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It is shown that any homogeneous and isotropic universe, independently of its spatial topology and

matter content, allows for the presence of a conformal stealth, i.e., a nontrivial conformally invariant

scalar field with vanishing energy-momentum tensor, which evolves along with the universe without

causing even the smallest backreaction. Surprisingly, this gravitationally invisible universal witness is

inhomogeneous with zero consequences for the underlying cosmology. Additionally, it is shown that these

results are not exclusive of a four-dimensional universe by generalizing them to higher dimensions.
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I. INTRODUCTION

Today, cosmologists are living in exciting times because
of the continuous arrival of data from highly accurate
satellite and ground-based observations (see, for instance,
Refs. [1–6]). These data are already able to tightly con-
strain the theoretical description of the evolution of our
Universe, arguably pointing out the so-called �CDM
model as the best framework for this description [6]. This
model is a realization of the standard cosmology, i.e., a
homogeneous and isotropic universe,

ds2¼að�Þ2
�
�d�2þ dr2

1�kr2
þr2ðd�2þsin2�d�2Þ

�
; (1)

which for a given matter content ’m extremizes the action

S½g;’m� ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
1

2�
ðR� 2�Þ þ Lm

�
(2)

by solving the Einstein equations,

G�� þ�g�� � �T�� ¼ 0: (3)

As is common practice in general relativity, in this
framework, it is always considered that any component
of the matter content will necessarily leave a trace in the
spacetime geometry. Nevertheless, there are special non-
trivial matter configurations with no backreaction on the
gravitational field. Scalar fields with this property have
been found for the static Bañados-Teitelboim-Zanelli
(BTZ) black hole [7], Minkowski flat space [8], and
(anti-)de Sitter [(A)dS] space [9]. They were coined gravi-
tational stealths. In the cosmological context, the existence
of stealths has been shown for the de Sitter cosmology [10].
The nontrivial role they play in the probability creation of
these universes has been emphasized in Ref. [11]. In this

paper, it is shown that not only de Sitter universes but any
homogeneous and isotropic universe, without regard to its
spatial topology and matter content, allow for the presence
of a conformal stealth that evolves along with the universe
without exhibiting its gravitational fingerprints.
We will consider the general metric (1), without any

assumption on the allowed spatial topology (k ¼ 0, �1),
and supplement action (2) with an additional term describ-
ing a conformally invariant self-interacting scalar field,

S½g;’m��1

2

Z
d4x

ffiffiffiffiffiffiffi�g
p �

@��@��þ1

6
R�2þ��4

�
: (4)

Our aim is not to find the whole spectrum of configurations
described by the new action but just those critical ones with
the special property that both sides of Einstein equations
vanish independently,

0 ¼ G�� þ�g�� � �T�� ¼ �Ts
�� ¼ 0; (5)

where

Ts
�� ¼ @��@��� 1

2
g��ð@��@��þ ��4Þ

þ 1

6
ðg��h�r�r� þG��Þ�2: (6)

The vanishing of the left-hand side gets us back to the
starting Friedman–Robertson–Walker (FRW) universe
with its corresponding matter source. To prove the exis-
tence of a stealth in any standard cosmology, we need to
show that imposing the vanishing of the energy-
momentum tensor (6) evaluated in the Friedman–
Robertson–Walker background (1) is compatible with a
nontrivial scalar behavior: the stealth.
In Sec. II, we discuss how new stealth configurations can

be derived exploiting symmetries of the stealth action (in
the present case, the conformal symmetry) and highlight
how in some cases this argument can fail to
give the correct answer due to its local nature. In Sec. III,
the general derivation is done explicitly for the four-
dimensional case, which is the most interesting from a
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cosmologist point of view. In future work, this will be also
useful as a methodology for finding stealth configurations
for more general nonminimal couplings not necessarily of
a conformal nature and for which no obvious conformal
arguments can be exploited. In the next two sections,
Secs. IV and V, we show the explicit results for flat and
curved universes, respectively; show how they are gener-
alized to any number of dimensions; analyze the impact of
spacetime symmetries on the corresponding solutions;
and establish the explicit comparison with the previously
discussed local conformal arguments. In the last section,
we briefly summarize our conclusions.

II. STEALTHS FROM ACTION SYMMETRIES:
LOCALVS GLOBAL

A useful way to approach the problem of the existence of
stealths is the following. The equations determining the
stealth [the right-hand side of Eqs. (5)] can be interpreted
as demanding the gravitational background to be an
extremal of the related stealth action only [the second
term in the total action (4)]. Under this interpretation, a
full stealth configuration, i.e., a given background together
with its allowed stealth, can be linked to another poten-
tially different full configuration via any symmetry trans-
formation of the stealth action. In particular, having a
concrete example of stealth for a conformally invariant
action implies that its whole conformal class allows also
a stealth interpretation. The above argument works well for
the case of a conformal stealth on (A)dS space since, (A)dS
being conformally flat, the related configuration [9] is
conformally related to that of Minkowski flat space [8].

It is well-known that the Weyl tensor vanishes for
Friedman–Robertson–Walker metric (1), which implies
that it is also conformally flat. That is obvious for flat
universes, k ¼ 0, for which the conformal factor is just
the scale factor a. It is less trivial for curved universes,
k ¼ �1, but explicit conformal relations exist also in these
cases [12]. Following the above-described approach to the
problem, one may wonder whether we can use these con-
formal maps to find the stealths for FRW spacetimes start-
ing from the already-known configurations of Minkowski
spacetime [8]. However, it should be emphasized that
the most general conformal transformations mapping
Minkowski spacetime into the FRW spacetimes with
curved spatial topology are only defined locally [13]. Just
the flat case k ¼ 0 is globally conformal to the Minkowski
spacetime.

All the above implies that we cannot ensure that the
stealth found by the corresponding conformal transforma-
tion of the one for Minkowski spacetime will actually be
well-defined in the whole FRW spacetime. An illustrative
example of how this mapping can fail is given by the
stealth of the BTZ black hole [7]. This background is a
rotating black hole solution of vacuum AdS3 gravity [14]
and therefore has zero Cotton tensor, implying that it is

conformally flat. On the other hand, it has constant nega-
tive curvature, meaning that it is locally diffeomorphic to
AdS3 (in fact, it is a proper identification of AdS3 [15]). As
we mentioned previously, (A)dS space is conformally flat
in any dimension and by this property supports a stealth
conformally related to the one of Minkowski spacetime.
Nevertheless, if one then makes use of the diffeomorphism
between the BTZ black hole and AdS3 to find the corre-
sponding stealth over BTZ, after imposing the global
boundary condition that defines this solution, i.e., identify-
ing the rotation angle by � ¼ �þ 2	, the resulting
expression is found to be multivalued. Requiring it to be
single-valued imposes the vanishing of the black hole
angular momentum. Therefore, there is not a stealth con-
figuration for the rotating case, even if the local conformal
transformation does exist.
Taking this discussion into account, in this paper, we

proceed first to search for the global stealth configurations
of FRW models by solving in general the defining stealth
constraints Ts

�� ¼ 0. Later, for each curvature, we compare

with the results obtained from the corresponding local
conformal transformation. Fortunately, no discrepancy is
found in the cosmological context, as opposed to the
above-mentioned three-dimensional example.

III. COSMOLOGY WITH STEALTHS

For the purpose of accomplishing our task, we find it
useful to use the redefinition

� ¼ 1

a

; (7)

where the function 
 ¼ 
ðx�Þ inherits the full spacetime
dependence of the scalar field.
We start by writing the off-diagonal constraints deter-

mining the stealth, i.e., Ts
�� ¼ 0 for� � �. Let us consider

first the ones involving the conformal time,

Ts
�i ¼

1

3a2
3
@2�i
 ¼ 0; (8)

where we label the coordinates as fx�g ¼ f�; xig, with
fxig ¼ fr;�bg denoting the full spatial coordinates and
f�bg ¼ f�;�g just the angular ones. The above equations
imply that 
 is separable as a sum of functions for the
conformal time and the spatial coordinates. Next, we
consider the off-diagonal spatial components,

Ts
rb ¼ r

3a2
3
@2rb

�



r

�
¼ 0; (9)

and note that the separable spatial dependence of
 divided
by r is itself separable as a sum of functions for r and the
angles. The remaining off-diagonal component is

Ts
�� ¼ sin �

3a2
3
@2��

�



sin�

�
¼ 0; (10)

that is, the angular dependence of 
 divided by sin � turns
out to be separable as a sum for the angles. Summarizing,
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the study of the off-diagonal components leads to the
following separable form for the function 
,


ðx�Þ ¼ Tð�Þ þ RðrÞ þ r½�ð�Þ þ sin ��ð�Þ�: (11)

There exists a freedom in the election of the above func-
tions; concretely, homogeneous terms in �, �, and R can
be compensated by a sinusoidal dependence in �, a linear
one inR, and another homogeneous term in T, respectively.

Let us study now the diagonal components; the mixed
combinations

3ra4
3ðTs
�
��Ts

r
rÞ¼ d2�

d�2
þ��ð1�kr2Þrd

2R

dr2

þdR

dr
¼ 0;

3rsin�a4
3ðTs
�
��Ts

�
�Þ¼ d2�

d�2
þ�� sin�

d2�

d�2

þcos�
d�

d�
¼ 0

give rise to the separable equations

d2�

d�2
þ� ¼ ð1� kr2Þr d

2R

dr2
� dR

dr
; (12)

d2�

d�2
þ� ¼ sin �

d2�

d�2
� cos�

d�

d�
; (13)

which integrate as

�ð�Þ ¼ A1 cos�þ A2 sin�; (14a)

�ð�Þ ¼ A3 cos �; (14b)

RðrÞ ¼
8<
:B�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� kr2

p
; k � 0;

1
2�r

2; k ¼ 0;
(14c)

modulo the previously mentioned freedom in the election
of the above functions. Here, Ai (with i ¼ 1, 2, 3), �, and
B� are integration constants.

Using now the combination

3a4
3ðTs
�
� � Ts

t
tÞ ¼

8<
:

d2

d�2
T þ kT ¼ 0; k � 0;

d2

d�2
T þ � ¼ 0; k ¼ 0;

(15)

we have that the dependence on the conformal time is

Tð�Þ ¼
8<
:
� A0ffiffi

k
p sin ð ffiffiffi

k
p

�Þ þ Bþ cos ð ffiffiffi
k

p
�Þ; k � 0;

� 1
2��

2 � A0�þ 
0; k ¼ 0;
(16)

where A0, Bþ, and 
0 are integration constants. The above
temporal dependences of the stealth make clear why the
use of the conformal time is essential; using the comoving
time t ¼ R

d�að�Þ, the solution is expressed in terms of

quadratures of the scale factor.
Only one equation remains in our study and is indepen-

dent of the value of the curvature if one makes the follow-
ing redefinitions of the integration constants of the curved
cases B� ¼ 
0=2� �=k:

�2a4
4Ts
t
t ¼ �þ A2

0 � ~A2 þ 2�
0 ¼ 0; (17)

which shows that one of the integration constants is fixed in
terms of the coupling constant of the conformal potential
and the other integration constants.
Therefore, for any standard cosmology, independently

of its spatial topology and matter content, there exists a
conformal stealth generally described by Eq. (7) with 

written as in Eq. (11) and functions R, �, �, and T given
by Eqs. (14) and (16). Finally, one of the involved integra-
tion constants is not independent and is determined by
the coupling constant � and the remaining integration
constants from Eqs. (17).
Next, we analyze separately the explicit form of the

conformal stealth for flat and curved universes, generalize
these results to any number of dimensions, and study how
many integration constants can be eliminated using space-
time symmetries in each case.

IV. FLAT UNIVERSES

For universes with flat spatial topology, k ¼ 0, the FRW
metric (1) becomes manifestly conformally flat:

ds2 ¼ að�Þ2���dx
�dx�: (18)

Therefore, in this case, we indeed expect the expression for
the stealth (7) to be exactly a conformal transformation of
the stealth for Minkowski flat spacetime:

� ¼ 1

a
�flat: (19)

To check this, we combine the results for k ¼ 0 of
Eqs. (11), (14), and (16) of the previous section to obtain


ðx�Þ ¼ �

2
x�x

� þ A�x
� þ 
0; (20)

where we raise and lower indices with the flat metric. This
is precisely the result for flat spacetime found in Ref. [8].
The above results are easy to generalize to any number

of dimensions using the following recipe. The metric and
the auxiliary function 
 are still given by expressions (18)
and (20) but with � and � now running from 0 to D� 1.
The conformal stealth must be written now as

� ¼ 1

ða
ÞðD�2Þ=2 : (21)

Then, in the D-dimensional version of action (4), the
conformal coupling must be generalized to

1

6
! D� 2

4ðD� 1Þ ; (22)

and similarly for the conformal potential:

1

2
��4 ! ðD� 2Þ2

8
��2D=ðD�2Þ: (23)
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The relation between the coupling constant � and the
integration constants is again determined by Eq. (17),
where vectorial quantities have now D� 1 components.

Finally, it is worthy to emphasize an important differ-
ence between the conformally related versions of the
stealths in Minkowski spacetime and flat universes. In
Minkowski spacetime, due to translational invariance, it
is possible to fix the constants A� in expression (20) to

zero; hence, to describe the conformal stealth, only one
integration constant is required, and the related solution is
manifestly Lorentz invariant [8]. Flat universes (18) have
translation invariance only along spatial directions, which
allows us to choose as vanishing only the spatial constants
Ai in Eq. (20). Consequently, the conformal stealth of flat
universes allows for two integration constants and is only
manifestly isotropic.

V. CURVED UNIVERSES

For universes with curved spatial topology, k ¼ �1, the
FRW metric (1) can be rewritten as

ds2 ¼ að�Þ2
�
�d�2 þ d~x2 þ kð ~x � d~xÞ2

1� k ~x2

�
; (24)

using standard Euclidean coordinates. Combining again
Eqs. (11), (14), and (16), the function 
 characterizing
the corresponding stealth is given by


ðx�Þ ¼ � A0ffiffiffi
k

p sin ð ffiffiffi
k

p
�Þ þ

�

0

2
þ �

k

�
cos ð ffiffiffi

k
p

�Þ

þ ~A � ~xþ
�

0

2
� �

k

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k ~x2

p
; (25)

where we have used the redefinition on the integration
constants giving the universal relation (17) to the coupling
constant �. Notice that, as a byproduct, these redefinitions
allow us to recover consistently the flat case (20) by taking
the limit k ! 0.

Expressions (24) and (25) allow obvious generalizations
to higher dimensions, which define a higher-dimensional
conformal stealth also for the curved cases. It is only
needed to follow the outlines given in the previous section.

Here, the standard spatial translation invariance is bro-
ken due to the presence of spatial curvature; however, a
generalization of spatial translations still remains as sym-
metry. These quasitranslations [16] can be understood as
follows. As is well-known, the constant curvature spatial
sections can be isometrically embedded in a flat space with
one extra dimension whose rotations induce the constant
curvature isometries. The spatial coordinates of metric (24)
are just the embedding coordinates, and rotations along the
planes orthogonal to the extra dimension in the ambient
space induce just the isotropy of metric (24). Moreover,
rotations along the planes formed with the extra dimension
induce the quasitranslations, which have the following
explicit form [16]:

~x � ~xþ ~a

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k ~x2

p
� ð1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k ~a2

p
Þ

~a2
~a � ~x

!
: (26)

For k ¼ 0, they become just standard translations. For any
curvature, these transformations map the origin ~x ¼ 0 to
any arbitrary point ~x ¼ ~a, which is an explicit realization
of the homogeneous character of spacetime (24). Under
quasitranslations, metric (24) is invariant, but the stealth is
just form invariant; i.e., its local dependence after the
transformation is the same but with transformed integra-
tion constants. This allows us to choose specific values for
the quasitranslations parameters ~a such that the trans-

formed integration constants ~A acquire vanishing values.
This is achieved choosing the parameters as

~a ¼
~Affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð�� k
2
0Þ2 þ k ~A2

q : (27)

Notice that, consequently, in the limit k ! 0, these become

just the standard translations annihilating the vector ~A in
the flat case. Because of the above argument, after consid-
ering the relation to the coupling constant (17), the con-
formal stealth of curved universes has also only two
integration constants and is manifestly isotropic as in the
case of flat universes.

A. Conformal transformation from
Minkowski spacetime

According to our discussion of Sec. II, in a proper limit,
it should be possible to reduce expression (25) to the result
obtained by conformally mapping the stealth from
Minkowski spacetime. We will take that into account to
crosscheck (25) and also to gain a deeper insight into the
role of the symmetries in stealth configurations. With these
aims we use the following map between Minkowski and
FRW spacetimes [12],

� ¼ 1ffiffiffi
k

p arctan

 ffiffiffi
k

p
t

1� k
4 ðt2 � �2Þ

!
; (28a)

r ¼ 1ffiffiffi
k

p sin

"
arctan

 ffiffiffi
k

p
�

1þ k
4 ðt2 � �2Þ

!#
; (28b)

with inverse given by

t ¼ 2 sin ð ffiffiffi
k

p
�Þffiffiffi

k
p ðcos ð ffiffiffi

k
p

�Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� kr2

p
Þ ; (29a)

� ¼ 2r

cos ð ffiffiffi
k

p
�Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� kr2

p : (29b)

It is important to notice here that these expressions provide
only a local map. For k ¼ 1, the whole Minkowski space-
time is mapped into just a patch of FRW, while, conversely,
for k ¼ �1, just a patch of the Minkowski spacetime is
mapped into the whole FRW.
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We develop the conformal argument in any dimension,
since there is nothing particular in the tetradimensional
case. This way, the Friedman–Robertson–Walker metric in
D dimensions can be written as [12]

ds2FRW ¼ að�Þ2
�
�d�2 þ dr2

1� kr2
þ r2d�2

D�2

�

¼ að�ðt; �ÞÞ2ð�dt2 þ d�2 þ �2d�2
D�2Þ

½k4 ð�þ tÞ2 þ 1�½k4 ð�� tÞ2 þ 1�
¼ �2ds2M: (30)

Consequently, the conformal transformation for the stealth
will be

�FRW ¼ 1

�ðD�2Þ=2 �M ¼ 1

ð�
MÞðD�2Þ=2 ; (31)

where the conformal factor � can be drawn from Eq. (30)
and the auxiliary function 
M of Minkowski spacetime
(20) is rewritten now as


M ¼ �

2
ð�t2 þ �2Þ � A0tþ �Am	

m þ 
0; (32)

where	m are the polar coordinates of the SD�2 unit sphere.
Using the inverse transformations (29), the conformal
factor reduces to

� ¼ að�Þ
2

h
cos ð ffiffiffi

k
p

�Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� kr2

p i
;

while, for 
M, we obtain


M ¼ 2

 
��

k

cos ð ffiffiffi
k

p
�Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� kr2

p

cos ð ffiffiffi
k

p
�Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� kr2

p

� A0ffiffiffi
k

p sin ð ffiffiffi
k

p
�Þ

cos ð ffiffiffi
k

p
�Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� kr2

p

þ rAm	
m

cos ð ffiffiffi
k

p
�Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� kr2

p þ 
0

2

!
: (33)

Combining these last two expressions leads us finally to
Eq. (25), i.e.,�
M ¼ a
FRW, and the local expression for
the stealth obtained from the conformal transformation
coincides exactly with the general previously found
solution.

VI. CONCLUSIONS

We have proven that any homogeneous and isotropic
universe, independently of its spatial topology and matter

content, allows for the existence of a conformal stealth.
Surprisingly, although the stealth is isotropic, it is not
homogeneous. Nevertheless, its presence leaves no trace
in the cosmological evolution of the given universe.
Additionally, we have shown that these results are not
exclusive of our four-dimensional Universe but are also
valid for higher-dimensional generalizations of the FRW
spacetime. We prove all the above by solving explicitly the
related constraints, but we also discuss to some extension
the local conformal arguments that alternatively allow us to
build such configurations from the ones of Minkowski
spacetime. After making the explicit construction, we
show that the potential problems that are known to occur
in other contexts, due to the local nature of these arguments,
are not present in the cosmological framework. However,
due to the fact that the involved conformal factors break in
general the maximally symmetric character of Minkowski
spacetime, the resulting conformally generated stealth con-
figurations allow more integration constants than its seeds
from Minkowski spacetime. For FRW spacetimes, the con-
formal factors break time-translation invariance, and, as a
consequence, its stealths allow one additional integration
constant in comparison to the single one allowed by its
conformally related cousins of Minkowski spacetime.
Last, but not least, it is important to understand the

observational consequences of the existence of cosmologi-
cal stealths. In this sense, we note that its fluctuations are
not expected to be stealth themselves. This way, the cor-
responding stealth perturbations may have an imprint on
the spectra of the cosmic microwave background radiation
as well as in the statistics of the cosmological large scale
structures. Exploring these consequences is the subject of
our current research program.
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