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The dark matter annihilation rate at small relative velocities can be amplified by a large boost factor

using various mechanisms, including Sommerfeld enhancement, resonance enhancement, and Breit-

Wigner enhancement. These mechanisms all involve a resonance near the threshold for a pair of dark

matter particles. We point out that if the resonance is in the S-wave channel, the mechanisms are

equivalent sufficiently near the resonance and they are constrained by universal two-body physics. The

amplified annihilation rate requires a corresponding amplification of the elastic scattering cross section.

If the resonance is a bound state below the threshold, it has an increased lifetime that is inversely

proportional to the square root of the binding energy. Its spatial structure is that of two dark matter

particles whose mean separation is also inversely proportional to the square root of the binding energy.
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I. INTRODUCTION

One of the greatest mysteries in physics today is the
nature of the dark matter that comprises most of the mass
of the Universe. A possibility that is strongly motivated by
elementary particle physics is weakly interacting massive
particles that are relics of a thermal distribution in the early
universe [1]. One possible signature for dark matter parti-
cles is their annihilation into ordinary particles, which
could be detected through observations of the annihilation
products. In the standard scenario, the annihilation rate in
the present era is completely determined by the mass of the
dark matter particles and their velocity-independent anni-
hilation rate v�ann. Limits on dark matter annihilation can
provide constraints on physics beyond the Standard Model
for elementary particles.

Observations of high-energy electrons and positrons in
cosmic rays at rates larger than expected have motivated
models for dark matter in which the present annihilation
rate is boosted above that in the standard scenario by orders
of magnitude. In these models, the low-energy annihilation
rate is enhanced by powers of 1=v, where v is the relative
velocity of the dark matter particles. Sommerfeld enhance-
ment gives a factor of 1=v from the exchange of a light
mediator between the dark matter particles. Resonance
enhancement gives a factor of 1=v2 from a bound state
of two dark matter particles near their scattering threshold.
Breit-Wigner enhancement gives a factor of 1=v4 from an
elementary particle near the scattering threshold.

In this paper, we point out that these enhancement
mechanisms are actually equivalent very near the

resonance, provided the resonance is in the S-wave
channel. An S-wave resonance is the most interesting
case, because it can provide more dramatic enhancement
for a given degree of fine tuning than a resonance with
higher angular momentum. For a P-wave or higher angular
momentum resonance, the fine tuning must also compen-
sate for the angular momentum suppression. An S-wave
resonance near the scattering threshold produces a scatter-
ing length that is much larger than the range of interactions.
The two-body physics of dark matter particles with an
S-wave resonance near threshold has universal behavior
that depends only on their large scattering length and not
on the enhancement mechanism [2]. Universal two-body
physics produces constraints on the behavior of dark
matter that have not been taken into account in previous
calculations of its properties.

II. DARK MATTER SCATTERING

Conventional dark matter consistent with cosmological
constraints consists of particles that are nonrelativistic and
have weak short-range interactions with ordinary particles.
The dark matter particles also have short-range self-
interactions, which could be the weak interactions of the
Standard Model and/or a new interaction mediated by a
particle from a hidden sector. To be concise, we will refer
to the dark matter particles as wimps, regardless of their
interactions. A bound state of two wimps will be called
‘‘wimponium.’’ We denote the mass of the wimps by M.
Their behavior in the low-energy limit is described by a
complex scattering length a that has a small negative
imaginary part due to the annihilation channel or, equiv-
alently, by the inverse scattering length � ¼ 1=a. For a
conventional wimp, such as a neutralino in a supersym-
metric extension of the Standard Model, the real and
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imaginary parts of the scattering length aw ¼ 1=�w are of
order �wM=m2

w and �2
wM

3=m4
w, respectively, where

�w � 10�2 and mw � 100 GeV are the coupling constant
and mass scale of the weak interactions. If the wimps
interact through the exchange of a mediator particle with
mass my and small coupling constant �y, their interaction

in the nonrelativistic limit can be approximated by a
Yukawa potential ��y exp ð�myrÞ=r.

The effect on the relic abundance of dark matter from a
resonance whose massMR is close to the threshold 2M for
a pair of wimps was considered long ago [3,4]. The reso-
nance is typically an elementary particle with a weak
coupling to dark matter. The use of such a resonance to
boost the low-energy annihilation rate was proposed by
Ibe et al. [5] and is called ‘‘Breit-Wigner enhancement.’’
The effect on the kinetic decoupling temperature of the
dark matter from elastic scattering with ordinary particles
through t-channel exchange of the same resonance was
studied by Bi et al. [6].

In Refs. [3–6], the annihilation cross section was
assumed to be that of a Breit-Wigner resonance.
However, when a resonance is sufficiently close to the
threshold for a pair of particles, the cross section can be
significantly modified by rescattering of those particles.
The effects can be particularly dramatic when the reso-
nance is in the S-wave channel. In the limit of a weak
coupling �R of the resonance to the wimps, the resonance
has a well-defined massMR and width �R. The low-energy
interactions of the wimps in this limit are described by a
complex scattering length aw ¼ 1=�w. If �R is nonzero
and if the mass of the resonance is sufficiently close to the
threshold 2M, the effects of self-scattering of the wimps
and their scattering through the resonance must both be
summed up to all orders. The resulting scattering ampli-
tude for wimps with nonrelativistic relative momentum k
reduces to [7]

fðkÞ ¼
�
�
�
1

�w

� �R

�R � i�R=2� k2=M

��1 � ik

��1
; (1)

where �R ¼ MR � 2M. The elastic cross section is �el ¼
4�jfðkÞj2, and the inelastic cross section �in, which
includes the annihilation cross section, can be determined
from the optical theorem, �el þ �in ¼ ð4�=kÞImf.
Cutting rules can be used to resolve �in into terms propor-
tional to Imð�wÞ and �R, corresponding to dark matter
annihilation and resonance decay, respectively. The con-
ventional annihilation cross section with Breit-Wigner
enhancement is ð4�=kÞjfðkÞj2Imð�wÞ, with the 1=�w and
�ik terms in the expression for fðkÞ in Eq. (1) omitted.

We now consider the behavior of the annihilation cross
section �ann as a function of the relative velocity v ¼
2k=M of the wimps. If MR is far from the threshold,
v�ann approaches the constant 8�Imð�awÞ=M in the
low-energy limit. If MR is tuned to be very close to the
threshold, v�ann scales as 1=v

4 in most of the region where

the resonance term in Eq. (1) dominates. For small veloc-

ities, this scaling behavior is cut off at v� ð2�R=MÞ1=2 or
at v� ð4j�Rj=MÞ1=2 by the width or energy of the reso-
nance. In previous work on the Breit-Wigner enhancement
of dark matter annihilation, it was not recognized that there
can be another scaling region of v in which the rescattering
term �ik in Eq. (1) dominates. This can occur if 1=�w is
sufficiently small and if the resonance is sufficiently
narrow, �R � �2

RMR. As v decreases, the scaling behavior
1=v4 for v�ann crosses over to 1=v2 at v� �R before it is
ultimately cut off at v� �R=ð�RMRÞ. If there was a mas-
sive Dirac neutrino whose threshold 2M was close to the
mass of the Z0 resonance, its coupling strength would be
�R � 0:0012, and �Z=ð�2

RMZÞwould be 1:9� 104. Thus a
1=v2 scaling region requires a resonance for which
�R=ð�2

RMRÞ is more than 4 orders of magnitude smaller.
In the 1=v2 scaling region and below, the elastic and

inelastic self-scattering cross sections reduce, if the
particles are distinguishable, to

�elðkÞ ¼ 4�

j� �� ikj2 ; (2a)

�inðkÞ ¼ 4�Imð�Þ
kj� �� ikj2 ; (2b)

where � ¼ ½1=�w � �R=ð�R � i�R=2Þ��1 is the inverse
scattering length. The elastic cross section can be as large
as 16��2

R=�
2
R if M is near MR=2. Using Eq. (2b), the

annihilation rate reduces in the low-energy limit to

v�in ! 8�

M

�
Imð�awÞ þ �R�R=2

�2
R þ �2

R=4

�
: (3)

The first term on the right side represents the conventional
annihilation modes of the wimps. The second term repre-
sents their annihilation into decay products of the reso-
nance. For conventional wimps, the first term in the
parentheses is of order �2

wM
3=m4

w, while the second term
can be at most 2�R=�R. The condition �R � �2

RMR for the
1=v2 scaling region does not exclude the second term from
being larger than the first. Thus, the dark matter could
annihilate predominantly into the decay products of the
resonance.
There is an analogous phenomenon in cold atom physics

called a ‘‘Feshbach resonance’’ [8]. A magnetic field can
be used to tune a diatomic molecule to near the atom pair
threshold. If the molecule has an S-wave coupling to the
atoms, there is a scaling region of the magnetic field in
which the elastic cross section of the atoms has the univer-
sal form in Eq. (2a). The magnetic field can be used to
control the scattering length a ¼ 1=� of the atoms, making
it arbitrarily large or arbitrarily small.
The elastic and inelastic cross sections in Eq. (2) are

appropriately called universal, because they apply to any
particles with short-range interactions that have an S-wave
resonance sufficiently close to threshold. More specifically,
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if there is a parameter whose variation makes an S-wave
bound state or resonance pass through the threshold while
keeping the range of interactions fixed, generically there
will be a scaling region of that parameter in which the cross
sections have the universal forms in Eq. (2). More intricate
low-energy behavior requires multiple fine tuning. In the
dark matter context, the universal cross sections in Eqs. (2)
were written down previously by March-Russel and West
to describe resonance enhancement from an S-wave wim-
ponium near the threshold 2M [9]. There is a scaling region
ofM in which the wimponium mass is sufficiently close to
the threshold that the cross sections have the universal
forms in Eqs. (2). If the wimps interact through a
Yukawa potential with range 1=my, the universal cross

sections apply when the wimponium binding energy is
much less than m2

y=M. As an illustration, we consider an

attractive potential between wimps that is mediated by
Z0 exchange. The resulting Yukawa potential is
��Z exp ð�MZrÞ=r, where �Z ¼ 0:011 if the Z0 couples
to the wimps with the same strength with which it couples
to neutrinos. The critical value M� for the wimp mass for
which the lowest bound state is at threshold is M� ¼
1:68MZ=�Z � 14 TeV. There is a universal 1=v2 scaling
region if M�M� is less than about M2

Z=M� � 0:6 GeV.
The universal region ofM extends a similar distance below
M�, where the wimponium is unbound. The real part of �
can be calculated as a function ofM, �y, andmy by solving

the Schrödinger equation for zero-energy scattering from
the Yukawa potential. The imaginary part of � can be
obtained by calculating �in in the scaling region, where
it reduces to 4�Imð�Þ=k3.

Sommerfeld enhancement occurs if the mediator mass
my is orders of magnitude smaller than that of the wimp. If

the Yukawa potential is attractive, the wimp annihilation
rate is generically enhanced by a factor of approximately
��y=v that is related to Sommerfeld’s enhancement factor

in Coulomb scattering. The Yukawa potential in this case
supports many bound states. A further boost of the
enhancement factor to order 1=v2 can be obtained by
resonance enhancement, in which M is tuned to near a
critical value for which one of the excited S-wave bound
states is at the threshold. The Sommerfeld enhancement of
the annihilation of neutralino dark matter from electroweak
gauge boson exchange was first noticed by Hisano et al.
[10]. The same authors noted that the enhancement is more
dramatic when there is a wimponium near the wimp pair
threshold [11]. In Ref. [12], Hisano et al. labeled both
effects ‘‘Sommerfeld enhancement.’’ The enhancement
from a wimponium near the wimp pair threshold is
more properly referred to as ‘‘resonance enhancement,’’
because it has nothing to do with Coulomb or Yukawa
potentials. It occurs for any short-range potential with an
S-wave bound state near threshold. Arkani-Hamed et al.
increased the interest in these enhancements when they
pointed out that a light gauge boson from a hidden sector

could explain several possible anomalies in particle
astrophysics [13].

III. UNIVERSAL RELATIONS

The universal cross sections in Eqs. (2) depend on a
single complex parameter �, whose imaginary part is
positive. Any relation between observables that can be
expressed in terms of � is universal, because it will apply
to all models in which there is an S-wave resonance
sufficiently close to threshold. One simple universal rela-
tion can be obtained by taking the ratio of the universal
cross sections in Eqs. (2),

k�inðkÞ
�elðkÞ ¼ Imð�Þ: (4)

The imaginary part of � is insensitive to the fine-tuning
parameters that are most commonly used to tune the reso-
nance to the threshold, including the wimp mass M. The
universal relation in Eq. (4) therefore implies that any
mechanism that boosts the annihilation rate of the dark
matter by orders of magnitude will inevitably also boost its
elastic self-scattering cross section by a comparable
amount. Feng et al. have considered the effect of wimp
elastic scattering on the annihilation of dark matter after
freeze-out and found that it can lead to chemical recou-
pling to ordinary matter [14]. For the elastic cross section,
they used an empirical parametrization of a numerical
cross section for a Yukawa potential with large �y. It has

a scaling region where it increases like 1=v0:7 before cross-
ing over to its asymptotic behavior ln 2ð1=vÞ. The universal
elastic cross section in Eq. (2a) could be used to calculate
the effects in the resonance region accurately. Buckley and
Fox have noted that the enhancement of �ann requires an
enhancement of �el, but they only presented graphical
results from the numerical solution of the Schrödinger
equation for a Yukawa potential [15]. Tulin et al. have
used analytic solutions for S-wave scattering in the
Hulthén potential to approximate �el and �ann for particles
interacting through a Yukawa potential [16]. They noted
that exactly at the resonance, �el reduces to Eq. (2a)
with � ¼ 0.
The limit � ¼ 0 in which the universal elastic cross

section in Eq. (2a) reduces to 4�=k2 is called the ‘‘unitary
limit,’’ because �el saturates the unitarity bound for
S-wave scattering. Since this cross section does not depend
on any interaction parameters, the interactions between the
particles must be scale invariant. The particles can be
described by a nonrelativistic conformal field theory with
nontrivial scaling dimensions [17]. The two-body physics
in this conformal field theory, which is encapsulated in the
simple scattering amplitude fðkÞ ¼ i=k, involves a non-
trivial scaling dimension. The scaling behavior 1=v2 of the
universal elastic cross section is a reflection of the anoma-
lous scaling dimension �2 of the interaction energy
operator [17]. Away from the unitary limit where � is
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nonzero, the particles can be described by a nonrelativistic
field theory whose renormalization is governed by the
conformal field theory.

Backović and Ralston have emphasized the importance
of the widths of particles in dark matter annihilation [18].
The effects of widths are fully incorporated into the uni-
versal cross sections in Eqs. (2) through the imaginary part
of �. Backović and Ralston also argued that unitarity does
not allow large enhancements in low-energy cross sections
in a weakly coupled theory [18]. They did not recognize
that the strong coupling required for a large enhancement
can arise through small energy denominators instead of
through a large coupling constant.

The nature of the resonance is determined by the sign of
Reð�Þ. If Reð�Þ< 0, the resonance is a virtual state whose
only physical manifestation is the enhancement of the
cross sections. If Reð�Þ> 0, the resonance is a bound state
below the threshold 2M. We will refer to it as resonant
wimponium. Resonant wimponium has universal proper-
ties that are determined by �. Its binding energy EX ¼
2M�MX and its width �X are determined by the pole in
the analytic continuation of the scattering amplitude
fðkÞ ¼ 1=ð��� ikÞ. Expressing the complex energy of
the pole as �EX � i�X=2, we find

EX ¼ ðReð�Þ2 � Imð�Þ2Þ=M; (5a)

�X ¼ 4Reð�ÞImð�Þ=M: (5b)

Since Imð�Þ is insensitive to the fine tuning that changes
Reð�Þ, the universal relations in Eqs. (5) imply that

�X=ðMEXÞ1=2 is approximately equal to the constant
4 Imð�Þ=M in the region where Reð�Þ � Imð�Þ. This
implies that as the binding energy EX is tuned towards 0,

the width �X decreases in proportion to E1=2
X until Reð�Þ is

comparable to Imð�Þ. Thus resonant wimponium has an
enhanced lifetime that can be as large as M=½Imð�Þ�2 very
near the resonance.

What is most remarkable about resonant wimponium is
its spatial structure. It can be described by a Schrödinger
wave function for a pair of wimps,

c ðrÞ ¼ ½Reð�Þ=2��1=2e��r=r: (6)

This universal wave function implies that the typical
separation of the wimps is 1=Reð�Þ. This is larger than
the range of the interactions between the wimps, and it
becomes increasingly large as one approaches the reso-
nance, ultimately reaching the size 1=Imð�Þ. This behavior
is particularly surprising in the case of Breit-Wigner
enhancement, where the resonance is a pointlike elemen-
tary particle when it is far from the threshold. Near the
resonance, interactions with the dark matter transform it
into an extended object consisting of two well-separated
wimps.

Another interesting aspect of the universal wave func-
tion in Eq. (6) is that it diverges at the origin. This might

seem problematic for the production of resonant wimpo-
nium through processes that involve a large momentum
transfer, because bound state effects are commonly
absorbed into the square of the wave function at the origin,
jc ð0Þj2. The quadratic divergence of jc ðrÞj2 as r ! 0 is a
reflection of the anomalous dimension �2 of the interac-
tion energy operator. A pragmatic way to deal with this
problem is to note that jc ð0Þj2 also appears in a naive
calculation of the annihilation decay rate. By the optical
theorem, the transition rate to annihilation channels is
proportional to Imð�aÞ. The naive result for the inclusive
decay width is therefore �X ¼ 8�Imð�aÞjc ð0Þj2=M,
while the correct result is the universal expression in
Eq. (5b). The correct result for the production rate can
therefore be obtained from the naive calculation by making
the substitution jc ð0Þj2 ! j�j2Reð�Þ=4�.

IV. RADIATIVE CAPTURE OF WIMPS

Another annihilation mechanism for dark matter is the
formation of wimponium through the radiative capture of
wimps. The radiated particle could be the light mediator
responsible for the Yukawa potential between the wimps.
Once it is formed, the wimponium will eventually decay
through the annihilation of its constituents. It was pointed
out by Pospelov and Ritz and by March-Russel and West
that this indirect process could significantly enhance the
dark matter annihilation rate [9,19]. Pospelov and Ritz
calculated the radiative capture cross section for the case
of true Sommerfeld enhancement [19]. March-Russel and
West calculated the cross section for radiative capture into
the most deeply bound S- and P-states for the case of an
excited S-wave resonant wimponium and a very light
mediator [9].
The cross section �rc for radiative capture into the

resonant wimponium can be calculated in an effective field
theory for nonrelativistic particles with large scattering
length (see, e.g., Ref. [20] and references therein). In this
theory, low-energy processes are described in an expansion
in �R, where R is the range of the wimp-wimp interaction.
It is convenient to use an auxilliary field, d, for the resonant
S-wave wimponium. To leading order, the effective
Lagrangian can then be written as

L ¼ X2
j¼1

c y
j

�
i@0 � Q̂A0 þ ðr� iQ̂AÞ2

2M

�
c j þ �dyd

� gðc y
1 c

y
2dþ H:c:Þ þ 	 	 	 ; (7)

where c 1, c 2 denote the wimp fields and A� ¼ ðA0;AÞ is
the field for the light mediator which we assume to be a
vector particle with mass my. Integrating out the auxilliary

field d,L is equivalent to a Lagrangian with two-body and
higher contact interactions of the c 1 and c 2 fields.
However, only the two-body interaction contributes in
the capture process. Higher-order derivative interactions
indicated by the ellipses are not considered here.
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We assume that the mediator is a vector particle that
couples minimally and with opposite signs to the constit-

uents of wimponium (Q̂ is the corresponding charge
operator). To leading order in the expansion in �R, the
capture process is then given by the two Feynman diagrams
shown in Fig. 1. The relative minus sign is due to the
opposite coupling of the mediator to c 1 and c 2. In the
center-of-mass frame, the incoming wimps each have
energies k2=ð2MÞ and momenta k and �k, respectively.

The outgoing mediator has four-momentum (ðq2 þm2
yÞ1=2,

q), while the outgoing wimponium has four-momentum
(q2=ð4MÞ � �2=M, �q), where �2=M is the wimponium
binding energy. The matrix element for the capture process
is easily obtained from the Feynman rules encoded in the
Lagrangian (7).

Close to threshold, the E1 multipole dominates and the
incoming wimps have to be in a relative P wave. Picking
out the E1 contribution, squaring the matrix element, and
summing over the polarizations of the mediator, we obtain
the universal capture cross section in the center-of-mass
frame,

�rcðkÞ ¼
32��y�Mkqðq2 þm2

yÞ
ð�2 þ k2Þ4 ; (8)

with �y ¼ Q2=ð4�Þ. The two incoming wimps are

assumed to be spinless. If the wimps and wimponium carry
spin, appropriate factors for the spin average of the wimps
and the sum over wimponium spins have to be applied to
Eq. (8).

In the limit my ! 0, the momenta of the outgoing

particles close to threshold are particularly simple,
q ’ ðk2 þ �2Þ=M, and the universal capture cross section

simplifies further. Near threshold, it scales as �rcðkÞ � k=
ð�2 þ k2Þ, which is in agreement with the E1 term in the
radiative capture cross section for a proton(p) and a
neutron(n) into a deuteron(d) calculated in a low-energy
effective field theory for nucleons with large scattering
lengths [21]. Note that the cross section for np ! d� is
a factor 8 smaller than Eq. (8) in this limit. A factor of 4
arises since there is only one charged particle and the
remaining factor of 2 is due to the spin projection.
Finally, we note that a comparison of our result with the
previous work of Pospelov and Ritz [19] is not possible.
They calculate the expectation value of the recombination
rate to an approximately Coulombic ground state, while we
calculate the elementary cross section as a function of the
momenta for radiative capture to a wimponium state very
near the threshold.

V. CONCLUSION

We have pointed out that dark matter with an S-wave
resonance close enough to threshold has universal behavior
determined by the complex scattering length. The universal
aspects include the elastic and inelastic self-scattering
cross sections and, if the resonance is a bound state below
the threshold, its binding energy and lifetime. The univer-
sal constraints have not been taken into account in previous
calculations of the behavior of dark matter. The universal-
ity of the two-body problem with a large scattering length
extends to the three-body sector and beyond [2]. This raises
the question of whether any aspects of the beautiful uni-
versal physics in these sectors are relevant for dark matter
despite its extremely low number density.
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