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We use the expansion-normalized variables approach to study the dynamics of a nontilted Bianchi type

I cosmological model with both a homogeneous magnetic field and a viscous fluid. In our model the

perfect magnetohydrodynamic approximation is made, and both bulk and shear viscous effects are

retained. The dynamical system is studied in detail through a fixed-point analysis which determines

the local sink and source behavior of the system. We show that the fixed points may be associated with

Kasner-type solutions, a flat universe Friedmann-LeMaı̂tre-Robertson-Walker solution, and interestingly,

a new solution to the Einstein field equations involving nonzero magnetic fields and nonzero viscous

coefficients. It is further shown that for certain values of the bulk and shear viscosity and equation of state

parameters, the model isotropizes at late times.
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I. INTRODUCTION

The current standard model of cosmology based on the
Friedmann-LeMaı̂tre-Robertson-Walker (FLRW) metric
assumes that the present-day universe is spatially homoge-
neous and isotropic, and indeed this assumption strongly
concurs with empirical observation. As a result of the
symmetry of this spacetime, related models must be treated
within the framework of perfect fluids, in which case the
shear and rotational terms in the energy-momentum tensor
vanish (see Ref. [1], p. 52).

If one wishes to formulate a cosmological model of the
early universe, however, at a minimum it is necessary to
include viscous (shear) terms in the energy-momentum
tensor. As discussed by Grøn and Hervik (see Ref. [2],
Chapter 13), viscous models have become of general in-
terest in early-universe cosmologies largely in two con-
texts. First, in models where bulk viscous terms dominate
over shear terms, the universe expands to a de Sitter-like
state, which is a spatially flat universe neglecting ordinary
matter, and including only a cosmological constant. Such
models isotropize indirectly through the massive expan-
sion. Second, in the absence of any significant heat flux,
shear viscosity is found to play an important role in models
of the universe at its early stages. In particular, neutrino
viscosity is considered to be one of the most important
factors in the isotropization of our universe.

Magnetic fields have also been thought to play a major
role in the early universe. Grasso and Rubinstein [3] re-
viewed in great detail the origin and possible effects of
magnetic fields in the early universe. In recent work, Ando

and Kusenko [4] examined intergalactic magnetic fields
and discussed how these magnetic fields originated from
primordial seed fields created shortly after the big bang,
which relates to our understanding of the origin of cosmic
magnetic fields in the early universe. In addition, Gregori
et al. [5] also studied the origin of galactic magnetic fields
through the amplification of primordial seed fields.
Schlickeiser [6] described a new process by which the
primordial magnetic fields arose in the universe before
the emergence of the first stars.
After inflation the early universe was a good conductor:

even though the number density of free electrons dropped
dramatically during recombination, its residual value was
enough to maintain high conductivity in baryonic matter.
As a result, cosmic magnetic fields have remained frozen in
the expanding baryonic fluid during most of their evolu-
tion. In this situation, one can analyze the magnetic effects
on the dynamics of the early universe through ideal mag-
netohydrodynamics (hereafter referred to as MHD), in
which case the magnetic field source is considered to
be a perfect conductor and related terms in the energy-
momentum tensor are simply those corresponding to a
classical magnetic field (see Ref. [7], p. 115).
Hughston and Jacobs [8] showed that in the case of a

pure magnetic field, only Bianchi types I, II, VI (h ¼ �1)
(which is the same as type III), and VII (h ¼ 0) admit
field components, whereas types IV, V, VI (h ¼ �1), VII
(h � 0), VIII, and IX admit no field components. These
results led to a number of papers of Bianchi models with a
perfect-fluid magnetic field source; we discuss these works
briefly below. Using a dynamical systems approach
LeBlanc [9] studied Bianchi type II magnetic cosmologies
in which he provided an analysis on the future and
past asymptotic states of the resulting dynamical system.
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In a separate work, LeBlanc [10] also studied the asymp-
totic states of magnetic perfect-fluid Bianchi type I
cosmologies. Using phase plane analysis techniques,
Collins [11] studied the behavior of a class of perfect-fluid
anisotropic cosmological models and established a corre-
spondence between magnetic models of Bianchi type I
and perfect-fluid models of Bianchi type II. In addition,
LeBlanc, Kerr, andWainwright [12] studied the asymptotic
states of magnetic Bianchi type VI cosmologies and
showed that there is a finite probability that an arbitrarily
selected model will be close to isotropy during some time
interval in its evolution. We also note that Barrow,
Maartens, and Tsagas [13] did significant work in the
reformulation of a 1þ 3 covariant description of the mag-
netohydrodynamic equations that has provided further
understanding and clarity on the role of large-scale elec-
tromagnetic fields in the perturbed Friedmann-LeMaitre-
Robertson-Walker models.

Viscous MHD Bianchi models treated using a metric
approach have appeared in the literature on a number of
occasions. In Ref. [14] van Leeuwen and Salvati studied
the dynamics of general Bianchi class A models containing
a magneto-viscous fluid and a large-scale magnetic field.
Banerjee and Sanyal [15] presented some exact solutions
of Bianchi types I and III cosmological models consisting
of a viscous fluid and an axial magnetic field. Benton
and Tupper [16] studied Bianchi type I models with
a ‘‘powers-of-t’’ metric under the influence of a viscous
fluid with a magnetic field. Salvati, Schelling, and van
Leeuwen [17] numerically analyzed the evolution of the
Bianchi type I universe with a viscous fluid and large-scale
magnetic field. Ribeiro and Sanyal [18] studied a Bianchi
type VI0 viscous fluid cosmology with an axial magnetic
field in which they obtained exact solutions to the Einstein
field equations assuming linear relations among the square
root of matter density and the shear and expansion scalars.
In Ref. [19] van Leeuwen, Miedema, and Wiersma proved
that a nonrotating Bianchi model of class A containing a
viscous fluid and magnetic field can only be of type I or
IV0. Pradhan and Pandey [20] studied the Bianchi type I
model with a bulk viscous fluid in addition to a varying
cosmological constant. Pradhan and Singh [21] studied the
Bianchi type I model in the presence of a magnetic field
and shear and bulk viscosity, but assumed that the shear
tensor was proportional to the expansion tensor. Bali and
Anjali [22] studied a Bianchi type I magnetized fluid model
with a bulk viscous string dust fluid, in which they
compared their results in the presence and absence of
large-scale magnetic fields.

In this paper we examine a viscous MHD Bianchi type I
nontilted viscous magnetohydrodynamic model. In con-
trast to the references cited above, which use a metric
approach, we use the Hubble-normalized dynamical sys-
tems approach based upon the theory of orthonormal
frames pioneered by Ellis and MacCallum [23]. In treating

a problem with the method of Ellis and MacCallum, the
Einstein field equations (a coupled set of ten hyperbolic
nonlinear partial differential equations) are reduced to a
system of autonomous nonlinear first-order ordinary dif-
ferential equations. In a previous work [24], we employed
such an approach to treat a Bianchi type IV viscous model
in the absence of magnetic sources. To the best of our
knowledge, the treatment of a viscous MHD model along
these lines has not yet appeared in the literature. In the
present work, we examine the important role of the fixed
points of the dynamical system. In particular we show that
the fixed points may be associated with Kasner-type solu-
tions, a flat universe FLRW solution, and, interestingly, a
new solution to the Einstein field equations involving non-
zero magnetic fields and nonzero viscous coefficients. We
examine several features of the dynamical system, includ-
ing its early- and late-time asymptotic behavior, and its
bifurcation behavior. Finally, numerical results are pre-
sented which illustrate the behavior of the system over
long times with several initial configurations. In several
cases of interest, it is shown that the dynamical model
isotropizes asymptotically; that is, the spatial anisotropy
and the anisotropic magnetic field decay to negligible
values, giving a close approximation to the present-day
universe. Throughout this work, we assume that the sig-
nature of the metric tensor is (�;þ;þ;þ), and we use
geometrized units, where G ¼ c ¼ 1.

II. THE MATTER SOURCES

In the absence of heat conduction, the energy-momentum
tensor corresponding to a viscous fluid cosmological model
with fluid-velocity four-vector ua is given by [24]

V ab¼ð�fþpfÞuaubþgabpf�3�Hhab�2��ab; (1)

where �f, pf, and �ab denote the fluid’s energy density,

pressure, and shear tensor, respectively. In addition, the
quantities � and � denote the bulk and shear viscosity
coefficients of the fluid, respectively, H denotes the
Hubble parameter, and hab � uaub þ gab denotes the pro-
jection tensor corresponding to the metric signature
(�;þ;þ;þ).
The energy-momentum tensor corresponding to an elec-

tromagnetic field is given by [25]

T ab ¼ 1

2
uaubðE2 þ B2Þ þ 2uðan

cgd
bÞ ucEgBd

� EaEb � BaBb þ 1

2
habðE2 þ B2Þ; (2)

where nabcd is the standard skew pseudotensor, and Ea and
Ba are the electric and magnetic field three-vectors, re-
spectively. Note that in an orthonormal frame, where
gab ¼ nab ¼ diagð�1; 1; 1; 1Þ, the E2 and B2 terms in
Eq. (2) take the form E2 � EaEa ¼ E2

1 þ E2
2 þ E2

3 and

B2 � BaBa ¼ B2
1 þ B2

2 þ B2
3. In this work, we assume
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that the cosmological model is nontilted, and thus in both
Eqs. (1) and (2) we take ua as the four-velocity of a
comoving observer ua ¼ ð1; 0; 0; 0Þ. We also assume the
ideal MHD approximation, in which case the early uni-
verse behaves as a perfect conductor. The electric field
(whose magnitude is inversely proportional to the conduc-
tivity) approaches zero, even in the presence of a nonzero
electric current. In other words, we assume that after
recombination, the universe is such a good conductor that
the cosmic electric fields required to drive a current in it are
negligible. Under these conditions, the energy-momentum
tensor in Eq. (2) simplifies to

T Bab ¼ 1

2
uaubðB2Þ � BaBb þ 1

2
habB

2: (3)

The total energy-momentum tensor, denoted Tab, for our
cosmological model is then given by

Tab ¼ V ab þT Bab: (4)

In order to formulate the evolution equations corre-
sponding to our model, we compute from Eq. (4) the total
energy density ~�, the total pressure ~p, and total anisotropic
stress ~�ab. Using the definitions

~� ¼ Tabu
aub; ~p ¼ 1

3
habTab;

~�ab ¼ hcah
d
bTcd � ~phab; (5)

we find that

~� ¼ �f þ 1

2
ðB2

1 þ B2
2 þ B2

3Þ; (6)

~p ¼ w�f � 3�H þ 1

6
ðB2

1 þ B2
2 þ B2

3Þ; (7)

and

~�ab¼�2��ab�BaBbþ1

3
habðB2

1þB2
2þB2

3Þ: (8)

Note that in obtaining the expression for the pressure in
Eq. (7), we assume that the fluid obeys the barotropic
equation of state, pf ¼ w�f, where �1 � w � 1.

It is advantageous to reexpress the above quantities as
expansion-normalized variables [26], and we thus intro-
duce the definitions

~� ¼ ~�

3H2
; ~P ¼ ~p

3H2
; ~�ab ¼ ~�ab

H2
: (9)

We will also define the expansion-normalized magnetic
field vector as

Ba ¼ Ba

3H
: (10)

The relevant expressions for the expansion-normalized
variables are then given by

~� ¼ �f þ 3

2
ðB2

1 þB2
2 þB2

3Þ; (11)

~P ¼ w�f � 3�0 þ 1

2
ðB2

1 þB2
2 þB2

3Þ; (12)

and

~�ab¼�2�0�ab�9BaBbþ3�abðB2
1þB2

2þB2
3Þ: (13)

In Eqs. (11)–(13), �f ¼ �f=ð3H2Þ is the Hubble-

normalized fluid energy density, and �0 ¼ �=ð3HÞ and
�0 ¼ �=ð3HÞ are the expansion-normalized bulk and
shear viscosity coefficients, respectively; these quantities
are assumed to be nonnegative constants throughout this
paper. In Eq. (13) we also denote �ab ¼ �ab=H as the
expansion-normalized shear tensor.

III. BIANCHI TYPE I UNIVERSE DYNAMICS

With the required energy-momentum tensor in
Eq. (4), and the expansion-normalized source variables
[Eqs. (11)–(13)] in hand, we now derive the Bianchi type
I dynamical equations. The general evolution equations for
any Bianchi type are presented in [26,27]. The general
evolution equations in the expansion-normalized variables
using our notation are

�0
ij ¼ �ð2� qÞ�ij þ 2�kmði �jÞkRm � Sij þ ~�ij;

N0
ij ¼ qNij þ 2�k

ðiNjÞk þ 2�kmði NjÞkRm;

A0
i ¼ qAi ��j

iAj þ �kmi AkRm;

~�0 ¼ ð2q� 1Þ ~�� 3 ~P� 1

3
�j

i
~�i

j þ 2

3
AiQ

i;

Q0
i ¼ 2ðq� 1ÞQi ��j

iQj � �kmi RkQm

þ 3Aj ~�ij þ �kmi Nj
k
~�jm: (14)

These equations are subject to the constraints

Nj
i Aj ¼ 0; ~� ¼ 1� �2 � K;

Qi ¼ 3�k
i Ak � �kmi �j

kNjm:
(15)

As in Eq. (9), we have made use of the following notation:

ð�ij; R
i; Nij; AiÞ ¼ 1

H
ð�ij;�

i; nij; aiÞ;

ð ~�; ~P;Qi; ~�ijÞ ¼ 1

3H2
ð ~�; ~p; qi; ~�ijÞ:

(16)

In the expansion-normalized approach, the kinematic shear
tensor �ab describes the anisotropy in the Hubble flow, Ai

and Nij describe the spatial curvature, while �i describes
the relative orientation of the shear and spatial curvature
eigenframes. The Bianchi type I model is a flat anisotropic
model and is Abelian, and therefore it has the property that

Ai ¼ 0; N11 ¼ N22 ¼ N33 ¼ 0: (17)
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The dynamical system (14) evolves according to a
dimensionless time variable � such that

dt

d�
¼ 1

H
; (18)

where H is the Hubble parameter with evolution equation

H0 ¼ �ð1þ qÞH: (19)

The deceleration parameter q is very important in the
expansion-normalized approach: when q <�1 the uni-
verse expansion is accelerating, when q >�1 the universe
expansion is decelerating, and when q ¼ �1 the universe
is static—that is, it is not self-similar. From Eq. (1.90) in
[1], and using Eq. (16), the parameter q may be written as

q � 2�2 þ 1

2
ð ~�þ 3 ~PÞ;

¼ 2�2 þ�f

�
1

2
þ 3w

2

�
� 9

2
�0 þ 3

2
ðB2

1 þB2
2 þB2

3Þ;
(20)

where 2�2 � ð�ab�
abÞ=3.

In the case of a magnetic field source, one must also
include an evolution equation for the magnetic field, which
is the orthonormal frame analog of the standard Maxwell-
Faraday equation. According to Eq. (71) in [28], Eq. (2.4)
in [12], and Eqs. (10), (16), (18), and (19) above, the
magnetic field evolution is given by

B0
a ¼ Bað�1þ qÞ þ�abBb þ �abvR

vBb: (21)

For convenience, we introduce the notation

�þ ¼ 1

2
ð�22 þ�33Þ; �� ¼ 1

2
ffiffiffi
3

p ð�22 ��33Þ; (22)

such that �2 ¼ �2þ þ �2�. In the evolution equations (14),
the expansion-normalized angular velocity variables Ra

can be found from the nondiagonal shear equations, �0
12,

�0
23, and �0

13. From these equations, we get that

R1 ¼ � 3
ffiffiffi
3

p
B2B3

2��
; R2 ¼ 9B1B3ffiffiffi

3
p

�� � 3�þ
;

R3 ¼ 9B1B2ffiffiffi
3

p
�� þ 3�þ

:
(23)

To avoid situations where R1, R2, or R3 become singular,
we will setB1 ¼ B3 ¼ 0, and keepB2 � 0, hence assum-
ing that the magnetic field acts in a single spatial direction,
as is done in [11,29–31]. Then, R1 ¼ R2 ¼ R3 ¼ 0, and
according to Eqs. (17), (20), (22), and (23), the evolution
equations (14) become

�0þ ¼ � 3

2
B2

2 þ �þ½q� 2ð1þ �0Þ�; (24)

�0� ¼ � 3
ffiffiffi
3

p
2

B2
2 þ ��½q� 2ð1þ �0Þ�; (25)

B 0
2 ¼ B2ð�1þ qþ ffiffiffi

3
p

�� þ �þÞ; (26)

where the deceleration parameter is now given by

q ¼ 2ð�2þ þ �2�Þ þ�f

�
1

2
þ 3w

2

�
� 9

2
�0 þ 3

2
B2

2: (27)

In Eq. (27) we have defined the energy density as

�f ¼ 1� 3

2
B2

2 ��2� ��2þ � 0; (28)

which, as indicated in Eq. (28), is restricted to be
non-negative on physical grounds. After some algebra,
the auxiliary equation in (14) becomes

�0
f ¼ �fð2q� 1� 3wÞ þ 4�0ð�2þ þ �2�Þ þ 9�0: (29)

In seeking solutions to (24)–(26), we further enforce the
physical restrictions

�1 � w � 1; �0 � 0; �0 � 0; (30)

on the state parameter, bulk, and shear viscosity coeffi-
cients, respectively. Any combinations of these parameters
must additionally satisfy �f � 0, �þ 2 R, �� 2 R, and
B2 � 0 2 R.

IV. FIXED-POINT ANALYSIS

We now consider the local stability of the equilibrium
points of the system (24)–(26), which we abbreviate as

x0 ¼ fðxÞ: (31)

Here x ¼ ½�þ;��;B2� 2 R3, and the vector function
fðxÞ denotes the right-hand side of the dynamical system.
The state space of the system is the subset of R3 defined by
the inequality in Eq. (28), which is equivalent to

�2þ þ�2� þ 3

2
B2

2 � 1; (32)

so the state space is clearly bounded. This inequality is also
a constraint for the initial conditions of the dynamical
system. There is only one symmetry for the dynamical
system, given by

½�þ;��;B2� ! ½�þ;��;�B2�: (33)

The system is therefore invariant with respect to spatial
inversions in the function B2, and we can take B2 � 0. In
most cases, we examine the stability of the critical points a
where fðaÞ ¼ 0 by locally linearizing the system leading to
the relationship x0 ¼ DfðaÞx. The stability of the system is
then determined by the sign of the eigenvalues of the
Jacobian matrix DfðaÞ. In the work that follows, we will
denote eigenvalues of the dynamical system by 	i, where
i ¼ 1; 2; 3; . . . .
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A. Kasner equilibrium points

We now discuss a set of equilibrium points which are
known as the Kasner solutions to the system [1]. Each such
equilibrium point corresponds to a vacuum solution and is
unstable for our model. These equilibrium points, the set of
which we denote K, lie on the Kasner circle

�2� þ�2þ ¼ 1 (34)

in the planeB2 ¼ 0 for parameter values �0 ¼ �0 ¼ 0 and
�1 � w � 1. The cosmological parameters at every point
on the Kasner circle are

�f ¼ 0; q ¼ 2; �2 ¼ 1: (35)

The eigenvalues of the Jacobian matrix at each point are

	1 ¼ 0; 	2 ¼ 3ð1� wÞ;
	3 ¼ 1þ�þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1� �2þÞ

q
:

(36)

As can be seen from Eq. (36), when w ¼ 1 two of the
eigenvalues are zero, and these equilibrium points are not
normally hyperbolic. One therefore cannot use lineariza-
tion methods to determine the local asymptotic behavior. In
the following discussion we restrict our attention to the
parameter region defined by �1 � w< 1.

Let us parametrize the Kasner circle points using the
polar angle c as is done in [1]:

�þ¼ cosc ; ��¼ sinc ; ��<c ��: (37)

The Kasner exponents p1, p2, and p3 of the Kasner metric

ds2 ¼ �dt2 þ t2p1dx2 þ t2p2dy2 þ t2p3dz2 (38)

are then given by

p1 ¼ 1

3
ð1� 2 cos c Þ;

p2;3 ¼ 1

3
ð1þ cos c � ffiffiffi

3
p

sin c Þ:
(39)

It is well known that the Taub points occur for c ¼ ��=3,
�, and �=3. We use these Taub points to subdivide the
circleK into three open arcs. Along the arcK1 defined by

� �

3
< c <

�

3
(40)

the eigenvalue 	3 is positive, and hence each point on the
arc corresponds to a source. Furthermore, on K1 we have
p1 < 0, p2 > 0, and p3 > 0, which implies that each of
these equilibrium points represents a cigar-type past
singularity of the system. Along the arcs K2 and K3

defined by

��< c <��

3
and

�

3
< c <�; (41)

respectively, the eigenvalue 	3 is negative and each Kasner
point on these arcs corresponds to a local saddle point.

On both these arcs we also have p1 > 0, p2 > 0, and
p3 < 0, which corresponds to a cigar-type singularity as
well. In the case of a cigar singularity, matter collapses in
along one spatial direction from infinity, halts, and then
begins to reexpand, while in the other spatial directions, the
matter expands monotonically at all times. Each Taub
point, on the other hand, corresponds to a pancake singu-
larity, where matter is found to expand monotonically in all
directions, starting from a very high expansion rate in one
spatial direction, but from zero expansion rates in the other
spatial directions (see Ref. [32], p. 144).

B. Flat universe equilibrium point

This equilibrium point, which we denote as F , occurs
for

�þ ¼ 0; �� ¼ 0; B2 ¼ 0; (42)

and represents the flat FLRW universe. The cosmological
parameters at this point take the form

�f ¼ 1; q ¼ 1

2
ð1þ 3w� 9�0Þ; �2 ¼ 0: (43)

The eigenvalues of the Jacobian matrix of the dynamical
system at F are given by

	1 ¼ 1

2
ð�1þ 3w� 9�0Þ;

	2 ¼ 	3 ¼ 1

2
ð�3þ 3w� 4�0 � 9�0Þ;

(44)

where in Eqs. (43) and (44) we require that �0 � 0,
�0 � 0, and �1 � w � 1.
The point F represents a local sink if

�0 � 0; �0 � 0; �1 � w<
1

3
; (45)

or

�0�0;
1

3
�w�1; �0>

1

9
ð�1þ3wÞ: (46)

In Fig. 1, we have denoted the region defined by (45) and
(46) as S1ðFÞ.
The point F represents a saddle point if

�0 ¼ 0;
1

3
<w< 1; 0� �0 <

1

9
ð�1þ 3wÞ; (47)

or

�0 ¼ 0; w ¼ 1; 0< �0 <
2

9
; (48)

or

�0 > 0;
1

3
<w� 1; 0� �0 <

1

9
ð�1þ 3wÞ; (49)

where in each case 	1 > 0 and 	2 ¼ 	3 < 0. We will sub-
sequently denote the region defined by (47)–(49) as SA(F).
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The point F can also represent a local source if

�0 ¼ 0; w ¼ 1; �0 ¼ 0; (50)

where in this case, 	1 > 0 and 	2 ¼ 	3 ¼ 0. An analysis
nearly identical to that presented in the classification of
the Kasner point K1 does confirm this is a source point.
We will subsequently denote the region defined by Eq. (50)
as U(F).

It is important to note that q ¼ �1 when 0 � �0 � 2
3

and w ¼ 3�0 � 1, and thus the equilibrium point in the
domain defined by these values of �0, �0, and w does not
correspond to a self-similar solution. In particular, if one
chooses �0 ¼ 0 such that w ¼ �1, the corresponding
model is locally the de Sitter solution [7].

C. A new equilibrium point

We will denote this equilibrium point as BIMV . For
brevity in our presentation, we introduce the condensed
notation for the fixed points

�þ ¼ � 1

16

ð�1 þ �Þ; �� ¼ �

ffiffiffi
3

p
16


ð�1 þ �Þ;

B2 ¼ 1

4
ffiffiffi
3

p ð�2 � �Þ1=2; (51)

where


 ¼ 5� 6�0 þ 3wð1þ 2�0Þ; (52)

�1 ¼ 9w2ð1þ 2�0Þ2 þ 12wð1þ 2�0Þð3� 2�0Þ
þ ð7� 2�0Þð5� 6�0Þ; (53)

�2 ¼ �9w2ð1þ 2�0Þ2 þ 12wð1� 2�0Þ2
� ð17� 6�0Þð3� 2�0Þ � 144�0; (54)

and

� ¼ j
j½9w2ð1þ 2�0Þ2 � 6wð3� 2�0Þ2 þ ð7� 2�0Þ2
þ 32ð1þ 9�0Þ�1=2: (55)

Similarly, the cosmological parameters at this point take
the form

�f ¼ � 1

16

ð�3 þ ð1þ 2�0Þ�Þ; q ¼ 1

4

ð�4 þ �Þ;

�2 ¼ 1

64
2
ð�1 þ �Þ2; (56)

where

�3 ¼ 9w2ð1þ 2�0Þ3 � 12wð1� 2�0Þ2ð1þ 2�0Þ
� ð5� 6�0Þð3� 2�0Þ2 (57)

and

�4 ¼ 9w2ð1þ 2�0Þ2 þ 24wð1þ 2�0Þð2� �0Þ
þ ð5� 6�0Þð11� 2�0Þ: (58)

The restrictions require us to set

�0 >
3

2
;

1

3
� w<

�5þ 6�0

3þ 6�0

;

0 � �0 � 1

9
ð�1þ 3wÞ:

(59)

We will subsequently denote the parameter region defined
by (59) as S2(BIMV). We were not able to obtain exact
expressions for the eigenvalues in this region due to over-
whelming algebraic complexity; however, comprehensive
numerical experiments demonstrate that the eigenvalues in
this region are either zero or negative, thus corresponding
to a sink. Interestingly, for a fixed value of �0 > 3=2, the
dependence of the largest eigenvalue 	1 on the parameters
w and �0 is very nearly linear on S2(BIMV). For several
values of �0 a planar approximation for the 	1 surface was
constructed in our numerical experiments using computed
values in the ðw; �0Þ domain. The planar approximation
with equation 	1 ¼ 1� 3wþ 9�0 agrees with numeri-
cally computed values of 	1 everywhere in S2(BIMV) to
within 3 to 5 digits accuracy, depending on the value of �0

chosen in the range 3=2<�0 � 500; the best agreement is
obtained for larger values of �0. Despite the algebraic
complexity, we can show analytically that the equilibrium
point corresponding to parameters in S2(BIMV) is indeed a
sink by the following considerations. For convenience, we
have included the Jacobian matrix DfðaÞ (where a is the

FIG. 1. A depiction of the different regions of sinks, sources,
and saddles of the dynamical system as defined by the afore-
mentioned restrictions on the values of the expansion-
normalized bulk and shear viscosities, �0, �0 and equation of
state parameter, w.
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equilibrium point under consideration) in the Appendix.
As we discuss in the following section, the surface
�0 ¼ ð3w� 1Þ=9, which forms one boundary of the
domain S2(BIMV), corresponds to bifurcations in the so-
lution; on this surface the Jacobian matrix is diagonal and
its eigenvalues are seen to be

	1 ¼ 0; 	2 ¼ 	3 ¼ �1� 2�0: (60)

We seek to characterize the equilibrium point slightly
inside the region S2(BIMV), and thus in what follows
we find expressions for the eigenvalues corresponding to
�0 ¼ ð3w� 1Þ=9� ", where " > 0 is a small parameter
chosen to ensure that indeed �0 � 0 and w< ð6�0 � 5Þ=
ð6�0 þ 3Þ. Expanding the elements of the Jacobian matrix
in a series in " to first order allows us to obtain simple
expressions for the eigenvalues:

	1 ¼ �9";

	2 ¼ �1� 2�0 þ 108"

ð7� 2�0Þ þ 3wð1þ 2�0Þ ;

	3 ¼ �1� 2�0 þ 36"

ð7� 2�0Þ þ 3wð1þ 2�0Þ :

(61)

We note that all the terms in (61) have errors of orderOð"2Þ.
The quantity " may be taken arbitrarily small, and thus
all the eigenvalues corresponding to parameters slightly
inside the bifurcation boundary are negative; i.e., the equi-
librium point is a local sink. Since the solution does not
bifurcate inside the region S2(BIMV)—it does so only
across its boundaries—it follows that all parameter values
inside the region correspond to a local sink. In addition, the
results (61) indicate that @	1=@�0 � 9 at the boundary
�0 ¼ ð3w� 1Þ=9; this approximation for the �0 slope of
the	1 surface agrees to several digitswith the same quantity
which was numerically computed and used to form the
planar approximation for this surface discussed above.

To the best of our knowledge, the equilibrium point
BIMV has not previously been reported in the literature,
and it represents a new solution to the Einstein field equa-
tions. Interestingly, the model with parameter values in
S2(BIMV) will not isotropize, since this equilibrium point
is a local source with �þ, ��, B2 � 0.

For convenience, we have summarized the results of this
section in Fig. 1 which depicts the different regions of
sinks, saddles, and sources of the dynamical system.

V. BIFURCATIONS

We note that the equilibria found above are related to
each other by sequences of bifurcations. We will now give
the details of these bifurcations. The method we use in-
volves determining for what values of �0, �0, and w the
different equilibrium points destabilize. A similar method
was employed in [26].

The linearized system for points on K, where

�� ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1��2þ

q
, becomes

�0þ ¼�3ð�1þwÞ�3þ�3ð�1þwÞ�2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1��2þ

q
; (62)

�0� ¼ �3ð�1þ wÞ�2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2þ

q

þ 3��ð�1þ wÞð�1þ �2þÞ; (63)

B 0
2 ¼ 1þ �þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1� �2þÞ

q
: (64)

We can therefore see that �þ destabilizes K when
�þ ¼ 0, �1 � w< 1, �� destabilizes K when �þ ¼
�1, �1 � w< 1, and B2 destabilizes K when �þ ¼
�1, �1 � w< 1, where in each case �0 ¼ �0 ¼ 0.
We next consider the linearized system at F , given by

�0þ ¼ 1

2
ð�3þ 3w� 4�0 � 9�0Þ�þ; (65)

�0� ¼ 1

2
ð�3þ 3w� 4�0 � 9�0Þ��; (66)

B 0
2 ¼

1

2
ð�1þ 3w� 9�0ÞB2: (67)

It may be seen that both �þ and �� destabilize F when
�0 ¼ �0 ¼ 0 and w ¼ 1, while B2 destabilizes F when
�0 � 0, 1=3 � w � 1, and �0 ¼ ð3w� 1Þ=9.
We now turn to the final equilibrium point of the system,

BIMV , whose corresponding Jacobian matrix is given in
the Appendix. It may be seen that the Jacobian is in fact
diagonal when �0 > 3=2 and �0 ¼ ð3w� 1Þ=9, in which
case B0

2 ¼ 0. Thus B2 destabilizes this equilibrium point
along the surface �0 ¼ ð3w� 1Þ=9, which is a shared
boundary with the region SA(F). Across this boundary,
the source point in SA(F) becomes a sink in S2(BIMV).
Extensive numerical experiments indicated that there were
no other destabilizations for this equilibrium point.
We thus see that the system destabilizes either on the

line in parameter space �0 ¼ �0 ¼ 0 or on the parameter
surface �0 ¼ ð3w� 1Þ=9. Given this information on the
destabilizations, we see that some possible bifurcation
sequences can be obtained as follows. First, let us set
w ¼ 1=3, �0 ¼ 0. Then, we have that

Kð�0¼0Þ ! F ð0<�0�3=2Þ ! BIMV ð�0>3=2Þ: (68)

Another possible bifurcation sequence is obtained when

Kð�1�w<1=3;�0¼�0¼0Þ ! BIMV ð�0>3=2;w¼1=3;�0¼0Þ
! F ð�0>3=2;1=3<w�1;0<�0�2=9Þ: (69)

One can also have that

Kð�1�w<1=3;�0¼�0¼0Þ ! BIMV ð�0>3=2;w¼1=3;�0¼0Þ
! F ð�0¼�0¼0;w¼1Þ: (70)

As discussed previously, the surface �0 ¼ ð3w� 1Þ=9
governs bifurcations of the dynamical system. It is con-
structive to display this bifurcation behavior for cases
where first �0 < ð3w� 1Þ=9, then �0 ¼ ð3w� 1Þ=9, and
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finally �0 > ð3w� 1Þ=9. For the purposes of this numeri-
cal experiment, we specifically chose w ¼ 1=2, �0 ¼ 5,
therefore requiring that the three aforementioned cases
reduce to �0 < 1=18, �0 ¼ 1=18, and �0 > 1=18. The out-
comes of this experiment are shown in Fig. 2.

VI. QUALITATIVE PROPERTIES
OF THE SYSTEM

A. Further analysis of the asymptotic behavior

An important question to ask in analyzing some
qualitative properties of the dynamical system is whether
there are any invariant sets of the dynamical system. Avery
useful proposition in this regard is given by Proposition 4.1
in Ref. [1], which states that for a dynamical system
of type (31), if Z: Rn ! R is a C1 function such that
Z0 ¼ 
Z, where 
: Rn ! R is a continuous function,

then the subsets of Rn defined by Z > 0, Z ¼ 0, and
Z < 0 are invariant sets of the flow of the system of
differential equations. From Eq. (26), we see that this
proposition applies with Z ¼ B2, and thus B2 ¼ 0 and
B2 > 0 are invariant sets of the system. We also note that
if one sets �0 ¼ �0 ¼ 0 in Eq. (29), then the proposition
also applies with Z ¼ �f, and hence �f � 0 is an invari-

ant set of the system.
With respect to the existence of limit sets, we first

make a proposition about the late-time dynamics of the
system:
Proposition 1.—Consider the dynamical system (14) with

parameters in the region S1ðFÞ defined by �1 � w< 1
3 ,

�0 ¼ 0, and �0 ¼ 0. Then, as � ! þ1, �2 ¼ �2þ þ
�2� ! 0 andB2

2 ! 0, and hence the model isotropizes.
Proof.—The details of the proof essentially follow the

arguments given in the Appendix of Ref. [33]. Substitution

−2
−1

0
1

2

−2

−1

0

1

2
0

0.5

1

1.5

2

2.5

3

Σ+Σ−

B
2

−2
−1

0
1

2

−2

−1

0

1

2
0

0.5

1

1.5

2

2.5

3

Σ+Σ−

B
2

−2
−1

0
1

2

−2

−1

0

1

2
0

0.5

1

1.5

2

2.5

Σ+Σ−

B
2

FIG. 2 (color online). These figures show bifurcation behavior for a varying expansion-normalized bulk viscosity coefficient, �0,
while w and �0 were held fixed. The circles indicate the BIMV equilibrium points, while the diamond indicates the FLRW
equilibrium point. For the first figure, �0 ¼ 0:05, for the second figure, �0 ¼ 1=18, and for the last figure, �0 ¼ 0:6. Note how the
increasing values of �0 first result in a slight shift of the equilibrium point position of BIMV , and then finally a transition to a new
state, namely the FLRW equilibrium, which was predicted by our fixed-point analysis.
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of Eq. (28) in (27) results in the expression

q¼ �2

�
3� 3w

2

�
þB2

2

�
3� 9w

4

�
þ 3wþ 1

2
� 9

2
�0; (71)

and hence the �0
f evolution equation (29) may be

written as

�0
f ¼ �f

�
�2ð3� 3wÞ þB2

2

�
3� 9w

2

�
� 9�0

�

þ 4�0�
2 þ 9�0: (72)

In addition, from the generalized Friedmann equation,
Eq. (28), we have that �f � 1. Therefore, to prove the

proposition we still need to show that the function �f is

monotonically increasing, i.e., �0
f > 0. Then,

�
�2ð3� 3wÞ þB2

2

�
3� 9w

2

��

þ 4�0�
2 > 0 , �1 � w<

1

3
: (73)

Therefore, in the region where �0 � 0, �0 ¼ 0, and�1 �
w< 1

3 ,�f is monotonically increasing. In can therefore be

said that in this region,

lim
�!þ1�f ¼ 1: (74)

Using this result in the Friedmann equation (28), we have
that

lim
�!þ1�f ¼ 1 ) lim

�!þ1

�
� 3

2
B2

2 ��2

�
¼ 0: (75)

The latter then implies that

lim
�!þ1�

2 ¼ lim
�!þ1B

2
2 ¼ 0: (76)

j
In order to gain some insight into the asymptotic behav-

ior of the system as � ! �1, we use the extended LaSalle
principle for negatively invariant sets; see Proposition B.3.
in Ref. [34]. In particular, suppose x0 ¼ fðxÞ is an
autonomous system of first-order differential equations
and let Z: Rn ! R be a C1 function. If S � Rn is a
closed, bounded, and negatively invariant set, and Z0ðxÞ �
rZ 	 fðxÞ � 0, 8 x 2 S, then the extended LaSalle
principle states that 8 a 2 S, 
ðaÞ 
 fx 2 SjZ0ðxÞ ¼ 0g.
That is, the 
-limit set 
ðaÞ contains the local sources
in the system at � ! �1. We use this principle to
establish past asymptotic behavior in the following
proposition.

Proposition 2.—For the dynamical system (14),

ðaÞ 
 f�f ¼ 0g ¼ fKg.

Proof.—The set f�f ¼ 0g is negatively invariant,

closed, and bounded. From Eq. (72), when �f ¼ 0, it

follows that �0
f � 0 if and only if �0 ¼ �0 ¼ 0.

Therefore, �0
f ¼ 0 if �f ¼ �0 ¼ �0 ¼ 0, which is

precisely the region defining the Kasner circle, so

ðaÞ 
 f�f ¼ 0g. j

B. Heteroclinic orbits

It is interesting to note that for the cosmological model
under consideration in this paper, no finite heteroclinic
sequences exist. The reason is that every heteroclinic se-
quence has an initial point that represents a local source,
intermediate points that represent saddles, and a terminal
point that represents a local sink. The caveat, however,
is that each equilibrium point and its corresponding
asymptotic behavior must belong to the same region
of the parameter space ð�0; �0; wÞ, which is not possible for
our dynamical system. There are, however, several
heteroclinic orbits that connect distinct equilibrium points,
some of which have been plotted in Figs. 3–5. For the
region defined by fð�0;�0;wÞjð�0;�0;wÞ2UðKÞ[S1ðFÞg,
we have
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FIG. 3 (color online). The heteroclinic orbits joining the
K ! F . The plus signs indicate the Kasner equilibrium points
that we found above, while the large circle indicates the FLRW
equilibrium point. The numerical integration was completed
with �0 ¼ �0 ¼ 0, w ¼ 0:325.
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FIG. 4 (color online). The heteroclinic orbits joining the
K ! F . The plus signs indicate the Kasner equilibrium points
that we found above, while the large circle indicates the FLRW
equilibrium point. The numerical integration was completed
with �0 ¼ �0 ¼ 0, w ¼ 1
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K ! F : (77)

For the region defined by fð�0; �0; wÞjð�0; �0; wÞ 2
UðKÞ [ SAðFÞg, we have

K ! F : (78)

For the region defined by fð�0; �0; wÞjð�0; �0; wÞ 2
SAðFÞ [ S2ðBIMVÞg, we have

F ! BIMV : (79)

C. The general case—extending the phase space

As discussed earlier, our work up to this point has
assumed that the magnetic field is aligned along the shear
eigenvector. The result of this approach was seen in
Eq. (23), where to avoid R1, R2 or R3 becoming singular
we setB1 ¼ B3 ¼ 0 andB2 � 0. Of course, this is not the
most general case.
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FIG. 7 (color online). This figure shows the dynamical system
behavior for �0 ¼ 1, �0 ¼ 0:5, and w ¼ 0. The diamond indi-
cates the FLRW equilibrium point, and this numerical solution
shows that it is a local sink of the dynamical system. The model
also isotropizes as can be seen from the last figure, where ��,
B2 ! 0 as � ! 1.
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FIG. 5 (color online). The heteroclinic orbits joining SA(F) to
S2(BIMV). The circle represents the FLRW equilibrium point,
while the star represents the BIMV equilibrium point. The
numerical integration was completed with �0 ¼ 2, �0 ¼ 0,
and w ¼ 0:40.
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FIG. 6 (color online). This figure shows the dynamical system
behavior for �0 ¼ 0:1, �0 ¼ 0:2, and w ¼ 0. The diamond
indicates the FLRW equilibrium point, and this numerical solu-
tion shows that it is a local sink of the dynamical system. The
model also isotropizes as can be seen from the last figure, where
��, B2 ! 0 as � ! 1.
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For a Bianchi type I universe with a magnetic field
source, one can also consider the case for which the
magnetic field is not a shear eigenvector as was done for
the perfect-fluid case by LeBlanc [10]. The result of this
approach is that the dynamical system is six dimensional to
accommodate additional nondiagonal shear components
compared to just three dimensions with no nondiagonal
shear components as is the case in our work. This extension
of the phase space leads to dynamical equations that are
indeed smooth over all phase space, with R1, R2, R3 being
continuous in general.

With respect to qualitative behavior, in LeBlanc’s
extended approach, he also obtains a flat FLRWequilibrium
point, a new solution to the Einstein field equations (via a
previously undiscovered equilibrium point) and the Kasner
vacuum (see Ref. [10], p. 2287). He also concludes that a
possible late-time future asymptotic state is a flat FLRW
model (see Ref. [10], p. 2290). Finally, LeBlanc also

concludes that the Kasner circle is a past attractor (see
Ref. [10], p. 2292). Although LeBlanc obtains additional
equilibrium points, which is natural given the extension of
the phase space dimension, the asymptotic qualitative be-
havior he finds is the same as we have found in our work.

VII. A NUMERICAL ANALYSIS

The goal of this section is to complement the preceding
stability analysis of the equilibrium points with extensive
numerical experiments in order to confirm that the local
results are in fact global in nature. For each numerical
simulation, we choose the initial conditions such that
the constraint equation (28), in addition to B2 � 0, is
satisfied. Although numerical integrations were done
from 0 � � � 3000, for demonstration purposes we
present solutions for shorter time intervals. We completed
numerical integrations of the dynamical system for
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FIG. 9 (color online). This figure shows the dynamical system
behavior for �0 ¼ 1:5, �0 ¼ 0:5, and w ¼ 1=3. The diamond
indicates the FLRW equilibrium point, and this numerical solu-
tion shows that it is a local sink of the dynamical system. The
model also isotropizes as can be seen from the last figure, where
��, B2 ! 0 as � ! 1.
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FIG. 8 (color online). This figure shows the dynamical system
behavior for �0 ¼ 1:5, �0 ¼ 0, and w ¼ 1=3. The diamond
indicates the FLRW equilibrium point, and this numerical solu-
tion shows that it is a local sink of the dynamical system. The
model also isotropizes as can be seen from the last figure, where
��, B2 ! 0 as � ! 1.
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physically interesting cases of w equal to 0 (dust), 0.325
(a dust/radiation mixture), and 1=3 (radiation). Also note
that in the subsequent plots, asterisks denote initial
conditions. The actual initial conditions used can be
found in the Appendix in Table I.

A. Dust models: w ¼ 0

1. �0 ¼ 0:1, �0 ¼ 0:2

The outcome of this numerical experiment is presented
in Fig. 6.

2. �0 ¼ 1, �0 ¼ 0:5

The outcome of this numerical experiment is presented
in Fig. 7.

B. Radiation models: w ¼ 1=3

1. �0 ¼ 1:5, �0 ¼ 0

The outcome of this numerical experiment is presented
in Fig. 8.

2. �0 ¼ 1:5, �0 ¼ 0:5

The outcome of this numerical experiment is presented
in Fig. 9.

3. �0 ¼ 0, �0 ¼ 2

The outcome of this numerical experiment is presented
in Fig. 10.
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FIG. 11 (color online). This figure shows the dynamical sys-
tem behavior for �0 ¼ 0, �0 ¼ 10, and w ¼ 1=3. The circle
indicates the BIMV equilibrium point, and this numerical solu-
tion shows that it is a local sink of the dynamical system. The
model does not isotropize with respect to the anisotropic mag-
netic field as can be seen from the last figure, where B2 > 0 as
� ! 1, but does isotropize with respect to the spatial anisotropic
variables, ��;! 0 as � ! 1. This state is also special, since
according to our fixed-point analysis, this behavior is only
exhibited for w ¼ 1=3, �0 > 3=2, and �0 ¼ 0
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FIG. 10 (color online). This figure shows the dynamical sys-
tem behavior for �0 ¼ 0, �0 ¼ 2, and w ¼ 1=3. The circle
indicates the BIMV equilibrium point, and this numerical solu-
tion shows that it is a local sink of the dynamical system. The
model does not isotropize with respect to the anisotropic mag-
netic field as can be seen from the last figure, where B2 > 0 as
� ! 1, but does isotropize with respect to the spatial anisotropic
variables, ��;! 0 as � ! 1. This state is also special, since
according to our fixed-point analysis, this behavior is only
exhibited for w ¼ 1=3, �0 > 3=2, and �0 ¼ 0
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4. �0 ¼ 0, �0 ¼ 10

The outcome of this numerical experiment is presented
in Fig. 11.

C. Dust/radiation models: w ¼ 0:325

1. �0 ¼ 0:5, �0 ¼ 0:5

The outcome of this numerical experiment is presented
in Fig. 12.

D. Dust/radiation models: w ¼ 0:325

1. �0 ¼ 1, �0 ¼ 2

The outcome of this numerical experiment is presented
in Fig. 13.

VIII. CONCLUSIONS

We have presented in this paper a comprehensive
analysis of the dynamical behavior of a Bianchi type I
viscous magnetohydrodynamic cosmology, using a variety
of techniques ranging from a fixed-point analysis to
analyzing asymptotic behavior using standard dynamical
systems theory combined with numerical experiments.
We have shown that the fixed points may be associated
with Kasner-type solutions, a flat universe FLRW solution,
and interestingly, a new solution to the Einstein field
equations involving nonzero magnetic fields and nonzero
viscous coefficients.
For cases in which �0 � 0, �0 � 0, �1 � w< 1=3 or

�0 � 0, 1=3 � w � 1, �0 > ð3w� 1Þ=9, the dynamical
model isotropizes asymptotically; that is, the spatial anisot-
ropy and the anisotropic magnetic field decay to negligible
values, giving a close approximation to the present-day
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FIG. 13 (color online). This figure shows the dynamical sys-
tem behavior for �0 ¼ 1, �0 ¼ 2, and w ¼ 0:325. The diamond
indicates the FLRW equilibrium point, and this numerical solu-
tion shows that it is a local sink of the dynamical system. The
model also isotropizes as can be seen from the last figure, where
��, B2 ! 0 as � ! 1.
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FIG. 12 (color online). This figure shows the dynamical sys-
tem behavior for �0 ¼ 0:5, �0 ¼ 0:5, and w ¼ 0:325. The
diamond indicates the FLRW equilibrium point, and this nu-
merical solution shows that it is a local sink of the dynamical
system. The model also isotropizes as can be seen from the last
figure, where ��, B2 ! 0 as � ! 1.
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Universe.Wewere also able to show that for regions inwhich
�0 > 3=2, �0 ¼ 0, w ¼ 1=3 or �0 > 3=2, 1=3<w<
ð6�0 � 5Þ=ð6�0 þ 3Þ, 0 � �0 � ð3w� 1Þ=9, the model
does not isotropize; rather, at late times it goes into a stable
equilibrium in which there is a nonzero magnetic field.

The flat FLRW model whose associated equilibrium
point was denoted by F is of primary importance with
respect to models of the present-day universe. Through our
fixed-point analysis, we showed that F represents a saddle
point if �0 ¼ 0, 1=3<w< 1, 0 � �0 < ð3w� 1Þ=9,
�0 ¼ 0, w ¼ 1, 0< �0 < 2=9, or �0 > 0,1=3<w � 1,
0 � �0 < ð3w� 1Þ=9 [which was denoted above by SA
(F)]. In these regions, F attracts along its stable manifold
and repels along its unstable manifold. More precisely, the
stable manifoldWs of the equilibrium pointF is tangent to
the stable subspace Es at F such that all orbits in Ws

approach F as � ! 1. Similarly, there exists an unstable
manifold Wu of F such that it is tangent to the unstable
subspace Eu at F and such that all orbits in Wu will
approach F as � ! �1. Therefore, in the region denoted
by SA(F), some orbits will have an initial attraction to F ,

but will eventually be repelled by it. In the region denoted
by S1(F), the pointF is a local sink, and as suchF attracts
along its stable manifold, where the stable manifold Ws of
the equilibrium point F is tangent to the stable subspace
Es at F such that all orbits in Ws approach F as � ! 1.
There is therefore a time period and two possible
configurations for which the cosmological model will
asymptotically isotropize and be compatible with
present-day observations of high-degree isotropy.
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APPENDIX

A. Jacobian matrix for BIMV

The Jacobian matrix for equilibrium point 3 is

J ¼ 1

128


�ð
�1 þ�2�Þ � ffiffiffi
3

p
�3ð�1 þ �Þ2=ð2
Þ ffiffiffi

3
p ð�2 � �Þ1=2ð
�4 þ�5�Þ

� ffiffiffi
3

p
�3ð�1 þ �Þ2=ð2
Þ �ð
�6 þ�7�Þ 3ð�2 � �Þ1=2ð
�4 þ�5�Þ

2
ffiffiffi
3

p ð�2 � �Þ1=2ð
2�5 þ�3�Þ=3 2ð�2 � �Þ1=2ð
2�5 þ�3�Þ 4
�5ð�� �2Þ

2
664

3
775; (A1)

where, in addition to the definition of parameters in Eqs. (52)–(55), we define

�1 ¼ 2�1 � 3ðw� 1Þ�2 � 144wð1þ 2�0Þ � 16ð13� 22�0Þ; �2 ¼ 9w2ð1þ 2�0Þ þ 12wð1� 2�0Þ � 53þ 6�0;

(A2)

�3 ¼ 3ðw� 1Þ; �4 ¼ 9w2ð1þ 2�0Þ þ 6wð3� 2�0Þ � 39þ 2�0; �5 ¼ 3w� 1; (A3)

�6 ¼ 6�1 � 9ðw� 1Þ�2 � 240wð1þ 2�0Þ � 16ð27� 26�0Þ;
�7 ¼ 27w2ð1þ 2�0Þ þ 36wð1� 2�0Þ � 95þ 18�0:

(A4)

On the bifurcation surface �0 ¼ ð3w� 1Þ=9 we have the simplifications � ¼ �2 ¼ ��1 and 
�1 þ�2� ¼ 
�6 þ
�7� ¼ 128
ð1þ 2�0Þ, and thus the matrix J is diagonal.

B. Initial values for numerical experiments

TABLE I. Initial conditions used in the numerical experi-
ments. Note that in each case, 0 � �f � 1 and B2 � 0 as

required.

�þ �� B2 �f

0.1 0.2 0.3 0.8150

0.1 �0:5 0.3 0.6050

�0:1 �0:5 0.3 0.6050

�0:2 �0:5 0.5 0.3350

0.5 �0:1 0.5 0.3650

0.75 0.05 0.5 0.0600

0.33 0.12 0.4 0.6367

�þ �� B2 �f

�0:33 0.12 0.4 0.6367

�0:44 0.32 0.15 0.7198

�0:12 0.15 0.1 0.9481

0.35 0.15 0.25 0.7613

0.99 0 0 0.0199

0.499 �0:855 0 0.0200

0 �0:99 0 0.0199

0 0.99 0 0.0199

TABLE I. (Continued)
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