different value of M, with �0 ¼
0:2mpl and m� ¼ 10�6mpl. These points also correspond

to the energy density curves in Fig. 6. For large values of
M, the resonance period is not as effective as it is for small
M; the dramatic falloff around M	 0:02mpl–0:03mpl is a

consequence of the fact that the amplitude of the field during
its first oscillation is �	 0:05mpl, which can be seen in

Fig. 2. It is for this reason that whenM is much greater than
0:05mpl, we do not see any significant resonance.We always

see strong resonant effects for M & 0:02mpl, because the

coupling term is relevant for a significant portion of
the period of coherent oscillations in �. When M is of the
same order as �0, we see partial resonance.

The effect of changingm� can also be seen in Fig. 7. We

see that, for small values of M, the final state of the
simulation is a radiation-dominated, preheated Universe,
independent of m�. For larger values of M, the peak value

of the fraction �EM=�tot depends on m�; of course, this

maximum value corresponds to the initial fraction of each
simulation, and is a function of the initial conditions. The
dramatic difference between these states—the range of
parameters for which resonance is partial—again occurs
near M	 0:02mpl–0:03mpl. We can change this location

by changing �0, though compatibility with successful
inflation dictates that this change should not be too large.
Figure 8 shows the effect of this change: a lower initial
amplitude for�0 moves the dropoff to smaller values ofM.
Considering that the coupling function depends on the ratio

�=M, a change of
ffiffiffi
2

p
between the initial values of �0 in

the curves illustrated in Fig. 8 agrees with a shift of the

drop off in M by the same factor of
ffiffiffi
2

p
.

IV. DISCUSSION

We have presented the first high-resolution, finite-
time lattice simulations of preheating in the model of
Eqs. (1)–(4) for a Uð1Þ Abelian gauge field with a
dilaton-like coupling to a massive scalar field. The ability
to simulate scalar gauge theories with novel couplings on
an expanding background is particularly timely and im-
portant, since the models and dynamics of reheating are
moving past toy models, and the focus is moving toward
understanding how the inflaton can couple to the fields in
some extension of the Standard Model.
Here we have shown that an Abelian Uð1Þ massless

electromagnetic field with a novel coupling to the inflaton
can be used as a mechanism by which energy can be moved
from the inflaton into particles. The process of gauge field
preheating, or ‘‘gauge preheating,’’ presents two signifi-
cant improvements to the standard preheating scenario:
(1) Gauge fields exist in most extensions of the Standard
Model, and it is likely that the symmetries of these gauge
fields have a Uð1Þ subgroup, and (2) it does not require
additional channels of decay, or tachyonic instabilities, in
order to generate the radiation-dominated Universe that is
needed for primordial nucleosynthesis. In our model, once
the energy is moved to the gauge field during resonance,
there is no movement of energy back to the scalar field that
onewould normally seewith a coupling between two scalar
fields [73]. The model that we have proposed, however, has
a natural termination; once � becomes small, the coupling
term becomes negligible. This ensures that whatever energy
is deposited into the gauge field will remain there. Thus, our
model gives a method for creating a Universe at the end of
inflation with a majority of its energy in a gauge field A�.

Furthermore, since at late times the conformal coupling
constant is close to unity, the standard dynamics of a gauge
field, electromagnetism, is recovered.
In traditional preheating, a significant fraction of the

energy of the inflaton is transferred into a massless
degree of freedom. In preheating scenarios, optimistic
predictions say that the coupled degree of freedom will
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FIG. 7 (color online). Plot of the maximum value of �EM=�tot

vs M, for m� ¼ 10�5mpl (dotted red line with diamonds), m� ¼
10�6mpl (solid green line with squares), and m� ¼ 10�7mpl

(dashed blue line with circles).
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FIG. 8 (color online). Plot of the maximum value of �EM=�tot

vs M, for �0 ¼ 0:2mpl (green line with squares) and �0 ¼
0:141mpl (dashed red line with circles), where m� ¼ 10�6mpl.

Note that the green curve has the same set of parameters as the
green curve in Fig. 7.
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have approximately the same energy as the inflaton [74],
even with three-leg interactions or tachyonic instabilities.
These scenarios then rely on additional mechanisms or
interactions to deplete the remaining energy in the infla-
tion. Here, we see that the fraction of energy transferred
into the gauge field is much more substantial; the energy in
the inflaton is depleted dramatically. For the example of
Sec. III where M ¼ 0:016mpl, only a few percent of the

total energy remains in the inflaton sector, whereas smaller
values of M are even more efficient. Even still, the exis-
tence of any energy left in the inflaton sector has the
potential to return the Universe to a matter-dominated
era. We must then rely on additional couplings to addi-
tional degrees of freedom to fully diminish the energy in
the inflaton.

The complexity of the equations of motion of our theory
necessitated the creation of a new code, GABE, to evolve the
coupled partial differential equations. This software also

represents the potential to couple the inflaton to more
sophisticated gauge fields, and opens the door to a study
of preheating in other models of inflation, such as Chromo-
Natural Inflation [44].
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