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This paper studies intermediate homogenization of inhomogeneous cosmological models. It shows that

spherically symmetric models, regardless of the equation of state, can undergo intermediate homogeni-

zation; i.e., a model can approach a homogeneous and isotropic state (which acts as a saddle point) from a

relatively wide range of initial inhomogeneous conditions. The homogenization is not permanent—just

temporary. Eventually, the model evolves toward a future inhomogeneous state. We also looked at the

problem of the gravitational entropy. All definitions of entropy that we checked give decreasing

gravitational entropy during the homogenization process. Thus, we should either accept that gravitational

entropy can decrease or try to define it in other ways than just via density gradients, as these decrease

during homogenization.
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I. INTRODUCTION

Cosmological observations seem to suggest that on large
scales the Universe is homogeneous, at least in some sta-
tistical sense. The strongest argument comes from the iso-
tropy of the cosmic microwave background radiation
(CMB). The Ehlers–Geren–Sachs theorem [1] and the ‘‘al-
most EGS theorem’’ [2] imply that if anisotropies in the
CMB are small for all fundamental observers, then locally
theUniverse is almost spatially homogeneous and isotropic.
In addition, if there were large inhomogeneities in the
Universe, they would manifest themselves in CMB tem-
perature fluctuations via the Rees–Sciama effect [3–5].
Moreover, the success of the homogeneous Friedmann–
Lemaı̂tre–Robertson–Walker (FLRW) models in describ-
ing cosmological observations seems to provide further
evidence for the large-scale homogeneity of our
Universe—cosmological observations are successfully an-
alyzed within the framework of homogeneous models,
including supernova Ia luminosity distance observations
[6,7], baryon acoustic oscillations [8], and the CMB [9].

However, when extrapolating the present-day cosmo-
logical model back to early times, it becomes apparent
that the size of causally connected regions becomes
smaller and smaller. Thus, if the present-day observed
Universe were not causally connected in the past, then it
seems very possible that it was highly inhomogeneous in
its early stages [10,11]. Hence, we have the following
questions. How is it possible that the Universe is homoge-
neous? Was it homogeneous from the very beginning?
Or did the homogeneity develop due to some kind of
dynamical process? And if so, then what kind of processes
were responsible for this?

Over past decades cosmologists invented several ap-
proaches to explain the large-scale homogeneity. In the
1960s Misner proposed the idea of chaotic cosmology
[12,13], in which the present-day large-scale homogeneity
and isotropy of the Universe developed in the course of
time. The initial state could have been quite chaotic.
Misner considered the Bianchi type I model with viscosity.
Among homogeneous and anisotropic models, the Bianchi
I models are the simplest, and in the case of vanishing
shear, they reduce to the parabolic FLRW solution.
However, Collins and Hawking [14] showed that among
homogeneous and anisotropic models those that approach
a homogeneous and isotropic state as t ! 1 are of mea-
sure zero. Bonnor and Tomimura [15,16] showed that
inhomogeneous cosmological models with Lemaı̂tre–
Tolman [17,18] and Szekeres [19] geometries become
homogeneous when one of the functions defining the
model is exactly of a specific form. As later confirmed
by Silk [20] and Plebański and Krasiński [21], such models
are characterized by being free of curvature perturbations.
Thus, they only possess decaying modes [20,21] [recently
these decaying modes have been carefully treated by
Wainwright and Andrews [22]—see their Eq. (38)].
Hence, these models also appear to be very special com-
pared to a general set of inhomogeneous models. There is
another category of expanding models, which approaches a
de Sitter configuration [23]. These constitute an open set
(for an explicit examples see Ref. [24]). In the case of the
Lemaı̂tre–Tolman models, the Milne model is yet another
possible future asymptote [22].
This asymptotic behavior, however, does not seem to be

able to account for the large-scale near homogeneity of the
Universe, which seems to be a cosmic feature at least since
the time of last scattering. Therefore, the conceptually
different approach of quiescent cosmology was introduced*bolejko@physics.usyd.edu.au
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by Barrow at the end of the 1970s [25,26]. Within this
framework the Universe starts from a fairly homogeneous
state. An argument for quiescent cosmology is usually
related to cosmic entropy considerations. As the entropy
always increases with time, the entropy of the early
Universe must have been small. A simple estimation of
the entropy of the early Universe seems to suggest that it
must have been close to homogeneous—otherwise its en-
tropy would have been too large. Later on Penrose put
forward the Weyl curvature hypothesis [27], which relates
the gravitational entropy to the Weyl curvature (we shall
examine this connection later). In this scenario the initial
state of the Universe should be of vanishing Weyl curva-
ture. Later on Goode and Wainwright [28] showed that one
can impose a weaker condition to explain homogeneity:
the Weyl curvature should be small compared to Ricci
curvature—in the early Universe, Ricci curvature should
dominate over Weyl curvature (for a discussion, see
Refs. [29,30]).

An alternative approach, called inflation, was proposed
at the beginning of the 1980s (for a discussion, see
Refs. [31,32]). Starting from some small homogeneous
patch inflation leads to a very rapid exponential increase
of its size through the action the vacuum energy of a scalar
field. Its very high negative pressure generates a repulsive
gravitational field. A small patch would be inflated to a size
much larger than the cosmic horizon. However, at the
beginning of the 1990s, it was realized that inflation cannot
begin if the degree of inhomogeneity is too large. If the
metric of the spacetime is homogeneous and isotropic with
all inhomogeneities dumped into the scalar field alone,
then such a model may undergo inflation [33]. Also in
the framework of linear perturbations around the FLRW
spacetime, it was found that a suitable scalar field can
initiate inflation [34]. Too large a degree of inhomogeneity
prevents the onset of inflation. Actually in order to start,
inflation requires a homogeneous patch of at least the
horizon size [35–38]. This means that we need some
homogeneity to begin with and that, without some other
process producing that homogeneity, inflation is rather
unlikely to occur in the real Universe.1

At the end of the 1990s, using a dynamical-systems ap-
proach, a very interesting feature was observed. Studying
Bianchi models it was found thatmost of the Bianchi models
undergo intermediate isotropization [41,42]. Their phase
spaces contain the Einstein–de Sittermodel as a saddle point.
Hence, during the course of evolution, starting from a wide
range of initial conditions, the system approaches the flat
Friedmann model. Thus, the model becomes almost iso-
tropic. Later, however, the system moves away from this
state and becomes anisotropic again.

This paper aims to investigate whether inhomogeneous
models possess a similar feature—if intermediate homoge-
nization can occur and, if so, then under what conditions.
Since the general case is extremely difficult, we shall
assume spherical symmetry. If this mechanism occurs
within spherically symmetric models, then it is possible
that it may occur within a more general class of models. On
the other hand, if intermediate homogenization does not
happen within inhomogeneous spherical symmetric mod-
els, it is very unlikely that it happens within general
asymmetric models. If it does occur, intermediate homoge-
nization would provide a link between the chaotic and the
quiescent approaches to cosmology. Also if it turns out that
intermediate homogenization is a generic phenomenon, it
would be a solution to the inflation problem. Inflation
could occur once the model approaches, in phase space,
a homogeneous configuration.
In Sec. II. we write down the metric and the Einstein

field equations for general spherically symmetric cosmo-
logical models along with a characterization of cosmic
matter. There follows in Sec. III a presentation of the
results of the numerical integration of six spherically sym-
metric inhomogeneous models during a very early era of
the Universe, demonstrating the rapid intermediate ho-
mogenization they exhibit. This occurs as long as the
spatial curvature E is much less than the Ricci curvature.
In Sec. III D we discuss various candidates for adequately
representing gravitational entropy to determine if any of
themmight be positive-definite and monotonically increas-
ing with time, thus realizing Penrose’s Weyl curvature
hypothesis [27]. We find that none of the candidates we
examine does so. We give a summary of our conclusions
in Sec. IV.

II. SPHERICAL SYMMETRIC MODELS

The most general form of a spherically symmetric
metric is

ds2 ¼ �eAdt2 þ R02

1þ 2E
dr2 þ R2d#2 þ R2sin 2#d’2;

(2.1)

where the functions A, R, and E depend on t and r; the
prime denotes the partial derivative with respect to r, R0 �
@R=@r. We presume that the mass energy which sources
the gravitational field can be represented by a fluid. In
several of our models, it will be an imperfect radiative
fluid. In several others we shall specialize it to a perfect
fluid with a dust (p ¼ 0) equation of state. From the
Einstein equations, we obtain the following evolution
equations [43,44]:

_R2 ¼ 2Eþ 2M

R
þ 1

3
�R2; (2.2)

1See Penrose [39] for a very penetrating and readable account
of the shortcoming of inflation. For a debate on pros and cons of
inflation, see Ref. [40].
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_M ¼ � 1

2
�p _RR2; (2.3)

_E ¼ A0

2
ð1þ 2EÞ _R

R0 ; (2.4)

where � ¼ 8�G=c4, G is the gravitational constant, c is
the speed of light, � is the cosmological constant—for the
early Universe epoch considered in this paper, the cosmo-
logical constant is completely negligible, and so we set it to
zero—p is pressure, and a dot denotes the partial derivative

with respect to proper time, _R � e�A=2@R=@t. The gradient
of the function A follows from Tab;b ¼ 0 and is

A0

2
¼

�p0 þ 2ffiffi
3

p ð��Þ0 þ 2
ffiffiffi
3

p
��R0=R

�þ p
; (2.5)

where � is the viscosity coefficient, � is the scalar of the
shear �2 ¼ �ab�

ab=2, and we have employed Eckhart’s
model for treating the viscous stress [45]. � is the energy
density and is given by

�� ¼ 2M0

R2R0 : (2.6)

III. RESULTS

In Ref. [46] we argued that inhomogeneous models can
undergo the process of homogenization starting from a set
of initial conditions that do not have to be of measure zero.
In Ref. [46] we provided only qualitative or semiquantita-
tive arguments, whereas here we provide a more detailed
analysis and explicit examples.

A. Setup

The solution algorithm used in our numerical calcula-
tions consists of the following steps:

(1) The radial coordinate is chosen to be the areal radius
at the initial instant: �r ¼ Rðti; rÞ. However, to sim-
plify the notation, we will omit the bar and denote
the new radial coordinate by r.

(2) The initial instant is set to bewhen the energies in the
Universe models are around those of the grand uni-
fied theory era, i.e., 1016 GeV. For radiative models
this implies temperature around 2:5� 1031 K and an
energy density of 4:5� 10110 J=m3.2

(3) The initial energy density profile is assumed to be

�i ¼ �0

�
1þ �

1þ ðr=�Þ2
�
;

where � ¼ 1000, �0 ¼ 2:05� 10101 J=m3, and
� ¼ 2� 10�28 m. This profile describes a single
inhomogeneity of amplitude A. Thus, this is a
convenient profile to study the process of the
homogenization.

(4) The initial mass follows from Eq. (2.6) by
integration.

(5) We consider six different models: SS1–3, LT1–3
(SS stands for a general spherically symmetric
model, while LT stands for the Lemaı̂tre–Tolman
model, which is a spherically symmetric solution
with dust). The initial values of the functions
E, which really represents the spatial curvature
(see Eq. (A4) of Wainwright and Andrews [22]), are
(a) models SS1 and LT1: E ¼ 10�4 � 2M

R ,

(b) models SS2 and LT2: E ¼ 10�3 � 2M
R ,

(c) models SS3 and LT3: E ¼ 10�2 � 2M
R .

The reason for choosing E as above is that in Ref. [46] it
was shown that a necessary condition for homogenization
is that E � M=R. This does not, however, mean that the
model is spatially flat. Here, for example, the spatial cur-
vature is more than 100 orders of magnitude larger than the
present-day spatial curvature in the FLRW model with
�m ¼ 0:3 and �� ¼ 0. It is also important to remember
that in general E ¼ Eðt; rÞ.
(6) Unfortunately the question of the equation of state

under extreme conditions remains unanswered.
Although observations of neutron stars rule out
some equations of state, they still allow for a
wide range of possibilities [47]. The ground-based
experiments on the quark-gluon plasma suggest
that it behaves like a ‘‘perfect’’ liquid with zero
or at least very low viscosity [48]. If this is true
even with a very strong gravitational field, the
question will most likely remain unanswered for
years. Thus, we consider two types of equations of
state in this paper: one with large viscosity and the
very opposite scenario—the dust equation of state.
The equation of state thus takes the following
form:

p ¼ K�� ���:

The first part of the above equation of state is the
standard barotropic part, and the second part is due
to viscosity. The coefficient � is the bulk viscosity
[we also consider the shear viscosity, which relates
the anisotropic stress tensor to shear via �ab ¼
���ab; see also Eq. (2.5)]. The coefficient � is
the expansion scalar

2If earlier times were properly described by a flat Friedmann
model dominated by radiation, then this moment would corre-
spond to t ¼ ð6�G�Þ�1=2 � 4� 10�41 s after the big bang
(where � ¼ 	=c2 and 	 ¼ 4:5� 10110 J=m3). This is how the
cosmic age is calculated in the standard cosmology. However, as
for calculations presented here the exact value of the ti is not
important, we do not specify it—what is important is the exact
value of the initial energy density.
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� ¼ u�;� ¼ _B

2
þ 2

_R

R
;

whereua is thevelocityfield, and eB ¼ R02=ð1þ 2EÞ.
The specific forms of the equation of state for
models SS and LT are as follows:
(a) models SS1, SS2, SS3: K ¼ 1

3 , � ¼ 10�31 s,

(so we choose K as that for an ultrarelativ-
istic fluid) and � ¼ 4� 1022 Pa-s (Pascal-
seconds), which is an extremely large value
(for comparison, viscosity of water at 20 �C is
� ¼ :001 Pa-s, viscosity of motor oil is
0.25 Pa-s, and viscosity of pitch is 2:3�
108 Pa-s).

(b) models LT1, LT2, LT3: K ¼ 0, � ¼ 0,
� ¼ 0.

(7) Given the initial conditions and the equation of state
as above, we solve the evolution equations (2.2),
(2.3), and (2.4) using the fourth-order Runge–
Kutta methods. The code was written in Fortran.
The results of the evolution and the discussion are
presented in the next section.

B. Intermediate homogenization

Figure 1 shows our results. The radial dependence
is expressed in terms of the Hubble radius3, which is
defined as

rH ¼ c

H
;

where H is the Hubble parameter. Figure 1 exhibits the
results of the six models we studied. At the initial instant,
the background energy density is 2:05� 10101 J=m3

(or in natural units 1016 Gev), which in a radiation-
dominated homogeneous model would translate to ti �
1:85� 10�38 s. However, as we have already mentioned,
to define the model and calculate its evolution, we do not
need to know the exact value of ti. What is needed is just
the amount of time elapsed after ti. This is expressed by�t.
Thus, Fig. 1 presents snapshots of the evolution at different
�t, whose values are shown in the top right corner of each
panel. The vertical axis shows the ratio of the local density
to the density of a background homogeneous model. As
seen in all the models, the initial inhomogeneity damps
away relatively quickly, leading to intermediate homoge-
nization. The time scale is of order of the Hubble time scale
(i.e.,� age of the Universe). As the Universe is young, the
whole process proceeds quickly. However, in the SS3 and
LT3 models, where the initial spatial curvature was larger
than in the SS2/LT2 and SS1/LT1 models, a new inhomo-
geneity begins to appear at �t � 10�37 s. This is because,
roughly speaking, the spatial curvature evolves as ER�2

while the energy density evolves asMR�3. Thus, it takes a
bit longer in models SS2/LT2 and SS1/LT1 before spatial
curvature becomes dominant and the model starts to evolve
toward a future inhomogeneous state. This is schematically
presented in Fig. 2. A model can start from a wide range
of initial conditions, and as long as E � M=R, it under-
goes intermediate homogenization. Later on, however, the
spatial curvature term starts to dominate, and the model

FIG. 1. Evolution of the models we have considered: density profile at the initial instant 10�38 s and afterward. �b is the background
density at a given time instant, and rH is the Hubble radius at that time.

3The Hubble radius is expected to be of a similar magnitude as
the distance to the horizon, for example, for the present-day
standard cosmological model, rH � 4:2 Gpc, while the present-
day distance to the horizon is roughly 14.2 Gpc.

KRZYSZTOF BOLEJKO AND WILLIAM R. STOEGER PHYSICAL REVIEW D 88, 063529 (2013)

063529-4



becomes inhomogeneous again. This is very similar to the
intermediate isotropization observed in the Bianchi models
[41,42], where the flat Friedmann model (F on Fig. 2)
acts as a saddle point. Also a similar feature was observed
in the case of the silent models, in particular the Szekeres
model [49].

Here we have studied not only dust models but also
viscous-fluid models, and we found little difference be-
tween these two cases. From what we have just discussed
above, intermediate homogenization is really an effect
linked to the dynamics of the geometry.

C. Domination of decaying modes

A convenient way of thinking about intermediate ho-
mogenization is to describe it in terms of decaying modes.
This relies on being able to decompose the evolution of
density into decaying and growing modes. Since the decay-
ing modes are always decreasing in amplitude, and the
growing modes increasing, at later times the growing
modes will dominate, whereas at very early times, the
decaying modes will be much, much larger than the grow-
ing modes. If the past is dominated by a decaying mode,
then naturally the Universe must undergo a period of
homogenization, where inhomogeneities decay, and the
growing modes are still very small. Depending on the
relative rates of the decay and growth of these modes, we
may have a longer or shorter period of homogenization.
Although the above reasoning is helpful in understanding
the process of homogenization, we should bear in mind
that in the nonlinear regime, one cannot simply decompose
the evolution onto a linear combination of growing and
decaying modes [50]. Also some configurations do not
have solutions in terms of growing and decaying modes
but only in terms of oscillatory modes.

D. Gravitational entropy

A single-component fluid should obey the Gibbs–
Duhem relation

dUþ pdV ¼ TdS; (3.1)

where U is the internal energy, p is the pressure, V is the
volume, T is temperature, and S is the thermodynamic
entropy. Introducing the particle number density n, we
can write Eq. (3.1) as

d ð	=nÞ þ pdð1=nÞ ¼ TdS :¼ !: (3.2)

If ! has an integration factor

! ^ d! ¼ 0;

then Eq. (3.2) can be solved for T and S. The above is
equivalent to

d 	 ^ dp ^ dn ¼ 0:

This is always fulfilled if at least one of the following
conditions holds: (1) the fluid is static, (2) the spacetime
possesses a high degree of symmetry—isometry of sym-
metry groups must have orbits of dimension at least 2
(for example, spherical symmetry, so physical quantities
depend on at most two coordinates), and (3) the fluid’s
equation of state is barotropic, p ¼ pð	Þ. In other cases a
solution may not exist. For a detailed discussion and
examples, see Refs. [21,51,52].
In this paper we assume a barotropic equation of state, so

that this thermodynamic scheme exists (i.e., ! has an
integration factor). In this case Eq. (3.1) reduces to [53]

�T _S ¼ ��ab�
ab: (3.3)

As we see, the change in the thermodynamic entropy is
always positive.
However, as noted by Penrose, in the absence of gravi-

tation, a homogeneous state is a state of maximal entropy,
whereas in the presence of gravitation, we observe that
the natural tendency is for the system to evolve from a
state of homogeneity to states of greater clumpiness.
Thus, there have been attempts to define the gravitational
entropy. As homogeneous and isotropic models are of
zero Weyl curvature, a natural choice is to relate the
gravitational entropy with Weyl curvature. Here we study
the following quantities:
(1) the standard canonical definition, i.e., the ratio of the

Weyl to Ricci curvature [54],


sc ¼ CabcdC
abcd

RabRab
; (3.4)

where Cabcd is the Weyl tensor, andRab is the Ricci
tensor;

(2) the integrated version of the canonical definition
above,

Sc ¼
Z

d3x
ffiffiffi
h

p

sc; (3.5)

(3) following Ref. [55], we take the canonical definition
multiplied by the square root of the determinant of
the spatial metric,

future inhomogeneous state

F

initial data

FIG. 2. Schematic presentation of the evolution of the model
we are considering. F is the Einstein–de Sitter model that acts
like a saddle point.
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Sh ¼
ffiffiffi
h

p CabcdC
ab

RabRab
; (3.6)

(4) following Refs. [56,57] we examine the following
quantity:

Sa ¼ VD

�
� ln

�

h�iD
�
D
; (3.7)

where hiD is the volume average over the do-
main D;

(5) following Ref. [58] we examine the following for-
mula for the gravitational entropy:

Sg ¼
Z
V

sg ¼

Z
dxbdxcdxd�abcdz

a
�grav

Tgrav

; (3.8)

where za is a spacelike unit vector aligned with the
Weyl principal tetrad, �grav and Tgrav are effective

energy density and temperature of the gravitational
field, respectively,

�grav �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tabcdu

aubucud
q

;

and

Tgrav �
��������
1

3
�þ �abz

azb þ _uaz
a

��������;
where Tabcd is the Bel–Robinson tensor.

For each of our models, we calculate the gravitational
entropy as defined above. We arbitrarily choose a shell of

radial coordinate ~r, which at the initial instant is equal to
~r ¼ 0:75rH—as seen from Fig. 1. This corresponds to a
transition region between the central peak and the almost
homogeneous tail. When integration is involved, i.e.,
definitions (3.5), (3.7), and (3.8), we consider a domain
of r � ~r.
The results are presented in Fig. 3. Regardless of the

definition, there is always a period of time where gravita-
tional entropy decreases. In terms of Eq. (3.6), it was
already noticed in Ref. [56] that this quantity does not
need to be monotonically increasing. This should not be
a surprise, as the above definitions incorporate, in one way
or another, the gradient of energy density. During homoge-
nization the gradient decreases, and so the gravitational
entropy, which is based on it, also decreases. This shows
that other definitions, for example the family of density
contrast indicators presented and discussed in Ref. [59]
(which in normal late-time cosmology increase,
cf. Ref. [60]), should also be decreasing during intermedi-
ate homogenization, which is in agreement with recent
studies of gravitational entropy within the Lemaı̂tre–
Tolman models [61].
Unlike in thermodynamics, we do not have any funda-

mental theorem to define the gravitational entropy. The
above definitions are based on some expectations rather
than on solid theorems. Thus, we should either accept that
gravitational entropy can decrease, or we should seek
definitions that are not based on density gradients, or at
least are defined in such a way that even during homoge-
nization they increase.
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FIG. 3. Different representations of the gravitational entropy and their evolution. The entropy was calculated at ri ¼ 0:75rH. For the
integrated version, the domain is r < ri ¼ 0:75rH. The gravitational entropy is scaled so that it is 1 at the initial instant.
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IV. CONCLUSIONS

It has been known for some time that in Bianchi models
intermediate isotropization can occur. This paper has
aimed to study if an analogous feature—intermediate ho-
mogenization—can occur in inhomogeneous cosmological
models. Our study has been confined to spherically
symmetric models. We have shown that, under specific
conditions, an inhomogeneous system undergoes homoge-
nization. The homogenization can be permanent (special
case) or just intermediate (after some time, the system
becomes inhomogeneous again). We have provided several
examples—some with bulk and shear viscosity and others
with a pure dust equation of state.

Obviously much more remains to be done. We have
simply provided a number of different numerically inte-
grated examples showing that intermediate homogeniza-
tion occurs at early times, whenever the spatial curvature
is much less than the Ricci curvature. In the very early
Universe, this can be realized for a relatively broad class of
initial conditions. However, we have not directly addressed
how generic this behavior is, nor how long these universes
remain spatially homogeneous, nor how close they come
to an FLRW (spatially homogeneous) universe. This is a
project for the future.

Intermediate homogenization may remind us of iso-
tropic initial singularities [24,28]. Some of these inter-
mediate homogenization models may have isotropic
initial singularities, and some may not. Since the initial
conditions cannot be set at the initial singularity itself, and
since an isotropic singularity in not generic for these
models, there is no direct relationship between the initial
conditions leading to intermediate homogenization and
isotropic initial singularities. It is very likely that the
very early Universe emerging from the Planck era before
the onset of inflation was spatially inhomogeneous.
What our results indicate is that those primordial

inhomogeneities are at least partially dissipated during
the period when the spatial curvature is very much less
than the Ricci curvature generated by the mass-energy
density. There would be a considerable range of initial
conditions for which this would be true.
We have also considered the problem of entropy gen-

eration. The thermodynamic entropy always increases or,
in the case of a perfect fluid, is constant. We tried to
evaluate the gravitational entropy. We used several formu-
las that were based on the Weyl tensor, Bel–Robinson
tensor, or the averaging of the density filed. All of them
were decreasing during the process of intermediate ho-
mogenization. Therefore, unlike the thermodynamical
counterpart, the gravitational entropy may not necessarily
be a monotonically increasing quantity. Indeed, if the
gravitational entropy describes the degree of inhomogene-
ity, then it should decrease during the process of homoge-
nization. Consequently, if the early Universe was
dominated by the decaying mode, then its gravitational
entropy must have been decreasing with time. The same
holds for the period of inflation, during which the gravita-
tional entropy should also be decreasing with time.
The question remains whether these results are special to

spherical symmetry or whether they apply as well to more
general geometries. For the dust case, i.e., the Szekeres
model, or a very special generalization to viscous fluid
(so that there is no acceleration), the Roy–Singh model
[62], one can show that intermediate homogenization
occurs [46,49]. Still, the Szekeres and Roy–Singh models
are not fully general [63]. Thus, it would be interesting, and
important, to know if it can occur in the real Universe.
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