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Gravitational lensing provides a significant source of cosmological information in modern cosmic

microwave background parameter analyses. It is measured in both the power spectrum and trispectrum of

the temperature fluctuations. These observables are often treated as independent, although as they are

both determined from the same map, this is impossible. In this paper, we perform a rigorous analysis of

the covariance between lensing power spectrum and trispectrum analyses. We find two dominant

contributions coming from (i) correlations between the disconnected noise bias in the trispectrum

measurement and sample variance in the temperature power spectrum and (ii) sample variance of the

lenses themselves. The former is naturally removed when the dominant Nð0Þ Gaussian bias in the

reconstructed deflection spectrum is dealt with via a partially data-dependent correction, as advocated

elsewhere for other reasons. The remaining lens-cosmic-variance contribution is easily modeled but can

safely be ignored for a Planck-like experiment, justifying treating the two observable spectra as

independent. We also test simple likelihood approximations for the deflection power spectrum, finding

that a Gaussian with a parameter-independent covariance performs well.
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I. INTRODUCTION

Weak gravitational lensing by large-scale structures
leaves subtle imprints in the temperature anisotropies of
the cosmic microwave background (CMB); see Ref. [1] for
a review. These imprints can be detected in surveys
with resolution better than a few arcminutes and used to
reconstruct the lensing deflection field [2,3]. Since the
lensing deflections depend on the growth of structure and
geometry at much lower redshifts (z� 2) than the CMB
last-scattering surface, lens reconstructions can be used to
constrain parameters that are largely degenerate in the
primary anisotropies sourced at last scattering. Examples
include sub-eV neutrino masses, spatial curvature, dark
energy, and modifications to gravity (e.g., Refs. [4–9]).

Lensing is an emerging frontier of observational
cosmology. The first direct measurements of the deflection
power spectrum were reported recently by the ACT
[10,11], SPT [12], and Planck [13] teams with significan-
ces of 4.6, 6.3, and 25�, respectively. These measurements
provide the first evidence for dark energy from the CMB
alone. Since lens reconstructions are quadratic in the
temperature anisotropies, the power spectrum of the
reconstruction is probing the 4-point non-Gaussianity of
the CMB induced by lensing [14]. The statistical power of
lens reconstructions is expected to improve rapidly with
ongoing analyses of the full 2500 deg2 SPT survey and
the full-mission data from Planck, which also allow for
polarization-based lensing reconstruction. Lensing also

affects the power spectrum (or 2-point function) of the
temperature anisotropies, smoothing the acoustic peaks
and transferring power from large to small scales
(e.g., Ref. [15]). The smoothing effect has been detected
at nearly 10� in current temperature power spectrum
measurements [16,17].
A question that has received only limited attention to

date is how one should model the likelihood of the
lensed CMB anisotropies when deriving constraints on
cosmological parameters. As the unlensed CMB and
deflection field can be approximated as Gaussian on
the scales relevant for CMB lensing, it is straightforward
to write down a formal expression for the likelihood of
the lensed temperature [18]. However, this is very
difficult to work with directly. Indeed, working with
the exact likelihood even for Gaussian fields in mega-
pixel maps is computationally prohibitive. Instead, in the
Gaussian case, at high multipoles the data are usually
compressed to an empirical power spectrum (or set
of cross-spectra), and an approximate likelihood is
constructed based on this spectrum and its covariance.
Such an approach is both computationally feasible and
allows for the robust treatment of instrumental effects
such as beam asymmetry. For non-Gaussian fields, like
the lensed CMB, working with only the empirical power
spectrum is clearly lossy. Instead, we should include
further empirical connected n-point functions in our
compressed data. In the context of CMB lensing, the
4-point function is the most relevant moment, and the
information it carries is captured in the estimated power
spectrum of the reconstructed deflection field.*http://cosmologist.info
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Parameter analyses involving lens reconstruction to date
have followed the route described above. However, they
have simply combined estimates of the temperature power
spectrum and the lensing power spectrum as if they were
independent [12,13,19]. Since both power spectra are de-
rived from the same CMB temperature map, one might
question the validity of this approach, raising the concern
that lensing information is inadvertently being double
counted. While early lensing forecasts [4,5,20] addressed
this by using unlensed CMB power spectra, an optimal
combination of the observed lensed CMB 2- and 4-point
functions should model their cross-covariance. Intuitively,
we might expect two effects to be relevant. First, the
statistical noise in the reconstruction, due to chance align-
ments in the unlensed CMB which mimic the locally
anisotropic effects of lensing, is dependent on the CMB
fluctuations themselves. If, due to cosmic variance, the
unlensed temperature anisotropies fluctuate high at some
particular scale, the noise in the lens reconstruction will
also fluctuate high. The mode-coupling nature of lens
reconstruction, whereby modes near the resolution limit
of the observation dominate the reconstruction on much
larger scales, will lead to broad correlations between the
temperature and lensing power spectra. Since the recon-
struction is quadratic, the correlation of the power spectra
involves the CMB 6-point function, the disconnected part
of which arises from the effect just described. The second

effect is due to the cosmic variance of the lenses. If the
lensing field fluctuates high at some scale, the recon-
structed power will also fluctuate high at the same scale.
In parallel, there will be more smoothing of the acoustic
peaks in the measured CMB power spectrum giving an
anticorrelation with the reconstucted lensing power at the
location of acoustic peaks and a positive correlation at
troughs. This effect is second order in the deflection power
and derives from the connected part of the CMB 6-point
function. As we shall show, the induced correlations are
rather small (a few percent) for a Planck-like experiment
for broadband measures of the lensing power such as a
lensing power spectrum amplitude. Essentially, this is
because there is a limited number of modes of the lensing
power spectrum that influence the acoustic part of the
temperature power spectrum, and the correlation due to
cosmic variance of these modes is diluted by the significant
noise due to cosmic variance of the CMB and instrumental
noise (i.e., the fact that lensing measurements from the
CMB 2- and 4-point functions are not limited by cosmic
variance of the lenses). Moreover, the first effect men-
tioned above produces rather small lensing amplitude cor-
relations since CMB modes at different scales fluctuate
independently, and most of the information on peak smear-
ing in the CMB power spectrum comes from modes near
the acoustic peaks and troughs, whereas the reconstruction
of (large-scale) lenses is most effective at CMB scales

TABLE I. Summary of the main quantities used throughout this paper (roughly ordered after first appearance).

Symbol Description Definition

T Unlensed CMB temperature Eq. (1)

~T Lensed CMB temperature Eq. (1)

�in Input lensing potential field in simulations

�̂ Lensing reconstruction (quadratic in ~T) Eq. (9)

AL, ~g Normalization and weights for �̂ Eqs. (10) and (11)

CXX
l Fiducial theoretical power spectrum of X ¼ T, ~T or � (without noise/beam)

C
~T ~T
l;expt Lensed temperature power spectrum including beam-deconvolved noise Eq. (18)

ĈXX
l Empirical power spectrum of a realization of X ¼ T, ~T, �in or �̂ Eq. (19)

Nð0Þ
l Gaussian, fully disconnected noise bias of Ĉ�̂�̂

l Eq. (16)

Nð1Þ
l , Nð2Þ

l Biases of Ĉ�̂�̂
l at OðC��Þ and O½ðC��Þ2� Ref. [26]

N̂ð0Þ
l Data-dependent, empirical bias subtraction term Eqs. (17) and (32)

covðĈ�̂�̂
L ; Ĉ

~T ~T
L0 ;exptÞ Covariance of CMB temperature and lensing reconstruction power spectra Eq. (33)

covðĈ�̂�̂
L ; Ĉ

~T ~T
L0 ;exptÞdisconn Noise contribution (from Gaussian, fully disconnected CMB 6-point function) Eqs. (35) and (36)

covðĈ�̂�̂
L ; Ĉ

~T ~T
L0 ;exptÞconn 4 pt X½ðnon-Þprimary� Trispectrum contributions of type X ¼ A, B [from (non)primary coupling] Appendix D

covðĈ�̂�̂
L ; Ĉ

~T ~T
L0 ;exptÞh ~T1��� ~T6ið4Þc;dom

Matter cosmic variance contribution [from Oð�4Þ connected CMB 6-point function] Eqs. (45) and (E8)

A Overall lensing amplitude of a fiducial lensing power spectrum C��
l ¼ AC��

l jfid
Â Estimator for A based on reconstruction power spectrum, i.e., CMB trispectrum Eq. (54)

Â0 Estimator for A based on CMB power spectrum Eq. (55)

n Tilt of a fiducial lensing power spectrum C��
l jfid Eq. (66)

SCHMITTFULL et al. PHYSICAL REVIEW D 88, 063012 (2013)

063012-2



where the CMB spectrum changes most rapidly, i.e., be-
tween acoustic peaks and troughs. Note also that even the
unlensed CMB anisotropies are correlated with the lensing
field due to the late-time integrated Sachs–Wolfe effect
[21]. This mostly produces a diagonal covariance between
the power spectra of the lens reconstruction and the lensed
CMB, which falls rapidly at small scales (L > 100). One of
our main aims in this paper is to quantify these arguments
with detailed calculations of the 6-point function, verified
with simulations, and to assess whether the correlations are
small enough to be safely ignored in the likelihood.

A further issue concerns the form of the likelihood for
the power spectrum estimates. This has been well
studied for Gaussian fields, e.g., Refs. [22–25], and simple
approximate forms are known to give reliable parameter
constraints when applied on all but the largest scales.
However, the lensing reconstruction is quadratic in the
nearly Gaussian CMB fluctuations and therefore highly
non-Gaussian. Here, we test a particularly simple form of
the lensing power likelihood, a Gaussian with model-
independent covariance. Constraining the amplitude and tilt
of a fiducial deflection power spectrum, we demonstrate that
the fiducial-Gaussian approximation performs well, return-
ing maximum-likelihood points that scatter across simula-
tions in a manner consistent with the width of the likelihood.

The paper is organized as follows. We review CMB
lensing reconstruction in Sec. II, and we describe our
simulations of lensed CMB maps and the mechanics of
our reconstructions in Sec. III. Section IV surveys
known results for the autocorrelations of the lensed
CMB temperature power spectrum and the reconstruc-
tion power spectrum. In Sec. V we present results for the
cross-correlation of these power spectra and assess the
importance of correlations for estimating cosmological
parameters. We test likelihood approximations for
the lensing reconstruction (in isolation) in Sec. VI and
conclude in Sec. VII. In Appendix A we provide intui-
tive arguments for the magnitude of the temperature-
lensing power correlation. A series of further appendices
provide calculational details and motivate some of the
approaches taken in the main text. Table I summarizes
the key quantities, and their definitions and symbols,
used in this paper.

II. CMB LENSING RECONSTRUCTION

The lensed CMB temperature ~Tðn̂Þ along direction n̂ is
related to the unlensed temperature Tðn̂Þ by the deflection
field �ðn̂Þ1

~Tðn̂Þ ¼ T½n̂þ �ðn̂Þ�: (1)

The deflection angle can be written in the Born approxi-
mation as the angular gradient of a lensing potential,
�ðn̂Þ ¼ r�ðn̂Þ, which is given by an integral along the
(unperturbed) line of sight of the gravitational potentials
(e.g., Ref. [1]).
On the full sky, the effect of lensing on the CMB

temperature can be expressed perturbatively by Taylor
expanding Eq. (1). Expanding in spherical harmonics, the
multipoles of the lensed CMB, ~Tlm, are related to those of the
unlensed CMB Tlm and the lensing potential �lm via [28]

~Tlm ¼ Tlm þ �Tlm þ �2Tlm þ � � � ; (2)

where changes due to lensing �nTlm are of orderOð�nÞ and
linear in the unlensed temperature T:

�Tlm ¼ X
l1;l2

�l1
Tl2

Imm1m2

ll1l2
; (3)

�2Tlm ¼ X
l1;l2;l3

�l1
�l2

Tl3
J
mm1m2m3

ll1l2l3
; (4)

where we have introduced the notation l � ðlmÞ and I
denotes an angular integral over a product of (derivatives
of) spherical harmonics given by [28]

Imm1m2

ll1l2
¼ ð�1Þm l l1 l2

�m m1 m2

 !
Fll1l2 : (5)

Expressions for Jmm1m2m3

ll1l2l3
can be found in Ref. [26]. The

geometrical factor Fl1Ll2 , which is symmetric in the last two

indices, is given by

Fl1Ll2 ¼ ½LðLþ 1Þ � l1ðl1 þ 1Þ þ l2ðl2 þ 1Þ�

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2l1 þ 1Þð2Lþ 1Þð2l2 þ 1Þ

16�

s
l1 L l2

0 0 0

 !

(6)

and describes the rotationally invariant part of the coupling
between the three multipoles.
It is possible to reconstruct the lensing potential �ðn̂Þ

from the observed CMB by exploiting the fact that fixed
lenses introduce correlations between temperature modes
[2,29]. Following the nonperturbative calculations in
Ref. [30], we have�

@

@�LM

ð ~Tl1m1
~Tl2m2

Þ
�
� ð�1ÞM L l1 l2

�M m1 m2

 !
~fl1Ll2 ;

(7)

where ~fl1Ll2 is symmetric in l1 and l2 and contains the

lensed temperature power spectrum, C
~T ~T
l :

~fl1Ll2 ¼ C
~T ~T
l2
Fl1Ll2 þ C

~T ~T
l1
Fl2Ll1 : (8)

The angle brackets in Eq. (7) denote the expectation value
over � and T (and noise) and we have neglected the T–�

1The notation here is rather symbolic on the spherical sky: the
point n̂þ �ðn̂Þ is understood to be obtained from n̂ by displac-
ing through a distance j�ðn̂Þj along the geodesic that is tangent
to � at n̂ [27].
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correlation which is generally a good approximation for
CMB lensing since we are usually interested in small-scale
(l > 600) modes of the temperature where the correlation
is small. More generally, we shall neglect the T–� corre-
lation throughout this paper, except where explicitly stated
otherwise. Equation (7) motivates forming a quadratic
estimator for the lensing potential [31],

�̂LM ¼ AL

X
l1l2

ð�1ÞM l1 l2 L

m1 m2 �M

 !
~gl1l2ðLÞ ~Tl1

~Tl2
:

(9)

For any choice of weights ~gl1l2ðLÞ, we determine the

normalization AL by demanding that h@�̂LM=@�L0M0 i ¼
�LL0�MM0 , which gives

AL ¼ ð2Lþ 1Þ
�X
l1l2

~fl1Ll2 ~gl1l2ðLÞ
��1

: (10)

One can determine optimal weights by minimizing the
variance of the estimator to find2

~gl1l2ðLÞ ¼
~fl1Ll2

2C
~T ~T
l1;expt

C
~T ~T
l2;expt

; (11)

where the numerator contains the lensed temperature

power C
~T ~T
l , while the denominator involves the total

power spectrum for the experiment C
~T ~T
l;expt including

beam-deconvolved noise; see Eq. (18) below.
The expectation value of the simple power spectrum

estimate,

Ĉ�̂�̂
L � 1

2Lþ 1

XL
M¼�L

�̂LM�̂
�
LM; (12)

involves the 4-point function of the lensed CMB. The
connected part of the 4-point function can be written in

terms of the fully reduced trispectrum Tl1l2
l3l4

ðLÞ as [14]
h ~Tl1m1

~Tl2m2
~Tl3m3

~Tl4m4
ic

¼ 1

2

X
LM

ð�1ÞM l1 l2 L

m1 m2 M

 !
l3 l4 L

m3 m4 �M

 !

� Tl1l2
l3l4

ðLÞ þ perms: (13)

By evaluating the trispectrum correct to O½ðC��
L Þ2�,

Ref. [26] shows that the dominant terms for lensing
reconstruction can be approximated by

Tl1l2
l3l4

ðLÞ � 1

4
C��
L

~fl1Ll2
~fl3Ll4 ; (14)

which involves the lensed C
~T ~T
l (via ~fl1Ll2 , etc.). The nor-

malization of Eq. (10) therefore correctly normalizes the

power spectrum Ĉ�̂�̂
l , avoiding a bias [Nð2Þ] of around

�15% on large scales that results from using the unlensed
spectra, i.e., fl1Ll2 , in the normalization AL.

Taking the expectation value hĈ�̂�̂
L i, and using Eq. (13),

gives [26,32]

hĈ�̂�̂
L i ¼ C��

L þ Nð0Þ
L þ Nð1Þ

L þOððC��Þ3Þ; (15)

where NðnÞ
L is of order ðC��Þn if we do not count appear-

ances of C�� in the lensed temperature power spectrum.
The disconnected part of the lensed temperature 4-point
function leads to the Gaussian bias

Nð0Þ
L ¼ 2A2

L

2Lþ 1

X
l1;l2

~g2l1l2ðLÞC
~T ~T
l1;expt

C
~T ~T
l2;expt

¼ AL; (16)

where the last equality holds only if the weights ~gl1l2ðLÞ are
given by Eq. (11). Since this bias is present even in the
absence of lensing, it corresponds to the power spectrum
generated by the statistical noise of the lensing reconstruc-
tion (see Appendix C for a more detailed discussion of how

this bias is generated). The Nð1Þ bias is due to those
permutations in Eq. (13) that mix multipoles between the
primary ðl1m1; l2m2Þ and ðl3m3; l4m4Þ couplings, e.g.,
1 $ 3. It has been computed in Refs. [26,32]; see also
Fig. 1. An unbiased estimate for the lensing potential power

spectrum can be obtained by subtracting Nð0ÞþNð1Þ from
Ĉ�̂�̂. Here, for Nð1Þ we subtract the bias evaluated in the
fiducial cosmology used for our simulations. In practice, the

variation of Nð1Þ with the cosmological model should be
included in the likelihood analysis. However, since direct
evaluation of this term is slow, a faster alternative is to

include the uncertainty in Nð1Þ as a correlated error in the

covariance matrix for Ĉ�̂�̂
L

3.

The subtraction of the Gaussian Nð0Þ bias can be done in
various ways. The simplest is to subtract a fiducial model.

For temperature reconstructions, Nð0Þ generally exceeds
the signal power on all scales, and by around two orders

of magnitude at multipoles l� 1000, so that accurate Nð0Þ
subtraction is critical. For the idealized isotropic surveys
considered here, this is perhaps not too problematic since

only C
~T ~T
l;expt is required to calculate Nð0Þ, and this can be

estimated from a smoothed version of the measured power

2The normalization (10) and weight (11) differ a little from
that in the original works of Hu and coworkers [3,31] since ~fl1Ll2
involves the power spectrum of the lensed rather than unlensed
CMB. The form here is particularly suited to power spectrum
estimation.

3Note also that the normalization AL is dependent on the
cosmological model through ~fl1Ll2 . However, the lensed tem-
perature power spectrum, and hence AL, generally varies much
less across models consistent with the measured CMB power
spectrum than C��

L (and so Nð1Þ). In practical applications, if a
fiducial model is assumed to normalize the 4-point function, the
parameter-dependent C��

L can easily be renormalized in the
likelihood by the ratio of the fiducial AL to that at the current
location in parameter space [13].
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spectrum. However, in the presence of survey anisotropies,
the Gaussian bias must generally be subtracted via simu-
lations, and this requires an accurate procedure for simu-
lating maps including all relevant real-world effects such
as noise inhomogeneities and correlations, beam asymme-
try, and unresolved foreground emission. Awork around to
these issues is to use alternative data-dependent forms of

Nð0Þ (see Ref. [33] and references therein) for which the

expectation value either equals Nð0Þ or closely approxi-
mates it. Here, we use the form (for an isotropic survey)

Ĉ�̂�̂
L � ð2N̂ð0Þ

L � Nð0Þ
L Þ, advocated in Refs. [26,33], where

N̂ð0Þ
L ¼ 2A2

L

2Lþ 1

X
l1;l2

~g2l1l2ðLÞĈ
~T ~T
l1;expt

C
~T ~T
l2;expt

; (17)

i.e., we replace one occurrence of C
~T ~T
l;expt in Nð0Þ with the

empirical temperature power spectrum of our given sky.

Note that the expectation value hN̂ð0Þ
L i ¼ Nð0Þ

L . As well as

reducing the impact of modelling errors, this form of Nð0Þ
subtraction has the benefit of greatly reducing correlations

between the Ĉ��
L estimates that arise from the discon-

nected part of the CMB 8-point function; see Sec. IVB
and Ref. [26]. As we shall see in Sec. VA, it also eliminates

the Gaussian contribution to the covariance between Ĉ�̂�̂
L

and the measured temperature power spectrum. Further

motivation for the 2N̂ð0Þ
L � Nð0Þ

L construction comes from

considering optimal trispectrum estimation for weakly
non-Gaussian fields [34]; these arguments are discussed
further in the context of CMB lensing in Appendix B.
Throughout this paper we assume that the instrumental

beam has been deconvolved from the ~Tlm. The total power
spectrum of the experiment is then of the form

C
~T ~T
l;expt ¼ C

~T ~T
l þ �2

N exp ½lðlþ 1Þ�2
FWHM=ð8 ln 2Þ�; (18)

where �2
N is the white noise power spectrum and �FWHM

is the full width at half-maximum (FWHM) of the
optical beam. Following Ref. [26], we will use �N ¼
27 �Karcmin and �FWHM ¼ 7 arcmin, which is roughly
appropriate for Planck.

III. SIMULATIONS

We use simulations to verify our analytic arguments.
These are based on 1000 realizations of a flat �CDM
cosmology with WMAP7þ BAOþH0 parameters [35]
h ¼ 0:704, �bh

2 ¼ 0:0226, �ch
2 ¼ 0:1123, � ¼ 0:087,

ns ¼ 0:963, �2
R ¼ 2:441� 10�9 at k0 ¼ 0:002 Mpc�1,

and three massless neutrino species. We start with realiza-
tions of the unlensed temperature and lensing potential up
to linmax ¼ 3000 (including the CT� correlation on large
scales), which are then lensed using Lenspix [36]. The
lensed temperature up to lTmax ¼ 2750 is used to reconstruct

the lensing potential up to l�max ¼ 2650 with the full-sky
simulation setup of Hanson et al. [26]. The convolution in
harmonic space in Eq. (9) is evaluated as a product in pixel
space, where spin-1 spherical harmonic transforms are
taken using HEALPix [37]. As a slight modification to
Ref. [26], we use the reconstruction normalization AL

and weights ~g given in Eqs. (10) and (11) to avoid the

Nð2Þ bias.
Figures 1 and 2 confirm that the power spectrum of the

lensing reconstruction agrees with the input lensing power

spectrum if the Nð0Þ and Nð1Þ biases are taken into account.
Similar plots in Ref. [26] contain the Nð2Þ bias because
their simulations used reconstruction weights and normal-
ization with unlensed instead of lensed temperature power

spectra. The realization-dependent N̂ð0Þ bias correction
does not change the expectation value of the reconstruction
power spectrum but reduces its covariance.

IV. AUTOCORRELATIONS OF POWER SPECTRA

We will argue later that parameter estimation with the
lensing reconstruction should be based on empirical power
spectra defined by

ĈXX
l � 1

2lþ 1

Xl
m¼�l

ð�1ÞmX̂lmX̂l;�m; (19)

where X̂lm are the multipole coefficients of the realization

X̂ðn̂Þ of a field on the sphere. Here, X ¼ ~T or �. To
construct a likelihood for the empirical power spectra,

FIG. 1 (color online). Reconstructed lensing potential power

spectrum C�̂�̂
L averaged over 1000 simulations, after subtracting

the analytically calculated Nð0Þ bias (cyan circles). The magenta
line is the input lensing potential power. Blue symbols include
the empirical reconstruction bias correction of Eq. (17). The
error bars show the estimated standard deviation of the binned
power spectrum for a single realization of the lensed CMB. Cyan
error bars are only visible when they disagree from the blue error
bars. Cyan dashed-dotted lines show theoretical error bars ob-
tained by binning Eqs. (28) and (29) below. Blue dashed-dotted
lines are theoretical error bars from Eq. (29) only. The biases

Nð0Þ (red) and Nð1Þ (black, which also includes C��
L ) are calcu-

lated analytically. Note that the left-hand panel uses a log scale
for multipole L, whereas the right-hand panel uses a linear scale.
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we will model auto- and cross-correlations of the empirical
power spectra of the observed lensed temperature and the
reconstructed lensing potential. If X is a statistically
isotropic, Gaussian field, then the power covariance is
diagonal with

covðĈXX
l ; ĈXX

l0 Þ ¼ �ll0
2

2lþ 1
hĈXX

l i2: (20)

In the following we will abbreviate the Gaussian variance
with

varGðCXX
l Þ � 2

2lþ 1
ðCXX

l Þ2: (21)

We demonstrate in Appendix F that for most applica-
tions, we can neglect the effect of CT� on the covariance
between the power spectra of the lensed temperature and
the lens reconstruction. Because the Taylor expansion of
Eq. (2) is linear in the unlensed temperature, all odd
n-point functions of the lensed temperature vanish.

A. Lensed temperature

The autocorrelation of the lensed temperature power
spectrum has been computed at first order in C�� in
Ref. [38] under the flat-sky approximation and in
Ref. [39] on the full sky. A contribution at second order
in C�� was recently identified in Ref. [40]. The power
covariance is given by

covðĈ ~T ~T
l;expt; Ĉ

~T ~T
l0;exptÞ

¼ �ll0varGðC ~T ~T
l;exptÞ þ

1

ð2lþ 1Þð2l0 þ 1Þ
� X

m;m0
ð�1Þmþm0 h ~Tlm

~Tl;�m
~Tl0m0 ~Tl0;�m0 ic; (22)

where hic denotes the connected part of the 4-point func-
tion, which is at OðC��Þ [14]

h ~Tl1
~Tl2

~Tl3
~Tl4

ic

¼ 1

2
CTT
l2
CTT
l4

X
LM

ð�1ÞMC��
L

l1 l2 L

m1 m2 �M

 !

� l3 l4 L

m3 m4 M

 !
Fl1Ll2Fl3Ll4 þ all perms: (23)

Here and in the following ‘‘all perms’’ denotes permuta-
tions in all noncontracted multipole indices, i.e., permuta-
tions of 1, 2, 3, and 4 in Eq. (23). If we also include
the contribution at second order in C�� from Ref. [40],
we get [39,40]4

covðĈ ~T ~T
l;expt; Ĉ

~T ~T
l0;exptÞ

¼ �ll0varGðC ~T ~T
l;exptÞ þ

2

ð2lþ 1Þð2l0 þ 1Þ
X
L

C��
L f2lLl0

þX
L

@C
~T ~T
l

@C��
L

2

2Lþ 1
ðC��

L Þ2 @C
~T ~T
l0

@C��
L

þO½ðC��Þ3�;

(24)

where fl1Ll2 is from the unlensed version of Eq. (8): fl1Ll2 ¼
CTT
l2
Fl1Ll2 þ CTT

l1
Fl2Ll1 . The third term on the right

of Eq. (24) arises from cosmic variance of the lenses.
Fluctuations at lens multipole L produce fluctuations in the
empirical lensed temperature power spectrumover a range of

multipoles. The fluctuations in the lens power,�C��
L , propa-

gate to the empirical temperature power spectrum approxi-

mately as @C
~T ~T
l =@C��

L . The power derivative here can be

calculated perturbatively by noting that atOðC��Þ [28]

C
~T ~T
l ¼ CTT

l ½1� lðlþ 1ÞR� þX
l1;l2

C��
l1

CTT
l2

F2
ll1l2

2lþ 1
; (25)

where

R ¼ 1

8�

X
l

ð2lþ 1Þlðlþ 1ÞC��
l (26)

is half the mean-squared deflection. Therefore,

@C
~T ~T
l

@C��
L

¼ X
l0
CTT
l0

F2
lLl0

2lþ 1
� LðLþ 1Þð2Lþ 1Þ

8�
lðlþ 1ÞCTT

l :

(27)

While Ref. [40] included higher-order corrections to this
expression by taking numerical derivatives of lensed
power spectra computed nonperturbatively with the CAMB

FIG. 2 (color online). Same as Fig. 1 after subtracting the

theoretical lensing power spectrum C��
L .

4The Oð�4Þ part of Eq. (24) was not derived in a rigorous
perturbative analysis, which would imply additional corrections.
For example, the unlensed flLl0 in the second term on the right
could be replaced by its lensed counterparts, as in Eq. (14). We
do not investigate such corrections to the temperature power
autocovariance further because corrections to the leading
Gaussian term are negligible for all applications in this paper.
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code [41,42], these corrections are not expected to be im-
portant for our purposes here.

The off-diagonal contributions to the correlation

between the empirical Ĉ
~T ~T
l;expt are shown in Fig. 3 (see

Refs. [39,40] for similar plots). The checkerboard structure
of the O½ðC��Þ2� contribution arises because fluctuations
in the lensing power produce changes in the lensed tem-
perature spectra of opposite signs at the acoustic peaks and
troughs. Both of the corrections in Eq. (24) give cor-
relations that are at most of order 10�4 and are rather
localized in the ðl; l0Þ plane. (Note that the correlations
are suppressed on small scales where noise dominates
the diagonal variance.) The impact of these nondiagonal
contributions is found to be negligible for all calculations
in this paper; i.e., we can assume a Gaussian diagonal
autocovariance of the temperature power spectrum.

B. Lensing reconstruction

The auto-correlation of the lensing reconstruction power
spectrum involves the 8-point function of the lensed
temperature. Hanson et al. [26] found that the dominant
off-diagonal contributions on the full sky are given by
disconnected terms that contribute as (see Ref. [32] for a
similar calculation on the flat sky)

covðĈ�̂�̂
L ; Ĉ�̂�̂

L0 Þdomnon-diag

¼ 32A2
LA

2
L0

ð2Lþ 1Þð2L0 þ 1Þ
X
l1

1

2l1 þ 1
ðC ~T ~T

l1;expt
Þ2

�
�X

l2

~g2l1l2ðLÞC
~T ~T
l2;expt

��X
l3

~g2l1l3ðL0ÞC ~T ~T
l3;expt

�
: (28)

This dominates over more tightly coupled terms that
involve products of four weights ~g that do not factor
in the form ~g2~g2 and therefore enforce a reduced summa-
tion volume. The variance (L ¼ L0) on the full sky is
predominantly

varðĈ�̂�̂
L Þ ¼ 2

2Lþ 1
hC�̂�̂

L i2; (29)

with small corrections from Eq. (28) (for L ¼ L0).
As shown in Ref. [26] the off-diagonal reconstruction

power correlation can reach a level of 0.5% and is rather
broadband. If the reconstructed power is binned, this can
induce correlations of Oð10%Þ between different bins.
Physically, these broadband correlations arise because
cosmic-variance fluctuations in the CMB at a given scale

produce fluctuations in Ĉ�̂�̂ that are coherent over a broad
range of scales due to the mode-coupling nature of lens
reconstruction (small-scale CMB fluctuations are used to
reconstruct large-scale lenses). To make this physical inter-
pretation more explicit, we note that the dominant nondiag-
onal covariance contribution of Eq. (28) can be written as

covðĈ�̂�̂
L ; Ĉ�̂�̂

L0 Þdomnon-diag

¼ X
l1

@ð2N̂ð0Þ
L Þ

@Ĉ
~T ~T
l1;expt

2

2l1 þ 1
ðC ~T ~T

l1;expt
Þ2 @ð2N̂

ð0Þ
L0 Þ

@Ĉ
~T ~T
l1;expt

; (30)

where the (realization-independent) derivative is given by

@ð2N̂ð0Þ
L Þ

@Ĉ
~T ~T
l1;expt

¼ 4A2
L

2Lþ 1

X
l2

~g2l1l2ðLÞC
~T ~T
l2;expt

; (31)

which is nonzero even in the absence of lensing.
Equation (31) describes the change of the Gaussian
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FIG. 3 (color online). (a) Theoretical off-diagonal part of the correlation correlðĈ ~T ~T
LT
; Ĉ

~T ~T
L0
T
Þ to first order in C��, given by the

second term on the right of Eq. (24) (see Ref. [39]). The covariance is converted to a correlation by dividing by
½varGðC ~T ~T

LT;expt
ÞvarGðC ~T ~T

L0
T ;expt

Þ�1=2. (b) O½ðC��Þ2� contribution from Ref. [40].
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reconstruction noise5 resulting from fluctuations of the
observed temperature realization. In propagating these

changes through to the covariance of Ĉ�̂�̂, one picks up
the sample variance of the total lensed temperature power

spectrum, varGðC ~T ~T
l;exptÞ.

As noted in Sec. II, using the realization-dependent N̂ð0Þ
bias correction of Eq. (17) significantly reduces the off-
diagonal covariance of the reconstruction power spectrum.

To help interpret the N̂ð0Þ correction, we write it in the form

Ĉ�̂�̂
L � 2N̂ð0Þ

L þ Nð0Þ
L ¼ Ĉ�̂�̂

L �X
l

@ð2N̂ð0Þ
L Þ

@Ĉ
~T ~T
l;expt

Ĉ
~T ~T
l;expt þ Nð0Þ

L :

(32)

Therefore, for a given realization of the lensed tempera-

ture, the empirical N̂ð0Þ bias correction partly removes the
response of the Gaussian reconstruction noise to changes in
the lensed temperature realization. To see that this removes
the nondiagonal power covariance of the lensing recon-
struction caused by cosmic variance of the lensed tempera-

ture, note that both covðĈ�̂�̂
L ; 2N̂ð0Þ

L0 Þ and covð2N̂ð0Þ
L ; 2N̂ð0Þ

L0 Þ
equal the right-hand side of Eq. (30) at Oð�0Þ. The

empirical N̂ð0Þ correction leads to a small reduction in the
variance of the binned reconstructed power spectrum, as
shown in Figs. 1 and 2. Any residual covariance after

empirical N̂ð0Þ subtraction is too small to be detected in
our simulations.

V. TEMPERATURE-LENSING
CROSS-CORRELATION

For a joint analysis involving the empirical power spec-
tra of the lens reconstruction and the lensed temperature
anisotropies, the likelihood should model their cross-
correlation to avoid potential double counting of lensing
effects. In this section we calculate the cross-correlation.
We recover the two main physical effects introduced in
Sec. I, i.e., a ‘‘noise contribution’’ from the cosmic vari-
ance of the lensed temperature affecting the noise in the
reconstruction over a wide range of scales and a ‘‘matter
cosmic variance’’ contribution from cosmic variance of the
lenses altering the smoothing of the acoustic peaks in the
temperature power spectrum.Wewill show in Sec. VA that
the noise contribution is due to the disconnected part of the
lensed temperature 6-point function, while in Sec. VB we
show that the matter cosmic variance contribution is due to
the connected part of the 6-point function. Corrections
from the lensed temperature trispectrum generally have a

subdominant effect on parameter estimation and are
discussed in Appendix D (see also Fig. 8 below).

A. Noise contribution

1. Perturbative derivation: Disconnected part of
lensed temperature 4- and 6-point functions

Since the reconstructed lensing potential is quadratic in

the lensed temperature, the covariance covðĈ�̂�̂
L ; Ĉ

~T ~T
L0;exptÞ

involves the 4- and 6-point functions of the lensed tem-

perature. Using the definition of �̂ in Eq. (9), we find

covðĈ�̂�̂
L ; Ĉ

~T ~T
L0;exptÞ

¼ A2
L

ð2Lþ 1Þð2L0 þ 1Þ
X

l1;l2;l3;l4;M;M0
ð�1ÞMþM0

� l1 l2 L

m1 m2 �M

 !
l3 l4 L

m3 m4 M

 !

� ~gl1l2ðLÞ~gl3l4ðLÞ½h ~Tl1
~Tl2

~Tl3
~Tl4

~TL0M0 ~TL0;�M0 i
� h ~Tl1

~Tl2
~Tl3

~Tl4
ih ~TL0M0 ~TL0;�M0 i�: (33)

Since all connected terms vanish in the absence of lensing,
we expect the noise contribution to come from the fully
disconnected part. If we only keep disconnected terms, the
second line of Eq. (33) can be replaced by

½h ~Tl1
~Tl2

~Tl3
~Tl4

~TL0M0 ~TL0;�M0 i
� h ~Tl1

~Tl2
~Tl3

~Tl4
ih ~TL0M0 ~TL0;�M0 i�

! 4½h ~Tl1
~Tl3

ih ~Tl2
~TL0M0 ih ~Tl4

~TL0;�M0 i þ ðM0 $ �M0Þ�;
(34)

where we exploited symmetry under relabeling (l1 $ l2)
and/or (l3 $ l4). We also used that the contractions

h ~Tl1
~Tl2

i and h ~Tl3
~Tl4

i do not contribute because h�̂LMi¼
0. The fully disconnected part of Eq. (33) is therefore

covðĈ�̂�̂
L ; Ĉ

~T ~T
L0;exptÞdisconn

¼ 8A2
L

ð2Lþ 1Þð2L0 þ 1Þ ðC
~T ~T
L0;exptÞ2

X
l1

~g2l1L0 ðLÞC ~T ~T
l1;expt

; (35)

where the weight ~gl1L0 ðLÞ enforces l1 þ Lþ L0 to be even.
To interpret this result, note that it can be expressed in

terms of the derivative in Eq. (31) as

covðĈ�̂�̂
L ; Ĉ

~T ~T
L0;exptÞdisconn ¼

@ð2N̂ð0Þ
L Þ

@Ĉ
~T ~T
L0;expt

2

2L0 þ 1
ðC ~T ~T

L0;exptÞ2:

(36)

This part of the covariance is therefore due to the response
of the Gaussian reconstruction noise to changes in the
observed temperature realization and the resulting covari-
ance with the observed temperature power. Based on this

5When squaring the reconstruction �̂LM to form the recon-
struction power spectrum, we pick up not only the signal power
C��
L but also the noise of the reconstruction. Further details on

the correspondence between noise terms in the reconstruction
power and the 2N̂ð0Þ expression are provided in Appendix C.
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intuition, we anticipate that the covariance can be

mitigated by the realization-dependent N̂ð0Þ correction of
the reconstruction power bias (see Sec. VA4 for
confirmation).

2. Magnitude and structure of the correlation matrix

In Fig. 4(a) we plot the power correlation resulting from
the power covariance in Eq. (35) (denoting L� ¼ L and

LT ¼ L0 for convenience),

correlðĈ�̂�̂
L�

; Ĉ
~T ~T
LT;exptÞ

¼ covðĈ�̂�̂
L�

; Ĉ
~T ~T
LT;exptÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

varGðC��
L�

þ Nð0Þ
L�

þ Nð1Þ
L�
ÞvarGðC ~T ~T

LT;expt
Þ

q : (37)

We plot the correlation of the unbinned spectra. Note that if
the covariance is broadband (i.e., roughly constant over the
bin width) the correlation of (sufficiently finely) binned
power spectra will increase roughly proportionally to the
square root of the product of the two bin widths. The

Gaussian variance of C
~T ~T
LT;expt

in the denominator of

Eq. (37) contains the beam-deconvolved noisy temperature
power spectrum (18), so that high temperature multipoles
are suppressed.

The unbinned power correlation shown in Fig. 4(a)
is mostly constrained to a conelike region in the
L� vs LT plane, with the maximum correlation of 0.5%

located at the first acoustic peak LT � 200 and lensing
reconstruction multipoles 1600 & L� & 1900. To under-

stand the basic structure of the correlation in Fig. 4(a) we
compute approximations to Eq. (35) in the limits LT 	 L�

and L� 	 LT .

For LT 	 L�, the weights in Eq. (35) restrict the sum-

mation from l1 ¼ L� � LT to l1 ¼ L� þ LT . If we Taylor

expand in l1 around L�, we get

correlðĈ�̂�̂
L�

; Ĉ
~T ~T
LT;exptÞ

LT	L�

disconn

� ½L�ðL� þ 1Þ�2AL�

8�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2LT þ 1Þð2L� þ 1Þ

q

� LTðLT þ 1ÞC ~T ~T
LT

L�ðL� þ 1ÞC ~T ~T
L�;expt

: (38)

Recalling that AL�
¼ Nð0Þ

L�
for optimal weights, we see

from Fig. 1 that the first term slightly increases with L�.

The last term is maximized at the first acoustic peak
LT � 200 and at the reconstruction multipole 1600 &

L� & 1900 where the observed temperature power

C
~T ~T
L�;expt

is minimal (for the Planck-like noise and beam

considered here). In this region Eq. (38) gives a correlation
of around 0.4–0.5%, which agrees with Fig. 4(a).
Equation (38) also implies that lower noise in the tempera-
ture power spectrum would move the peak position to
higher reconstruction multipoles L�. The cone structure

in Fig. 4(a), with apex at ðL�; LTÞ � ð1600–1900; 200Þ and
edges L� � LT & ð1600–1900Þ & L� þ LT , encloses the

region for which the sum over l1 includes the maximum of

1=C
~T ~T
l1;expt

around l1 ¼ 1600–1900. A similar argument can

be applied for the cone patterns in the L� & 200 region.

For high temperature and low reconstruction multipoles,
L� 	 LT , we can Taylor expand Eq. (35) in l1 around LT

(see Ref. [26] for a similar calculation):

correlðĈ�̂�̂
L�

;Ĉ
~T ~T
LT;exptÞ

L�	LT

disconn

�½L�ðL�þ1Þ�2A2
L�

2�ðAL�
þC��

L�
Þ
� C

~T ~T
LT

C
~T ~T
LT;expt

�
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2L�þ1Þð2LTþ1Þ

4

s

�1

4

��dlnðL2
TC

~T ~T
LT
Þ

dlnLT

�
2þ1

2

�dlnC ~T ~T
LT

dlnLT

�
2
�
; (39)

FIG. 4 (color online). (a) Theoretical noise contribution from Eq. (35) to the correlation of unbinned power spectra of the lensed

temperature and the reconstructed lensing potential, correlðĈ�̂�̂
L�

; Ĉ
~T ~T
LT;exptÞ. The acoustic peaks of the temperature power spectrum are

visible in the vertical direction. (b) Estimate of the correlation of unbinned power spectra from 1000 simulations. (c) Same as (b) after

subtracting the empirical N̂ð0Þ bias of Eq. (17) from Ĉ�̂�̂.
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where we have neglected Nð1Þ
L�

and used AL�
¼ Nð0Þ

L�
. The

quadrature sum of derivatives in the last term is maximal
between acoustic peaks and troughs at LT � 350, 625, 925,
1225, 1550, 1850, etc., which agrees with the temperature
multipoles where the full correlation shown in Fig. 4(a) is
maximal (for L� & 200Þ.6 The maximum value of the

second line of Eq. (39) is around 36 (for LT & 2700). If

we neglect C��
L�

compared to AL�
, which is roughly accept-

able for L� & 10, then the first term in Eq. (39) is around

2� 10�7 (see Fig. 1); i.e., for L� & 10,

correlðĈ�̂�̂
L�

; Ĉ
~T ~T
LT;exptÞ

L�	LT

disconn

& 2� 10�7 � 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2L� þ 1Þð2LT þ 1Þ

q
� 36: (40)

For example, for L� ¼ 10, LT ¼ 1500 the bound is

9� 10�4 which is consistent with the full result shown
in Fig. 4(a).

3. Comparison with simulations

Before assessing the relevance of the noise contribution
to the covariance for parameter estimation, we compare
the analytic result in Eq. (35) with the full covariance
estimated from our simulations. For the latter we use

dcovðĈ�̂�̂
L ; Ĉ

~T ~T
L0;exptÞ ¼

1

Nsims � 1

XNsims

s¼1

ðĈ�̂�̂
L;s � hĈ�̂�̂

L isimsÞ

� ðĈ ~T ~T
L0;expt;s � hĈ ~T ~T

L0;exptisimsÞ; (41)

where s labels different realizations and h�isims denotes the
average over Nsims realizations. To reduce the noise of the
estimates from the finite number of simulations, we aver-
age the measured covariance over a range of L and L0
values,7

dcovðĈ�̂�̂
�Li
; Ĉ

~T ~T
�L0
j;expt

Þ

¼ 1

�Li�L
0
j

1

½ �Lið �Li þ 1Þ�2 �L0
jð �L0

j þ 1Þ
XLiþ1�1

L¼Li

XL0
jþ1

�1

L0¼L0
j

� ½LðLþ 1Þ�2L0ðL0 þ 1ÞdcovðĈ�̂�̂
L ; Ĉ

~T ~T
L0 Þ; (42)

where Li and L0
j are bin boundaries for lensing and tem-

perature powers, respectively, and �Li and �L0
j denote the

corresponding bin centres. The bin widths are �Li ¼
Liþ1 � Li and �L0

j ¼ L0
jþ1 � L0

j. We divide out LðLþ1Þ
prefactors to average over relatively slowly varying
quantities. In Fig. 4(b) we plot the estimate of the correla-
tion that unbinned power spectra would have. This is ob-
tained by dividing the covariance estimate of Eq. (42) by
the theoretical Gaussian variance of unbinned power spec-
tra as in Eq. (37) [evaluated at ð �Li; �L

0
jÞ]. Within the random

scatter from the finite Nsims, the estimated correlation
agrees with the theoretical noise contribution of Eq. (35).
We can also conclude that the noise contribution is the
dominant part of the temperature-lensing power correlation.

4. Mitigating the noise contribution with the
empirical N̂ð0Þ bias correction

In practice, it is desirable that the temperature and
reconstruction power spectra are uncorrelated so that their
respective likelihoods may be simply combined. Indeed,
this is the assumption that has been made in all joint
analyses to date [12,13,19].

Fortunately, the empirical N̂ð0Þ subtraction, which was
originally proposed in Ref. [26] to eliminate the nondiagonal
reconstruction power autocovariance (28), also removes the
noise contribution [Eq. (35)] to the temperature-lensing
power cross-covariance. To see this note that if the empirical
bias correction of Eq. (17) is used, the cross-covariance
changes by

�covð2N̂ð0Þ
L ; Ĉ

~T ~T
L0;exptÞ ¼�X

l

@ð2N̂ð0Þ
L Þ

@Ĉ
~T ~T
l;expt

covðĈ ~T ~T
l;expt; Ĉ

~T ~T
L0;exptÞ

¼�covðĈ�̂�̂
L ; Ĉ

~T ~T
L0;exptÞdisconnþOð�2Þ:

(43)

We establish a more general version of this result in
Appendix B, where we show that the generalization of the

N̂ð0Þ correction for anisotropic surveys removes the noise
contribution to the covariance with any quadratic estimate
(including, e.g., cross-spectra) of the temperature power
spectrum. We confirm the reduction in the cross-covariance
with simulations in Fig. 4(c). Corrections to Eq. (43) from the
non-Gaussian terms in the covariance of the temperature
power spectra [see Eq. (24)] at Oð�2Þ and Oð�4Þ reach at
most 3� 10�5 in the correlation, which is roughly 1 order of
magnitude smaller than the matter cosmic variance contribu-
tion discussed below (see Fig. 5(a)). These corrections are too
small to be visible in Fig. 4(c) and we neglect them in the
following.

B. Matter cosmic variance contribution

1. Warmup: Power covariance of input lensing
potential and lensed temperature

We expect the cosmic variance of the lenses to induce
a power correlation of the lensed temperature with the

6The correlation at high LT is suppressed by the noise
in C

~T ~T
LT;expt

, which is used to normalize the covariance in Eq. (37).
7Note that for broadband covariances, this binning procedure

does not bias the covariance estimate; i.e., the binned covariance
agrees with the unbinned covariance in the limit of averaging
over infinitely many simulations. However, for a finite number of
simulations, the binned covariance is less noisy than the covari-
ance estimate at a single ðL; L0Þ pair. Note also that binning the
estimated covariance is equivalent to estimating the covariance
of the binned spectra.
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lensing reconstruction since greater lensing power in a
given realization leads to additional smoothing of the
empirical temperature power spectrum. As a warmup, we
calculate how the same effect gives rise to a covariance
between the power spectrum of the temperature and the
(unobservable) power spectrum of the lensing potential, as
if we were able to measure � directly with no noise. This
correlation can be extracted from simulations simply by
measuring the correlation of the power spectra of the
lensed temperature and the input lensing potential without
performing any lensing reconstruction. To calculate the
covariance perturbatively, note that for a fixed realization
of the input lensing potential �in, the lensed temperature
power spectrum obtained by averaging only over the
unlensed CMB is given by (L0 � 0),

1

2L0 þ1

X
M0
hj ~TL0M0 j2iCMB

¼CTT
L0 þ 1

2L0 þ1

X
l1l2

Ĉ�in�in

l1
CTT
l2
F2
L0l1l2

� R̂L0ðL0 þ1ÞCTT
L0

¼CTT
L0 þ

X
L00

@C
~T ~T
L0

@C��
L00

Ĉ�in�in

L00 : (44)

Here Ĉ�in�in denotes the empirical power spectrum of the

input lensing potential realization �in,
8 and R̂ is defined by

replacingC�� in Eq. (26) by Ĉ�in�in . The first line of Eq. (44)
canbe derived from the expansion inEq. (2) at second order in
�in. The term linear in�in vanishes because it is proportional
to the monopole of�in. In Eq. (44) we neglected noise in the
temperature measurement since this does not contribute to
the covariance that we aim to calculate. The derivative in the
second line of Eq. (44) is given by Eq. (27). Neglecting the
T-� correlation, we then have

covðĈ�in�in
L ; Ĉ

~T ~T
L0;exptÞ

¼ hĈ�in�in

L hĈ ~T ~T
L0;exptiCMBiLSS � hĈ�in�in

L ihĈ ~T ~T
L0;expti;

¼ 2

2Lþ 1
ðC��

L Þ2 @C
~T ~T
L0

@C��
L

; (45)

where h�iLSS denotes an average over realizations of �
(i.e., over large-scale structure).

2. Power covariance of reconstructed lenses and lensed
temperature from the connected 6-point function

The power covariance [Eq. (33)] of the reconstructed
lensing potential and the lensed temperature receives con-
tributions from the connected 4- and 6-point functions, as
well as the Gaussian (disconnected) part. The leading-order
trispectrum is linear in C�� and so cannot give rise to the

expected matter cosmic variance contribution calculated
above. The trispectrum contributions are discussed in detail
in Appendix D and are shown to have a subdominant effect
on parameter estimation (see Fig. 8 below). We therefore
focus here on the contribution from the connected 6-point
function. Terms independent of � do not contribute to the
connected part, and terms linear in � vanish when averag-
ing over large-scale structure. Since the�2 contribution can
be shown to vanish [43] as well as �3 terms which vanish
for Gaussian �, the leading-order contribution is of order
�4. The Oð�4Þ contribution from the connected 6-point
function to the temperature-lensing power covariance is
calculated in detail in Appendix E. The dominant contribu-
tion there [Eq. (E8)] is exactly of the form calculated above
[Eq. (45)] for the power covariance of the input lensing
potential and the lensed temperature.

3. Magnitude and structure of the covariance matrix

The correlation of unbinned temperature and lensing
power spectra due to Eq. (E8) is at most 0.04%
(see Fig. 5(a)). Since higher lensing power lowers the
acoustic peaks and increases the troughs of the temperature
power spectrum, the correlation is negative at multipoles
LT where the temperature power peaks and positive where
it has a trough. The correlation is small for L� * 150

because the acoustic peak smearing is mainly caused by
large-scale lenses [38].

The approximate covariance matrix between ½LðLþ
1Þ�2Ĉ�̂�̂

L =ð2�Þ and L0ðL0 þ 1ÞĈ ~T ~T
L0 =ð2�Þ, calculated from

Eq. (E8), is shown in the left-hand panel of Fig. 6. By
performing a singular-value decomposition of this matrix,
we find that it has a very low-rank structure. For example,
retaining the multipoles of the reconstruction to L ¼ 500
(and up to L0 ¼ 2500 for the temperature), the first singular
value is 34 times larger than the second. The covariance
matrix can be accurately approximated in rank-one form,

cov

�½LðLþ1Þ�2Ĉ�̂�̂
L

2�
;
L0ðL0 þ1ÞĈ ~T ~T

L0

2�

�
ðE8Þ

��1uLvL0 ;

(46)

as shown in the right-hand panel of Fig. 6. Here, the leading
singular value �1 ¼ 8:3� 10�8 �K2; the corresponding
(normalized) singular vectors uL (for the reconstructed
lensing power) and vL0 (for the temperature power) are
plotted in Fig. 7. The significance of the rank-one covari-
ance is that cosmic variance of the lenses produces corre-
lated changes in the measured lensed temperature power
spectrum with definite shape given by vL0 . Moreover,

cosmic-variance fluctuations in Ĉ��
L that are orthogonal

to uL do not influence Ĉ
~T ~T
L0 .

We can understand the low-rank stucture of the

covariance by evaluating the derivative @C
~T ~T
L0 =@C

��
L with

the flat-sky form of Eq. (25). Following Ref. [28] we have

8We denote this as �in, while the reconstructed lensing
potential is �̂. Recall that C denotes theoretical and Ĉ empirical
power spectra.

JOINT ANALYSIS OF CMB TEMPERATURE AND . . . PHYSICAL REVIEW D 88, 063012 (2013)

063012-11



C
~T ~T
L0 ¼ ð1� L02RÞCTT

L0

þ
Z d2L

ð2�Þ2 ½ðL
0 �LÞ �L�2C��

L CTT
jL0�Lj; (47)

where R is given by Eq. (26). It is clear from Fig. 6 that
the covariance is only significant between large-scale lens
modes (L < 100) and intermediate- and small-scale
temperature modes (where lensing has a significant effect
on the power spectrum). In the limit L 	 L0, and for L
small compared to the CMB acoustic scale, we can Taylor
expand CTT

jL0�Lj in Eq. (47) to obtain

@C
~T ~T
L0

@C��
L

� L5

16L02

�
5L0 d

dL0

�
L0ðL0 þ 1ÞCTT

L0

2�

�

þ 3L02 d2

dL02

�
L0ðL0 þ 1ÞCTT

L0

2�

��
(48)

at leading order in L=L0. Since this is a rank-one matrix,

the same is true of the covariance between Ĉ�̂�̂
L and

Ĉ
~T ~T
L0 . We can read off that the singular vector vL0 in

Eq. (46) is

vL0 / 5L0 d

dL0

�
L0ðL0 þ 1ÞCTT

L0

2�

�

þ 3L02 d2

dL02

�
L0ðL0 þ 1ÞCTT

L0

2�

�
; (49)

which agrees well with that determined directly by
singular-value decomposition (see Fig. 7). This singular
vector is also similar to the change in CTT

L due to lensing
over the acoustic part of the spectrum, where the dominant
contribution is from large-scale lenses. Finally, we note

that the rank-one structure of the derivative @C
~T ~T
L0 =@C

��
L is

consistent with the findings of Ref. [38] where it is shown
that the lensed temperature power spectrum is sensitive to

essentially a single mode of C��
L .

FIG. 5 (color online). (a) Theoretical matter cosmic variance contribution, from Eq. (E8), to the correlation of the unbinned power
spectra of the reconstructed lensing potential and the lensed temperature anisotropies. The covariance is converted to a correlation

following Eq. (37). (b) Measured correlation dcorrelðĈ�in�in
L�

; Ĉ
~T ~T
LT

� ĈTT
LT
Þ of the power spectrum of the input lensing potential and the

difference of noise-free lensed and unlensed temperature power spectra from 1000 simulations.
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FIG. 6 (color online). Left: The approximate contribution to the covariance between ½L�ðL� þ 1Þ�2Ĉ�̂�̂
L�

=ð2�Þ and

LTðLT þ 1ÞĈ ~T ~T
LT
=ð2�Þ from cosmic variance of the lenses, derived from Eq. (E8). Right: The rank-one approximation to the matrix

on the left from retaining only the largest singular value.
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4. Comparison with simulations

Before assessing the importance for parameter
estimation of the matter cosmic variance contribution to
the cross-covariance, we validate it against simulations.
The measurements of the temperature-lensing power cor-
relation in Fig. 4(b) are too noisy to resolve clearly the
matter cosmic variance contribution. However, we can test
Eq. (45) by correlating the lensed temperature with the

empirical power spectrum Ĉ�in�in of the realization of the
input lensing potential without performing any reconstruc-
tion. To reduce the noise of the covariance estimate, we
work with the empirical power of the lensed temperature
without including beam effects or noise, which do not
affect the matter cosmic variance effect we are looking
for. Since we have so far neglected T-� correlations in all
calculations, we try to eliminate correlations between the
lensing potential and the unlensed temperature in the

simulations by calculating dcovðĈ�in�in

L ; Ĉ
~T ~T
L0 � ĈTT

L0 Þ. Here,
Ĉ�in�in is the empirical power of the input lensing potential

and ĈTT is the empirical power of the unlensed tempera-
ture. Additionally, subtracting the unlensed from the lensed
empirical temperature power reduces the noise of the
covariance estimate because it eliminates the scatter due
to cosmic variance of the unlensed temperature. Otherwise,
our estimate of the covariance follows the procedure
described in Sec. VA3. As shown in Fig. 5(b), these
broadband estimates are consistent with the theoretical
expectation from Eq. (45).

5. Mitigating the matter cosmic variance contribution

As we shall show in Sec. VD, the impact on parameter
errors of ignoring the covariance between the lensed tem-
perature and reconstruction power due to cosmic variance
of the lenses is small for an experiment like Planck. Indeed,
this is why the covariance is not accounted for in the
current Planck likelihood [13]. However, the covariance

is simple to model using Eq. (E8) and could easily be
included in a joint analysis. Equivalently, the covariance
could be diagonalized by appropriate modifications of
the empiricial temperature or lensing power spectra. A

symmetric way to do this, mirroring the empirical Nð0Þ
correction that we advocate applying to the empirical
lensing reconstruction power, is to modify the measured
temperature power spectrum by

Ĉ
~T ~T
l;expt ! Ĉ

~T ~T
l;expt �

X
l0
All0 ðĈ�̂�̂

l0 � 2N̂ð0Þ
l0 Þ

þ
�X

l0
All0 ðĈ�̂�̂

l0 � 2N̂ð0Þ
l0 Þ
�
; (50)

where

All0 ¼ @C
~T ~T
l

@C��
l0

0
@ C��

l0

hĈ�̂�̂
l0 i

1
A2

: (51)

The expectation value is introduced in Eq. (50) to preserve

the mean value of Ĉ
~T ~T
l;expt. The construct ðC��

l0 =hĈ�̂�̂
l0 iÞ2 acts

like a Wiener filter on the empirical spectrum Ĉ�̂�̂
l0 �

2N̂ð0Þ
l0 . The effect is to ‘‘delens’’ the lensed temperature

power spectrum with the (CMB-averaged) lensing effect
from any scales in the reconstructed potential power spec-
trum where the signal-to-noise on the reconstruction is
high. In practice, high signal-to-noise lens reconstructions
are never achieved with reconstructions based only on the
temperature.
An alternative procedure is suggested by Eq. (46):

project out from Ĉ�̂�̂
L the dominant singular vector uL.

Although this is lossy, it does have the virtue that the ~T ~T
part of the likelihood is left unchanged. We discuss the
effect of such a lossy projection on the errors of amplitude
estimates in Sec. VD1.
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FIG. 7 (color online). Singular vectors uL (left) and vL0 (right, black) of the matter cosmic variance contribution to the

covariance between ½LðLþ 1Þ�2Ĉ�̂�̂
L =ð2�Þ and L0ðL0 þ 1ÞĈ ~T ~T

L0 =ð2�Þ corresponding to the dominant singular value; see Eq. (46).

The approximation of Eq. (49) is shown in red dashed lines on the right.
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C. Toward a complete model for power covariances

The power covariances of Eqs. (30), (36), and (E8)
can be regarded as a natural extension of the model for
temperature and polarization power covariances found in
Ref. [40]. We can summarize the covariances in the unified
form

covðĈXY
L ; ĈZW

L0 Þ ¼ �LL0covGðĈXY
L ; ĈZW

L0 Þ

þX
ll0

@CXY
L

@CUU
l

covðĈUU
l ; ĈUU

l0 Þ@C
ZW
L0

@CUU
l0

þX
ll0

@CXY
L

@CVV
l

covðĈVV
l ; ĈVV

l0 Þ@C
ZW
L0

@CVV
l0

; (52)

where U and V are listed in Table II for different combi-
nations of XY and ZW. In this context we make the
identifications

@C�̂�̂
L

@C��
l

� �Ll;
@C�̂�̂

L

@C
~T ~T
l

� @ð2N̂ð0Þ
L Þ

@Ĉ
~T ~T
l;expt

: (53)

The first term on the right of Eq. (52) is the Gaussian
covariance that would arise for Gaussian fields X, Y, Z,
and W.

The general formula of Eq. (52) does not include
trispectrum contributions to the temperature-lensing
covariance, but the dominant correction has a simple
form [Eq. (D4)], which can be added straightforwardly to
the covariance. Generally, terms involving CT� in Eq. (52)
can be neglected. While we evaluated derivatives pertur-
batively in �, nonperturbative corrections can be included
from numerical derivatives of accurate lensed power spec-
tra [40,41]. However, we do not expect these corrections to
be significant here. All combinations listed in Table II have
been verified with simulations in Refs. [26,40] or in this
work. Extending the covariance model to polarization-
based lensing reconstructions would be interesting but is
beyond the scope of this paper.

D. Impact of correlations on parameter estimation

1. Lensing amplitude estimates

As a first step in assessing the impact of covariances
between the temperature and lens-reconstruction power
spectra on parameter estimation, we consider constraining
an overall amplitude parameter A of a fiducial lensing

power spectrum, C��
l ¼ AC��

l jfid [8] with all other

parameters fixed. The value of A ¼ 1 corresponds to lens-
ing at the level expected in the fiducial model, while A ¼ 0
corresponds to no lensing.
The lensing amplitude can be estimated from the recon-

structed lensing potential with

Â ¼
P

l;l0 C��
l ðcov�1

�̂�̂
Þll0 ðĈ�̂�̂

l0 � Nð0Þ
l0 � Nð1Þ

l0 ÞP
L;L0

C��
L ðcov�1

�̂�̂
ÞLL0C��

L0
; (54)

where cov�̂�̂ denotes the autocovariance of the recon-

structed lensing power given by Eqs. (28) and (29), eval-
uated for A ¼ 1. Equation (54) is the maximum-likelihood
estimator for the lensing amplitude if the likelihood is
modeled as a multivariate Gaussian in the empirical
power spectrum of the lensing reconstruction. This form
of the likelihood will be motivated later. Alternatively, the
lensing amplitude can be extracted directly from the lensed
temperature power spectrum without invoking lensing
reconstruction by

Â0 ¼
P

lðĈ ~T ~T
l;expt � CTT

l;exptÞðcov�1
~T ~T;expt

ÞllðC ~T ~T
l � CTT

l ÞP
l0 ðC ~T ~T

l0 � CTT
l0 Þ2ðcov�1

~T ~T;expt
Þl0l0

; (55)

where the autocovariance of the temperature power is
approximated by its leading-order diagonal piece [see
Eq. (24)].

Since the reconstruction-based amplitude Â is linear in
the empirical reconstruction power and the temperature-

based amplitude Â0 is linear in the empirical lensed

TABLE II. Covariance types UU and VV that are picked up by power covariances
covðĈXY

L ; ĈZW
L0 Þ according to Eq. (52). Lensed power spectra are denoted with tildes, and for

~T ~T the VV covariance should be understood to correspond to C
~T ~T
l;expt including noise. The

notation �̂�̂�2N̂ð0Þ þ Nð0Þ stands for ĈXY
L ¼ Ĉ�̂�̂

L � 2N̂ð0Þ
L þ Nð0Þ

L , and in this case the Gaussian

variance in the first term of Eq. (52) involves hĈ�̂�̂
L i2, while the Gaussian covariance with Ĉ

~T ~T
L0

involves ðCT�
L Þ2. The symbol – means that the corresponding contribution is cancelled or can be

neglected. For the temperature-lensing covariances in the bottom two rows, the leading
trispectrum contribution of Eq. (D4) should be added to Eq. (52).

XY, ZW UU VV Equation here Reference

Any combination of ~T ~T , ~T ~E , ~E~E �� – (24) [40]
~B~B , ~B~B �� EE [40]

�̂�̂ , �̂�̂ – ~T ~T (29) and (30) [26,32] and this work

�̂�̂�2N̂ð0Þ þ Nð0Þ, �̂�̂�2N̂ð0Þ þ Nð0Þ – – (29) [26]

�̂�̂ , ~T ~T �� ~T ~T (E8) and (36) this work

�̂�̂�2N̂ð0Þ þ Nð0Þ, ~T ~T �� – (E8) this work
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temperature power, the covariance of Â and Â0 involves the
temperature-lensing power covariance that we computed
earlier,

covðÂ; Â0Þ ¼ �2
A�

2
A0
X
l;l0;l00

C��
l ðcov�1

�̂�̂
Þll0covðĈ�̂�̂

l0 ; Ĉ
~T ~T
l00;exptÞ

� ðcov�1
~T ~T;expt

Þl00l00 ðC ~T ~T
l00 � CTT

l00 Þ; (56)

where the standard deviations are9

�A ¼
�X

l;l0
C��
l ðcov�1

�̂�̂
Þll0C��

l0

��1=2
;

�A0 ¼
�X

l

ðC ~T ~T
l � CTT

l Þ2ðcov�1
~T ~T;expt

Þll
��1=2

:

(57)

The covariance of Â and Â0 can be measured in Nsims

simulations with

dcovðÂ; Â0Þ ¼ 1

Nsims � 1

XNsims

s¼1

ðÂs � hÂisimsÞðÂ0
s � hÂ0isimsÞ;

(58)

where s labels different realizations. We get the correlation
by dividing by the theoretical standard deviations of
Eq. (57). Approximating the spectra as Gaussian variables,

the variance of the estimated covariance is �2
A�

2
A0 þ

½covðÂ; Â0Þ�2, i.e., the variance of ðÂ� 1ÞðÂ0 � 1Þ, divided
by Nsims � 1.10 If we ignore the (small) correlation be-

tween Â and Â0, the theoretical standard error of the
measured covariance is therefore �A�A0=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nsims � 1

p
; i.e.,

the theoretical error of the estimated correlation is roughly
1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nsims � 1

p � 3:2% for 1000 simulations.
Figure 8 shows that the lensing amplitude correlation

measured in our simulations agrees well with the theoreti-
cal correlation of Eq. (56) if all contributions to the
temperature-lensing power covariance are taken into

account. As one of the main results of this paper, we find
that the correlation is at most 7% if the realization-

dependent N̂ð0Þ subtraction [Eq. (17)] is used. Without

this N̂ð0Þ subtraction, the correlation can reach up to 10%
because the disconnected noise contribution of Eq. (35) is
not cancelled. A plausibility argument for the relatively
small level of amplitude correlations is presented in
Appendix A. Briefly, the disconnected noise contribution
is small since the temperature modes that bring most
information to the reconstruction are in between acoustic
peaks and troughs, but the temperature modes that influ-

ence Â0 most strongly are at the peaks and troughs. Since
these disjoint modes vary independently, the amplitude
correlation is suppressed. The matter cosmic variance con-
tribution to the amplitude correlation is small since the

errors in the measurements of Â and Â0 are dominated by
cosmic variance of the temperature, not the lenses.
Figure 8 also illustrates the relative importance of the

individual covariance contributions derived above. The
dominant effect comes from the matter cosmic variance
contribution [Eq. (E8)] which induces an amplitude corre-

lation of around 4–5% for any l�max * 100. The discon-
nected noise contribution [Eq. (35)] implies a slightly

smaller amplitude correlation of 3–4% for l�max * 300.11

An additional contribution to the temperature-lensing
power covariance comes from the lensed temperature tris-
pectrum discussed in Appendix D. The dominant term
[Eq. (D4)] gives rise to a 2% lensing amplitude correlation.
The agreement between simulations and theory in Fig. 8
gives us confidence that the power correlations modeled
here include all relevant contributions for amplitude
measurements.

Instead of fixing l�min ¼ 2 and varying l�max it is worthwhile

to consider the disjoint reconstruction bins ½l�min; l
�
max� ¼

½40; 84�, [85, 129], [130, 174], . . ., [355, 400] used for the
Planck analyses in Refs. [13,17]. If the realization-

dependent N̂ð0Þ is used, the theoretical correlation of the
lensing amplitude estimated from one of these bins alone
with the lensing amplitude estimated from the temperature
power (for lTmax ¼ 2002) is 5, 3.6, and 2% for the first three
reconstruction bins and decreases further for the remaining
higher-l bins. This is consistent with the correlations esti-
mated from our 1000 simulations. In particular, this result
shows that the lensing amplitude estimated from the tem-
perature power spectrum and the reconstruction amplitudes
used in the Planck lensing likelihood [13] are nearly
uncorrelated, which justifies neglecting this correlation in
the likelihood.

9If no empirical N̂ð0Þ subtraction is used, we evaluate �A with
nondiagonal reconstruction power autocovariance, which gives
�A � 2:7% if l�max 
 500 for our noise and beam specifications.
The estimated sample standard deviation of Â from simulations
is larger by a factor of up to 1.07 compared to the theoretical
expectation. If the N̂ð0Þ subtraction is used, we evaluate �A with
diagonal reconstruction power autocovariance, which yields
�A � 2:5–2:6% for l�max 
 500. The estimated sample standard
deviation from simulations is larger by a factor of at most 1.05.
The modest reduction in �A with empirical N̂ð0Þ subtraction is
expected given the origin of this estimator as the approximate
maximum-likelihood estimator for the trispectrum (see
Appendix B). For the lensing amplitude A0 estimated from the
temperature power spectrum, we find �A0 � 3:9% for lTmax ¼
2002 and our Planck-like noise model. The estimated sample
standard deviation from simulations is larger by a factor of 1.01.
10As a product of two approximately normally distributed

variables, the random variable ðÂs � hÂisimsÞðÂ0
s � hÂ0isimsÞ is

not normally distributed. However, the average over Nsims ¼
1000 realizations is approximately normally distributed due to
the central limit theorem.

11Although for the power spectrum cross-correlation the maxi-
mal noise contribution is about 1 order of magnitude larger than
the maximal matter cosmic variance contribution, the latter can
be more relevant for the correlation of amplitude estimates
because of the phase argument given in the text.
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For experiments with superior noise and beam
characteristics, the matter cosmic variance contribution
to the temperature-lensing power covariance does not
change, but the lensing amplitude errors decrease. We
therefore expect the corresponding amplitude correlation
to increase. For example, for a full-sky experiment with
SPT-like noise and beam specificiations, �N¼18�K
arcmin and �FWHM ¼ 1 arcmin, the amplitude correlation
from the matter cosmic variance contribution alone is

around 10–11% for lTmax ¼ 2002 and l�max ¼ 500–1000.

2. Combined lensing amplitude estimate

We have presented two estimators of the lensing

amplitude: Â is linear in the reconstruction power, and Â0
is linear in the CMB power. These two estimates can be
combined with inverse variance weighting,

ÂC ¼ 1

��2
A þ ��2

A0

�
Â

�2
A

þ Â0

�2
A0

�
: (59)

This combined estimator is the maximum-likelihood

estimator for the lensing amplitude if Â and Â0 are assumed

to be uncorrelated. If there is a correlation between Â and

Â0, this does not change the expectation value of ÂC, but it
does change its variance, which is then given by12

varðÂCÞ ¼ �A�A0

�
�A

�A0
þ �A0

�A

��2

�
��

�A

�A0
þ �A0

�A

�
þ 2 correlðÂ; Â0Þ

�
: (60)

A correlation between Â and Â0 therefore increases the 1�
error of the combined estimator (59) by a factor of

�AC
jcovðA;A0Þ�0

�AC
jcovðA;A0Þ¼0

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2ð�A=�A0 Þ

1þ ð�A=�A0 Þ2 correlðÂ; Â
0Þ

s

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ correlðÂ; Â0Þ

q
(61)

compared to the error if Â and Â0 were uncorrelated. Since
correlations between Â and Â0 were found to be at most 7%

if the empirical N̂ð0Þ subtraction is used, the 1� error of the
combined lensing estimate changes by at most 3.5% for
Planck (5.5% for the full-sky SPT-like experiment men-
tioned above). Noting that this is the error on the error bar,

the correlations between Â and Â0 found above can be
safely neglected when combining these two estimates of
the lensing amplitude.
We briefly introduced a projection technique in

Sec. VB5 to remove the covariance between the recon-
structed lensing power and the lensed temperature power
spectrum due to the cosmic variance of the lenses. A
simple way to perform the projection is to modify the
covariance matrix ðcov�̂�̂Þll0 in Eq. (54) by adding

�0ulul0 , where ul is the dominant singular vector in
Eq. (46), and taking �0 to infinity. To the extent that the

FIG. 8 (color online). (a) Correlation dcorrelðÂ; Â0Þ ¼ dcovðÂ; Â0Þ=ð�A�A0 Þ of the lensing amplitude estimates of Eqs. (54) and (55)
measured in 1000 simulations (blue crosses), if no empirical N̂ð0Þ subtraction is applied. The theoretical correlation from Eq. (56)
(black) includes the noise contribution of Eq. (35), the matter cosmic variance contribution of Eq. (E8), and the dominant connected
4-point contributions from Eqs. (D2) and (D4). In the simulations the lensing potential is reconstructed from the lensed temperature

power spectrum up to lrecmax ¼ 2750. Then, Â is estimated from Ĉ�̂�̂
l from l�min ¼ 2 up to the multipole l�max, which is varied along the

horizontal axis. The amplitude Â0 is estimated using Ĉ
~T ~T
l;expt up to lTmax ¼ 2002. Theoretical expressions are evaluated with

the same cutoffs (nondiagonal covariance matrices are cut off before inverting them). Error bars show standard errors on the
measured correlation. The errors are very correlated because they all involve overlapping low-l reconstruction modes. (b) Same as (a)
but with empirical N̂ð0Þ subtraction. Since this removes some covariance contributions, the theoretical covariance is given by Eqs. (D4)
and (E8) only.

12To first order in the correlation, this sampling variance of the
combined ÂC is the same as the sampling variance of the optimal
combined estimate that takes account of the correlations.
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covariance between the lensing and temperature power
spectra is really rank-one, this procedure removes the

correlation between Â and Â0 exactly. However, the vari-

ance of Â is increased by projection: it is still given by

Eq. (57) but with the modified ðcov�̂�̂Þll0 . For l�max ¼ 500,

we find that�A is increased from 0.025 to 0.042, i.e., a 70%

increase. This falls to 60% for l�max ¼ 1000. The reason for
the large increase is that ul is rather similar in shape to the
signal whose amplitude we are trying to reconstruct. Given

the large increase in the error on Â, and that ignoring the
effect of the covariance between the lensing reconstruction
and temperature power spectra is relatively harmless, we

do not advocate the use of projection to remove the
correlations.

3. Cosmological parameters

We naively expect the impact of power correlations
on cosmological parameters to be smaller than for the
lensing amplitude because the latter is directly related
to the lensing potential on all scales and can therefore
accumulate contributions from the full power covarian-
ces. We confirm this with a simple Fisher analysis.
The covariance matrix for the joint data vector

Ĉ ¼ ðĈ ~T ~T
expt; Ĉ

�̂�̂ � 2N̂ð0Þ þ Nð0ÞÞ is

cov LL0;joint � covðĈL; ĈL0 Þ ¼ �LL0varGðC ~T ~T
L;exptÞ covðĈ ~T ~T

L;expt; Ĉ
�̂�̂
L0 � 2N̂ð0Þ

L0 Þ
covðĈ�̂�̂

L � 2N̂ð0Þ
L ; Ĉ

~T ~T
L0;exptÞ �LL0varGðhĈ�̂�̂

L iÞ

0
@

1
A: (62)

Fisher errors are obtained by taking the square root of the
diagonal entries of the inverse of the Fisher matrix

Fij ¼
X
LL0

@CL

@pi

ðcov�1
jointÞLL0

@CL0

@pj

(63)

for cosmological parameters p ¼ ð�bh
2;�ch

2; h; �;
As; ns;�	h

2;�KÞ and theoretical power spectra C ¼
ðC ~T ~T; C��Þ (assuming cosmology-independent Nð0Þ for
simplicity). Including the off-diagonal temperature-lensing
covariances of Eqs. (D4) and (E8) in Eq. (62) increases the
Fisher errors for these parameters by at most 0.7% [0.5% if
only Eq. (E8) is used] compared to a completely diagonal
covariance matrix.13 The off-diagonal part of the joint
covariance matrix can therefore safely be neglected for
cosmological parameter estimation with a Planck-like
experiment.

VI. TOWARD A LENSING LIKELIHOOD

As argued in Sec. I, dealing with the exact likelihood
for the lensed CMB temperature is generally computation-
ally prohibitive. For this reason, we have focused on a
form of data compression whereby the non-Gaussian
lensed CMB is represented by its 2- and 4-point functions
(the latter via the lensing reconstrucion power spectrum).
In computing the correlations between these spectra, we
have implicitly been assuming that the likelihood takes the
form of a multivariate Gaussian in the spectra. In this
section, we test the accuracy of this assumption in simple
parameter-estimation exercises.

A. Lensing amplitude from lensing reconstruction

As a toy model, we first aim to constrain the lensing
amplitude A from the lensing reconstruction alone.
Considering an isotropic CMB survey, with Planck-like
noise as described earlier, we consider two simple models
for the likelihood, both of which depend only on the
empirical power spectrum of the reconstruction. The first
is the usual isotropic likelihood for a Gaussian field:

� 2 lnL1ð�̂jAÞ

¼ X
l

ð2lþ 1Þ
�

Ĉ�̂�̂
l

AC��
l þ Nl

þ ln jAC��
l þ Nlj

�

þ ðconstÞ: (64)

This would be correct if �̂were a Gaussian field. However,
since the reconstruction is manifestly non-Gaussian, we do
not expect this likelihood to perform well. The second is

Gaussian in the empirical power spectrum Ĉ�̂�̂:

� 2 lnL2ðĈ�̂�̂jAÞ
¼ X

l;l0
½Ĉ�̂�̂

l � ðAC��
l þ NlÞ�ðcov�1

�̂�̂
Þll0

� ½Ĉ�̂�̂
l0 � ðAC��

l0 þ Nl0 Þ� þ ðconstÞ: (65)

The theoretical reconstruction power autocovariance
cov�̂�̂, given by Eqs. (28) and (29), and the bias of the

reconstructed lensing power, N ¼ Nð0Þ þ Nð1Þ, are eval-
uated for the fiducial amplitude A ¼ 1. The empirical

N̂ð0Þ subtraction is obtained by replacing N with N̂ ¼
2N̂ð0Þ � Nð0Þ þ Nð1Þ. For L1, the maximum-likelihood
estimate for A (given a realization of the lensing recon-
struction) is found numerically by direct evaluation of L1

for various A. The maximum likelihood estimator for A
based on the second likelihood L2 is given by Eq. (54).

13To obtain accurate derivatives for the Fisher matrix,
we assumed a fiducial cosmology with massive neutrinos,
pfid¼ð0:0226;0:1123;0:704;0:087;2:167�10�9;0:963;0:005;0Þ,
which differs slightly from the cosmology used throughout the
rest of the paper. The Fisher errors were computed for lTmax ¼
2002 and l�max ¼ 1002.
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We compute estimates Â of the lensing amplitude for
1000 realizations of the lensed CMB. The sample mean

of Â should be unity, and the sample variance of Â, i.e., the
scatter of the best-fit amplitude over different realizations,
should agree with the typical width of the likelihood eval-
uated for a single realization. Checking these two properties
provides a nontrivial test of the likelihood L1. In contrast,
for L2, rather than testing the accuracy of L2, the sample

mean and sample variance of Â just test our understanding

of the mean and covariance of Ĉ�̂�̂.14 This test is still useful
to check for residual biases and the accuracy of our model
for the reconstruction power covariance.

Figure 9 compares the likelihood evaluated for several
individual realizations (colored) with a Gaussian (black)
with mean and standard deviation given by sample mean

and standard deviation of Â averaged over all 1000

realizations (for l�max ¼ 2650 and our Planck-like noise

model). Including the Nð1Þ bias is important at high

multipoles for both likelihoods: e.g., without it, L1 over-

estimates the lensing amplitude by 9%; see Fig. 9(a).

Including the Nð1Þ bias in L1 yields the correct lensing

amplitude A ¼ 1 in the mean, but the scatter of Â over

realizations is more than 30% larger than the typical width

of L1 in a single realization; see Fig. 9(b). The likelihood

L1 underpredicts the error of A because of the non-

Gaussianity of �̂. This is demonstrated in Fig. 9(c), for

which we replace the reconstructions with Gaussian simu-

lations of a field with power spectrum C��
l þ Nð0Þ

l þ Nð1Þ
l .

In this case,L1 should be exact, and the scatter does indeed

match the widths of individual realizations.
In contrast, L2 can partly model the non-Gaussianity of

�̂ through the nondiagonal reconstruction power autoco-

variance. We compute Â based on L2 for different forms
of the lensing covariance. Neglecting off-diagonal contri-
butions to cov�̂�̂ gives likelihood-based errors for A less

than 80% of the scatter of Â across the simulations; see
Fig. 9(d). If we include non-Gaussian, off-diagonal con-
tributions given by Eq. (28), we find that L2 predicts the
scatter in A to better than 5%; see Fig. 9(e). Similar
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FIG. 9 (color online). Likelihoods for the lensing amplitude for 15 different realizations (thin, colored lines), using the lensing

reconstruction up to l�max ¼ 2650, compared with the scatter in the best-fit amplitude obtained over 1000 simulations. Each likelihood
peaks at some best-fit parameter Â, and the mean and scatter of these best-fitting amplitudes over all 1000 simulations correspond to
the Gaussian curves (thick black). The upper panels show L1 from Eq. (64), while the lower panels show L2 given by Eq. (65). All
curves are normalized such that their integral over A is unity.

14This is because the estimated lensing amplitude [Eq. (54)] is

linear in Ĉ�̂�̂. For example, if the true likelihood depends on the

third power of Ĉ�̂�̂, it would be possible that this only shows up

in the skewness of Â. This issue will be addressed later by
considering the tilt of the lensing power spectrum, which
depends nonlinearly on the reconstruction power.
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results are achieved with the empirical N̂ð0Þ correction of
Eq. (17) and diagonal (Gaussian) reconstruction power
covariance; see Fig. 9(f).

B. Two-parameter likelihood tests with lensing
amplitude and lensing tilt

To test the likelihood approximation L2, we use the
lensing reconstruction additionally to constrain the lensing
tilt n defined by

C��
l ¼ A

�
l

l�

�
n
C��
l jfid: (66)

The pivot multipole l� ¼ 124 is chosen such that the Fisher

matrix associated withL2 is diagonal [for l
�
max ¼ Oð103Þ],

implying that the parameters A and n are approximately
uncorrelated. The likelihoods for nine realizations are
compared with the scatter of the best-fit parameters over
1000 realizations in Fig. 10. If the nondiagonal lensing
power covariance of Eq. (28) is included, we find good

agreement (without empiricial N̂ð0Þ subtraction). Note that
we have binned the reconstruction power in bins with
boundaries at

l ¼ 2; 13; 35; 75; 115; 155; 195; . . .

ðincreasing by 40 above l ¼ 35Þ: (67)

Similar results for the unbinned case will be summarized in
Fig. 11 below.

To quantify the level of agreement between the like-
lihoods for individual realizations and the scatter of their
best-fit parameters, we compare the areas of the confidence
contours shown in Fig. 10. We show in Fig. 11 the frac-
tional deviation of the areas of the Gaussian, with the
sample mean and sample covariance matched to the scatter

of the best-fit parameters over realizations, from the aver-
age area of the likelihoods for individual realizations (i.e.,
the fractional deviation of gray background areas from
average areas enclosed by the solid lines in Fig. 10).
Neglecting the off-diagonal contribution to the lensing

power covariance, which is largest at high reconstruction
multipoles [26], gives narrow misshapen likelihoods that
underestimate the scatter across simulations. This is

particularly so for l�max * 1000 where the confidence areas
disagree by around 40–65%. Binning does not help
because it does not reduce the broadband correlations of
the reconstruction power. The agreement is better when the
nondiagonal reconstruction power covariance is used (the
disagreement of confidence areas is at most 14%).

Alternatively, if the empirical N̂ð0Þ bias correction and the
diagonal covariance are used, the confidence areas deviate
by at most 22%. If we assume circular contours, the frac-

tional deviation of the contour radius is
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ d

p � 1< d=2
if d is the fractional deviation of the contour areas. Taking
this as the approximate fractional error of the marginalized
error bars of A or n shows that the error on the error bars
is smaller than 11% if the nondiagonal reconstruction

covariance or empirical N̂ð0Þ subtraction are used in L2.
Therefore, these two cases provide a reasonably accurate
model for the lensing likelihood in this test. If diagonal
reconstruction power covariance is assumed, and no em-

pirical N̂ð0Þ subtraction performed, the error on the error
bars can reach 30% even if binning is used. It is also worth
noting that in this last case only the confidence areas

increase with l�max; i.e., the analysis is clearly nonoptimal.
Note that in the above, ideally, we should use a histo-

gram of the best-fit parameters instead of fitting a Gaussian
to their scatter. This would test the tails of the distribution
much better because it would include possible skewness,
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FIG. 10 (color online). Likelihood test if lensing amplitude A (horizontal axis) and tilt n (vertical axis) are varied. Thick lines:
Contours enclosing 68, 95, and 99.7% of the probability for the likelihoodL2 (65) evaluated for nine realizations. Gray filled ellipses:
Contours of a Gaussian with central point and covariance matrix estimated from the scatter of the best-fit parameters over 1000
realizations. The lensing power autocovariance cov�̂�̂ is assumed to be diagonal in (a), while (b) also includes the nondiagonal

contribution in Eq. (28). The reconstruction power is used up to l�max ¼ 1002 and is binned as described in the text.
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etc. However, we find that histograms from 1000 simula-
tions are too noisy to be useful for this purpose, giving
results that scatter significantly with changes in histogram
binning widths �A and �n.

VII. CONCLUSIONS

To include the CMB lensing reconstruction power
spectrum in a joint likelihood analysis with the power spec-
trum of the temperature anisotropies requires knowledge of
the cross-covariance of the two spectra. We computed this
cross-covariance between the CMB 4-point and 2-point func-
tions perturbatively, identifying two physical contributions.
The disconnected part of the 6-point function of the lensed
temperature leads to a noise contribution which can be
interpreted as the response of the statistical noise in the lens
reconstruction to fluctuations in the underlying CMB tem-
perature field. The connected Oð�4Þ piece of the 6-point
function gives rise to a second contribution attributable to the
cosmic variance of the lenses, which causes the power spec-
trum of the lens reconstruction and the smoothing effect in
the anisotropy power spectrum to covary. The temperature-
lensing power covariance can therefore be written as

covðĈ�̂�̂
L ; Ĉ

~T ~T
L0;exptÞ

¼ @ð2N̂ð0Þ
L Þ

@Ĉ
~T ~T
L0;expt

2

2L0 þ 1
ðC ~T ~T

L0;exptÞ2
�
1þ 2

C��
L

AL

�

þ 2

2Lþ 1
ðC��

L Þ2 @C
~T ~T
L0

@C��
L

; (68)

where perturbative expressions for the derivatives are given
in Eqs. (27) and (31). Both contributions were confirmed

with simulations. The second term in the square brackets
represents the leading correction from the connected 4-point
function; see Eq. (D4). The CT� correlation gives a diagonal
contribution to the temperature-lensing power correlation,
which is less than 5% for Planck-like specifications and falls
rapidly with L. This generally has a negligible impact on
parameter constraints derived jointly from the CMB 2- and
4-point functions.

We showed that correcting for the Gaussian Nð0Þ bias in
the reconstruction power with the data-dependent N̂ð0Þ,
advocated by Ref. [26] to remove autocovariances of the
lensing reconstruction power spectrum, also removes the
noise contribution to the temperature-lensing power correla-
tion, and we provided an intuitive interpretation of this result.
For Planck-like specifications, estimates of the lensing

amplitude A based on the lensing reconstruction or the
peak smearing of the lensed temperature power spectrum
can be correlated at around the 10% level due to the power
correlations. If the correlations are ignored, this gives a
misestimate of the error on a joint amplitude estimate of
only 5%, which should be negligible. The data-dependent

N̂ð0Þ bias correction reduces the amplitude correlation fur-
ther to 7% and the error of the error to 3.5%. Intuitively, we
can understand the smallness of the correlation (found
perturbatively and with simulations) by noting that
(i) covariance of the amplitude estimates due to cosmic
variance of the lenses is limited by the small number of
modes of C�� that influence the acoustic region of the
temperature power spectrum, and is diluted significantly by
CMB cosmic variance (and noise), and (ii) roughly disjoint
scales in the CMB contribute to the amplitude determina-
tion from peak smearing and to the lens reconstruction
limiting the correlation due to CMB cosmic variance.
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FIG. 11 (color online). Quantitative comparison of areas in the A vs n plane enclosed by contours of theL2 likelihood. We show the
fractional deviation of the areas of Gaussians (with sample mean and sample covariance derived from the scatter of the best fit
parameters over 1000 realizations) from the average area in a single realization. Positive values mean that the width of the likelihood
typically underestimates the scatter of its peak across realizations. Results are shown for unbinned power spectra (dashed lines) and
power spectra binned according to the scheme of Eq. (67) (solid lines) and for 68% (black), 95% (blue), and 99.7% (cyan) confidence
levels. The maximum multipole of the reconstruction power is varied along the horizontal axis (only for three values which are
connected by straight lines to guide the eye). The lensing power autocovariance cov�̂�̂ inL2 is assumed to be diagonal in (a), while (b)

also includes the nondiagonal contribution of Eq. (28). Panel (c) is for empirical N̂ð0Þ bias correction and diagonal covariance. The

contours in Fig. 10 correspond to the crosses at l�max ¼ 1002 in (a) and (b).
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(See Appendix A for further details of these arguments.)
For a joint analysis of the power spectrum of a
temperature-based CMB lensing reconstruction and the
power spectrum of the temperature anisotropies them-
selves, the likelihoods for these two observables can there-
fore be simply combined for a Planck-like experiment
(as was the case for the 2013 Planck analysis [13]).

Non-Gaussianity of the lensing reconstruction compli-
cates the construction of a likelihood. We showed that the
usual likelihood for isotropic Gaussian fields does not
perform well for lens reconstruction in simple parameter
tests, significantly underestimating the scatter seen in the
best-fitting parameters across simulations. We obtained
better results with simple likelihoods that are Gaussian in
the measured spectra (with fiducial covariance matrix)
provided that power spectrum covariances were properly

modeled or data-dependent Nð0Þ subtraction included. In
two-parameter tests based on the amplitude and tilt of a
fiducial lensing power spectrum, the widths of these
Gaussian likelihoods reproduce the scatter in parameters
across simulations at the 10% level.

With polarization-based reconstructions becoming
feasible with current observations, it will be important
to extend the analysis presented here to polarization
(see Ref. [44] for work in this direction). While we
expect that many of our results can be simply applied
to reconstructions based on the temperature and polariza-
tion, the correlations are likely to be much more significant
and particularly so for the most powerful EB-based recon-
structions. We leave this to future work.
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APPENDIX A: WHYARE THE LENSING
AMPLITUDE CROSS-CORRELATIONS

SO SMALL?

The calculations in this paper give a rigorous derivation
of the cross-correlation of the power spectra of the lensing
reconstruction and the temperature anisotropies. In this
appendix we present simple physical arguments for why

the correlation of the lensing amplitudes estimated from
the reconstruction power and the anisotropy power are so
small. We present these arguments first for the correlation
due to CMB cosmic variance and then for the correlation
due to cosmic variance of the lenses.

1. Cosmic variance of the CMB

Due to the smoothing effect of lensing, most of the

constraint on the lensing amplitude Â0 estimated from
the CMB power spectrum comes from the CMB on
scales of the acoustic peaks and troughs. This can be

seen directly from the contribution s
~T ~T
l to the total signal-

to-noise squared [ðS=NÞ2] associated with the CMB cos-
mic variance at multipole l (see the blue curve in Fig. 12):

�
S

N

�
2

A0
¼ 1

�2
A0
¼ XlTmax

l¼lT
min

ðC ~T ~T
l � CTT

l Þ2
varGðC ~T ~T

l;exptÞ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
s
~T ~T
l

: (A1)

In contrast, in the limit of very large-scale lenses, and as
argued in more detail below, the reconstruction combines
local convergence and shear measurements, for which
scales in the CMB where the power spectrum changes
rapidly are most informative. For large-scale lenses, the

ðS=NÞ2 on the reconstruction-based amplitude estimate Â
is thus expected to be dominated by CMB modes between
acoustic peaks and troughs. Therefore, the lensing

amplitude estimates Â and Â0 are determined by rather
disjoint CMB modes with independent CMB cosmic-
variance fluctuations. We therefore expect the amplitude
correlation due to CMB cosmic variance to be suppressed
(in case this correlation is not mitigated by the empirical

N̂ð0Þ subtraction anyway).
To make this point more quantitative, note that the

reconstruction power Ĉ�̂�̂ is affected by CMB cosmic
variance through the disconnected CMB 4-point contribu-

tion Nð0Þ. Keeping the estimator normalization AL and
weights ~g fixed in Eq. (16), the contribution from the
CMB at multipole l to the ðS=NÞ2 of the reconstruction-

based amplitude estimate Â is monitored by

s�̂�̂l ¼
								 ���2

A

� lnC
~T ~T
l;expt

								fixAL; ~g

¼ Xl�max

L¼l�
min

								 �2ðC��
L Þ2

2
2Lþ1 ðNð0Þ

L þ C��
L þ Nð1Þ

L Þ3
4A2

L

2Lþ 1

�X
l1

~g2l1lðLÞC
~T ~T
l1;expt

								C ~T ~T
l;expt; (A2)

wherewe used�A from Eq. (57) and kept only the dominant
diagonal part of the reconstruction power autocovariance.

As shown in Fig. 12, s�̂�̂l (red) is out of phase compared to
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s
~T ~T
l (blue). To understand this structure, we separate the

sums over L and l1 in Eq. (A2) by restricting ourselves to

very large-scale lenses, l�max 	 l, and using the large-scale

approximation forNð0Þ derived in Ref. [26] [see its Eq. (19)],
to find

s�̂�̂l � s�̂�̂l;approx

¼ fðl�min; l
�
maxÞ 1

varGðC ~T ~T
l;exptÞ

��
C

~T ~T
l

d ln ðl2C ~T ~T
l Þ

d ln l

�
2

þ 1

2

�
C

~T ~T
l

d lnC
~T ~T
l

d ln l

�
2
�
; ½l�max & Oð10Þ�: (A3)

Here, the prefactor f depends on the minimum and
maximum reconstruction multipole but not on the CMB
multipole l. The terms in square brackets have the form of
the quadrature sum of the information in convergence
and shear. Convergence changes locally the angular scale
of the CMB anisotropies and so would contribute nothing to
the ðS=NÞ2 for a scale-invariant spectrum, l2Cl ¼ const,
while shear contributes nothing for a white-noise spectrum,
Cl ¼ const.15 Thus, for large-scale lenses, the ðS=NÞ2 for
the reconstruction-based amplitude gets most contributions
from CMB scales where the gradient of the CMB power
spectrum is maximal, i.e., between acoustic peaks and
troughs (see red and black curves in Fig. 12(a)).

In reality, temperature multipoles that are not precisely
at peaks or troughs and not precisely in between them will
affect both amplitude estimates, which implies a small
amplitude correlation. Intermediate- and small-scale lenses
can mix CMB modes over multipole ranges comparable to
the acoustic peak separation so that they are affected by
wider ranges of CMB multipoles than argued above
(see the red curve in Fig. 12(b)), which implies a somewhat
larger amplitude correlation. However, since the CMB
scales that are most important for the reconstruction still
have negligible impact on the amplitude estimated from
the temperature power, we expect the correlation of the
amplitudes to stay rather small.

2. Cosmic variance of the lenses

We now consider the contribution of cosmic variance of
the lenses to the covariance of the lensing amplitude esti-
mates given in Eq. (56). It is instructive to consider a toy
model where the reconstruction ‘‘noise’’ power is propor-

tional to C��, i.e., Nð0Þ
l þ Nð1Þ

l ¼ �C��
l . Taking the limit

� ! 0 is equivalent to being able to observe � directly
with no measurement error, while � ! 1 corresponds to
there being no information in the reconstruction. With

Nð0Þ
l þ Nð1Þ

l ¼ �C��
l , the weighting of the reconstruction

power spectrum in Â is the same as for an ideal reconstruc-

tion (i.e., one with no Nð0Þ and Nð1Þ noise). Provided we

then determine Â from all those � modes that influence
the temperature power spectrum, the contribution to the
amplitude covariance from cosmic variance of the lenses
simplifies significantly to give16
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FIG. 12 (color online). Contribution of different CMB multipoles l to the ðS=NÞ2 of the lensing amplitude for estimators

based on the CMB power spectrum [blue; Eq. (A1)] and on the lensing reconstruction [red; Eq. (A2)] for l�max ¼ 10 (left) and

l�max ¼ 500 (right). The approximation in Eq. (A3) for large-scale lenses is shown in black dashed in the left plot. Since we are not
interested in the total S=N but only in its distribution over different CMB scales, all curves are normalized such that their integral
over l is unity.

15The relation between large-scale lenses and the induced local
convergence and shear is discussed in detail by Ref. [45], where
the authors also find agreement between the ðS=NÞ2 of a com-
bined convergence and shear estimate with the large-scale limit
of the ðS=NÞ2 of the trispectrum reconstruction. This correspon-
dence has also been used to approximate the squeezed limit of
the lensing-Integrated-Sachs-Wolfe (ISW) bispectrum [30].

16Note that
Pl�max

l¼1ð@C ~T ~T
l0 =@C��

l ÞC��
l ¼ C

~T ~T
l0 � CTT

l0 for suffi-

ciently large l�max.
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covðÂ; Â0Þ ¼ �2
A;ideal: (A4)

Here, �2
A;ideal ¼ ½Plðlþ 1=2Þ��1 � 2=ðl�maxÞ2 is the vari-

ance of the reconstruction-based amplitude in the ideal

limit � ! 0 using all modes up to l�max. Since only a few

(large-scale) lensing modes affect Â0, including more lens-

ing modes in the reconstruction dilutes the covariation of Â

and Â0 over different realizations of the lenses because

there are increasingly more lensing modes in Â whose

fluctuations do not enter Â0. The amplitude covariance falls
inversely as the number of modes in the reconstruction

since the weight in Â given to those (few) modes of C��

that influence the temperature power spectrum falls as the
total number of modes. Note that the covariance is inde-
pendent of the weighting of the measured temperature

power spectrum in Â0, provided Â0 is appropriately nor-
malized, and it is also independent of additional contribu-
tions to the reconstruction noise (e.g., from CMB cosmic

variance, for fixed l�max). The variance of Â does depend on
the reconstruction noise level, with

��2
A � X

l

2lþ 1

2

�
C��
l

C��
l þ Nð0Þ

l þ Nð1Þ
l

�
2

¼ 1

ð1þ �Þ2
X
l

2lþ 1

2
¼ 1

ð1þ �Þ2 �
�2
A;ideal: (A5)

The result covðÂ; Â0Þ ¼ �2
A;ideal for ideal weighting is

necessary to ensure that the lensed CMB spectrum adds
no further information on the lensing amplitude when
combined with an ideal measurement of � itself on all
scales that are relevant for peak smearing of the tempera-
ture power spectrum. To see this, note that we can combine

the amplitude estimates Â and Â0 optimally into a single

estimate Âopt, properly taking account of their correlation.

If we do this, the inverse variance of the optimal estimate is
given by contracting the inverse covariance matrix of the
estimates:

��2
A;opt ¼ cov�1ðÂ; ÂÞ þ 2cov�1ðÂ; Â0Þ þ cov�1ðÂ0; Â0Þ:

(A6)

This evaluates to

��2
A;opt ¼

�2
A þ �2

A0 � 2�2
A;ideal

�2
A�

2
A0 � �4

A;ideal

; (A7)

on using Eq. (A4) for the covariance. In the ideal case,
taking the limit � ! 0, we have �A ¼ �A;ideal so that

�A;opt ¼ �A;ideal. This is as it must be—the observation of

the peak smearing in the power spectrum adds no new
information to that obtained from the ideal measurement
of �. In the opposite limit, � ! 1, we have �A ! 1 and
�A;opt ¼ �A0 and all information is coming from the

temperature power spectrum.

The correlation induced by matter cosmic variance,

correlðÂ; Â0Þ ¼ �2
A;ideal

�A�A0
¼ �A

ð1þ �Þ2�A0
; (A8)

reaches its maximal value of �A;ideal=�A0 if the variance of

the reconstruction power spectrum is only due to matter

cosmic variance, � ¼ ðNð0Þ
L þ Nð1Þ

L Þ=C��
L ! 0; and it falls

monotonically with increasing �, tending to zero as � ! 1
(when CMB cosmic variance dominates the reconstruction
uncertainty). This is expected since we assume matter and
CMB fluctuations to be independent. More generally, �A is
determined by the number of high S=N modes in the
reconstruction, but �A0 depends not only on the number
of CMB modes but also the fractional size of the power
spectrum corrections from lensing relative to the total

spectrum, C
~T ~T
l;expt. The result is that both factors

�A;ideal=�A and �A;ideal=�A0 in Eq. (A8) are less than 1,

diluting the amplitude correlation.
For our Planck-like parameters, the power spectrum

corrections from lensing are only ever a few percent of
the total spectrum, and so cosmic variance of the CMB
limits �A0 � 0:04. Statistical noise in the lens reconstruc-
tion limits �A � 0:025. It is clear from Fig. 1 that a
constant � is not a good approximation for lens reconstruc-
tion, but we can crudely limit � * 2, in which case we
expect the amplitude correlation to be less than
ð0:025=0:04Þ=32 � 0:06, which is close to the value plotted
in Fig. 8.
To summarize, the correlation of the lensing amplitudes

due to the cosmic variance of the lenses is generally small
since there are a limited number of modes of C�� that
influence the acoustic part of the temperature power spec-
trum (so the covariance for an ideal reconstruction scales
inversely as the number of reconstruction modes), and the
small covariance [less than Oð10�4Þ] is diluted by cosmic
variance of the CMB (and noise), which dominates the

error on Â0 and contributes significantly to the error on Â.
We emphasize that these conclusions assume that the
temperature power spectrum at multipoles l * 3000,
where the lensing-induced power from small-scale lenses
dominates the unlensed power, does not influence the
amplitude estimate (i.e., the spectrum is limited by noise
or foregrounds there).

APPENDIX B: OPTIMALTRISPECTRUM
ESTIMATION AND Nð0Þ SUBTRACTION

In this appendix we show that the lensing power spec-
trum estimator advocated in Sec. II, which includes a data-

dependent Nð0Þ subtraction to remove the (disconnected)
Gaussian bias, follows naturally from optimal trispectrum
estimation (e.g., Ref. [34]). Moreover, we show that in the
Gaussian limit, this estimator is uncorrelated with any
quadratic estimate of the temperature power spectrum,
generalizing the result established in Sec. VA 4.
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We start by considering the Gram-Charlier expansion for
the probability density function (PDF) of a weakly non-
Gaussian, zero-mean temperature field T.17 Writing the
field in an arbitrary basis (e.g., a pixelized map or multi-
pole coefficients) as Ti, with covariance hTiTji ¼ Cij, the

expansion truncated at the trispectrum level can be written
in the form [34]

PðTÞ ¼ e�TiC
�1
ij Tj=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

detð2�CÞp �
1þ 1

24
hTiTjTkTlicð �Ti

�Tj
�Tk

�Tl

� ½C�1
ij

�Tk
�Tl þ C�1

kl
�Ti
�Tj � C�1

ij C�1
kl �

� ½C�1
ik

�Tj
�Tl þ C�1

jl
�Ti
�Tk � C�1

ik C�1
jl �

� ½C�1
il

�Tj
�Tk þ C�1

jk
�Ti
�Tl � C�1

jk C
�1
il � Þ

�
: (B1)

Here, �Ti � C�1
ij Tj is the field filtered by the inverse co-

variance, and summation over repeated indices is implicit.
Note that h �Ti

�Tji ¼ C�1
ij . We have ignored bispectrum con-

tributions (due to the lensing-ISW correlation), which is a
good approximation on intermediate and small scales.
Using Wick’s theorem, it is straightforward to show from
Eq. (B1) that the mean and bispectrum of T vanish, while
the covariance is Cij, and the trispectrum is hTiTjTkTlic, as
intended. That the covariance is Cij implies that the data

combination associated with the trispectrum term in
Eq. (B1) is orthogonal to any quadratic function of T
with respect to the Gaussian weight function. In other
words, if T were Gaussian, this data combination is
uncorrelated with any quadratic function of T.

We can form an estimator for C��
L by maximizing

the PDF with respect to C��
L . In practice, we can approxi-

mate this by one step of a Newton–Raphson scheme start-

ing at C��
L ¼ 0. The estimator is then proportional to

@ lnPðTÞ=@C��
L evaluated at C��

L ¼ 0. The lensing power
spectrum enters the PDF explicitly through the connected

4-point function and also implicitly through the lensed ~CTT
l

in the covariance Cij. The contribution to the C
��
L estimate

from the 4-point function is of the form

Ĉ��
L � @

@C��
L

hTiTjTkTlicð �Ti
�Tj
�Tk

�Tl

� ½C�1
ij

�Tk
�Tl þ C�1

kl
�Ti
�Tj � C�1

ij C�1
kl �

� ½C�1
ik

�Tj
�Tl þ C�1

jl
�Ti
�Tk � C�1

ik C�1
jl �

� ½C�1
il

�Tj
�Tk þ C�1

jk
�Ti
�Tl � C�1

jk C
�1
il �Þ: (B2)

The terms involving the data in this equation are symmetric
under permutations, and so we need to retain only primary
couplings of the trispectrum, i.e., the first term in Eq. (13).

The primary coupling has the form

@

@C��
L

hTiTjTkTliprimary
c / X

M

ð�1ÞMXij
LMX

kl
L�M; (B3)

where, in multipole space,

Xl1m1l2m2

LM ¼ ~fl1Ll2
l1 l2 L

m1 m2 M

 !
: (B4)

The power spectrum estimator in Eq. (B2) generalizes
that introduced in Sec. II. It reduces to the simple
form given there for an isotropic survey. To see this, note

that for an isotropic survey, �Tl1m1
¼ T�

l1m1
=C

~T ~T
l1;expt

, and

Xl1m1l2m2

LM
�Tl1m1

�Tl2m2
is proportional to the estimator �̂LM

for the lensing potential in Eq. (9). The first set of
data-dependent terms in Eq. (B2) can be rewritten as

�Ti
�Tj
�Tk

�Tl � ½C�1
ij

�Tk
�Tl þ C�1

kl
�Ti
�Tj � C�1

ij C�1
kl �

¼ ð �Ti
�Tj � h �Ti

�TjiÞð �Tk
�Tl � h �Tk

�TliÞ: (B5)

Each factor on the right combines with an XLM to give an

unnormalized �̂LM � h�̂LMi. The ‘‘mean-field’’ term

h�̂LMi vanishes (except for L ¼ 0) for a full-sky survey
with homogeneous noise. More generally, in the presence
of beam asymmetry, realistic noise, and masking, it can
require careful subtraction on large scales (see, e.g.,
Refs. [13,33,46]). The sum of the remaining terms in
Eq. (B2) has an expectation value that, for an isotropic

survey, is simply �Nð0Þ
L [see Eq. (16)]. However, rather

than removing the Gaussian (disconnected) bias from Ĉ��
L

with the data-independent Nð0Þ
L , the optimal trispectrum

estimator debiases with additional data-dependent terms

that are equivalent to the N̂ð0Þ
L of Eq. (17). For example,X

M

ð�1ÞMXij
LMX

kl
L�MC

�1
ik

�Tj
�Tl

¼ 4
X
M

ð�1Þm1þM~gl1l2ðLÞ~gl1l4ðLÞ
l1 l2 L

m1 m2 M

 !

� l1 l4 L

�m1 m4 �M

 !
C

~T ~T
l1;expt

T�
l2m2

T�
l4m4

¼ 4
X
l1l2

~g2l1l2ðLÞC
~T ~T
l1;expt

�
1

2l2 þ 1

X
m2

Tl2m2
T�
l2m2

�

¼ 4
X
l1l2

~g2l1l2ðLÞC
~T ~T
l1;expt

Ĉ
~T ~T
l2;expt

; (B6)

where summation over ðl1; m1Þ, ðl2; m2Þ, and ðl4; m4Þ is
implicit in the first line.
We showed in Sec. VA4 that, for an isotropic survey, the

data-dependent Nð0Þ subtraction removes the disconnected

covariance between Ĉ�̂�̂
L and the empirical power spectrum

of the measured temperature anisotropies, Ĉ
~T ~T
l;expt.

For the power spectrum estimator in Eq. (B2), this result

17In this appendix, to avoid undue clutter in our expressions, we
shall suppress the tildes that are used to denote the lensed
temperature in the body of this paper.
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generalizes to anisotropic surveys and also to arbitrary
quadratic power spectrum estimates of the temperature
anisotropies. The latter are often estimated with combina-
tions of cross-spectra, each of which are quadratic forms

constructed from maps Tð1Þ and Tð2Þ for which the noise is
independent. Each cross-spectrum therefore involves terms

like Tð1Þ
p Tð2Þ

q , where p and q are pixel (or multipole) indices,

and the fields Tð1Þ and Tð2Þ are correlated with the field that
enters the lensing power spectrum estimate at least through
the common temperature anisotropies. By using Wick’s
theorem, it is straightforward to show that the complete
set of data-dependent terms in Eq. (B2) has vanishing

covariance with Tð1Þ
p Tð2Þ

q in the Gaussian limit.

APPENDIX C: N̂ð0Þ SUBTRACTION AS EFFICIENT
MITIGATION OF CHANCE ALIGNMENTS

In this appendix we provide further details to understand

why the empirical N̂ð0Þ bias subtraction cancels not only
the nondiagonal reconstruction power autocovariance but
also the noise contribution to the temperature-lensing
power cross-covariance. After identifying chance-aligned
terms in the empirical reconstruction power spectrum in
Eq. (C2) below (see also Ref. [47]), we will show that
avoiding these terms naturally cancels the noise contribu-
tion to the auto- and cross-covariance. We then show that

empirical N̂ð0Þ subtraction achieves the same but in a faster
way (due to the specific multipole couplings that are
relevant for the covariances).

Given a CMB realization ~Tlm, we split the empirical
reconstruction power spectrum into two contributions,

Ĉ�̂�̂
L ¼ A2

L

2Lþ 1

X
l1���l4M

ð�1ÞM l1 l2 L

m1 m2 �M

 !

� l3 l4 L

m3 m4 M

 !
~gl1l2ðLÞ~gl3l4ðLÞ ~Tl1

~Tl2
~Tl3

~Tl4

¼ Ĉ�̂�̂
L;noise þ Ĉ�̂�̂

L;rest; (C1)

where the noise term contains the part of the sum over li
where CMB multipoles are chance-aligned,18

Ĉ�̂�̂
L;noise ¼

2A2
L

2Lþ 1

X
l1l2m3m4M

ð�1ÞM

� l1 l2 L

m1 m2 �M

 !
l1 l2 L

m3 m4 M

 !

� ~g2l1l2ðLÞsl1l2 ~Tl1m1
~Tl2m2

~Tl1m3
~Tl2m4

; (C2)

taking only half of the terms for l1 ¼ l2 by defining
sl1l2 ¼ 1� �l1l2=2. The expectation values are as desired,

at subpercent-level accuracy19,

hĈ�̂�̂
L;noisei � Nð0Þ

L ; hĈ�̂�̂
L;resti � C��

L þ Nð1Þ
L : (C7)

To assess the covariance properties of the noise-corrected

reconstruction power spectrum Ĉ�̂�̂ � Ĉ�̂�̂
noise, note that the

Oð�0Þ noise contribution (35) to the temperature-lensing
power cross-covariance is sourced by contractions

which imply l1 ¼ l3 and l2 ¼ l4. Since all terms with
coinciding multipoles of this form are contained in
the noise term (C2), this covariance is cancelled if

Ĉ�̂�̂ � Ĉ�̂�̂
noise is used instead of Ĉ

�̂�̂. To see this explicitly,

note that

19The disconnected part is hĈ�̂�̂
L;noiseidisconn ¼ Nð0Þ

L . Using
Eq. (14) and simplifying the product of a 3j- and a 6j-symbol
[48], we have

hĈ�̂�̂
L;noiseiconn ¼

2A2
L

ð2Lþ1Þ2
X
l1l2

sl1l2 ~g
2
l1l2

ðLÞ~f2l1Ll2C��
L þ A2

L

16ð2Lþ1Þ

� X
m0l1l2L0

ð�1Þm0
C��
L0

sl1l2
ðC ~T ~T

l1 ;expt
C

~T ~T
l2 ;expt

Þ2

�½ð~fðuÞl1Ll2
Þ2 ~fðuÞ

l1L
0l2
~f
no3j
l1L

0l2
Gl1Ll2

0�m0m0G
l1Ll2
�m0m00G

l1L
0l2

m00�m0

þ ~f
no3j
l1Ll2

~fðuÞl1Ll2
~fðuÞ
l1L

0l1
~fðuÞ
l2L

0l2
Gl1Ll2

�m00m0G
l1L

0l1
0�m0m0G

l2L
0l2

�m0m00�;
(C3)

where we defined the Gaunt coefficients, ~fðuÞ with unsymmetric
terms and ~fno3j with no 3j-symbols, by

Gl1l2l3
m1m2m3

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2l1 þ 1Þð2l2 þ 1Þð2l3 þ 1Þ

4�

s

� l1 l2 l3

0 0 0

 !
l1 l2 l3

m1 m2 m3

 !
; (C4)

~fðuÞl1Ll2
� ½LðLþ 1Þ � l1ðl1 þ 1Þ þ l2ðl2 þ 1Þ�C ~T ~T

l2
þ ðl1 $ l2Þ;

~fno3jl1Ll2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2l1 þ 1Þð2Lþ 1Þð2l2 þ 1Þ

16�

s
~fðuÞl1Ll2

: (C5)

We find that Eq. (C3) is smaller than C��
L þ Nð1Þ

L by a
factor of more than 400 for any L, so that [with Eq. (15), qL &
0:002]

hĈ�̂�̂
L;noisei ¼ Nð0Þ

L þ qLðC��
L þ Nð1Þ

L Þ;
hĈ�̂�̂

L;resti ¼ ð1� qLÞðC��
L þ Nð1Þ

L Þ:
(C6)

18It may be possible to modify the specific splitting of Eq. (C1)
chosen here without significantly changing the conclusions
below (e.g., by coupling m3 and m4 to m1 and m2). Our choice
allows for a relatively simple analytical assessment of the mean
and covariance properties and is sufficiently accurate for the
discussion here.
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covðĈ�̂�̂
L;noise; Ĉ

~T ~T
L0;exptÞdisconn ¼ covðĈ�̂�̂

L ; Ĉ
~T ~T
L0;exptÞdisconn:

(C9)

The dominant nondiagonal contribution of Eq. (28) to the
autocovariance of the uncorrected reconstruction power

Ĉ�̂�̂ is due to couplings (see Eq. (46c) in Ref. [26])

which implies l1 ¼ l3 and l6 ¼ l8. Writing out the
contractions following Ref. [26] and summing over m1

and M in Eq. (42) of Ref. [26] enforces l2 ¼ l4, and
therefore also l5 ¼ l7. Since all terms of the reconstruction
power (C1) with these coinciding multipoles are in the

noise term (C2), the autocovariance of Ĉ�̂�̂ � Ĉ�̂�̂
noise does

not contain the nondiagonal contribution (28). In contrast,
the covariance contributions that involve a product of
two trispectra and lead to the dominant diagonal variance
(29) [26] are still present, so that

covðĈ�̂�̂
L � Ĉ�̂�̂

L;noise; Ĉ
�̂�̂
L0 � Ĉ�̂�̂

L0;noiseÞ

� �LL0
2

2Lþ 1
hC�̂�̂

L i2: (C11)

Thus, the chance-aligned noise terms (C2), which lead

to the Nð0Þ bias, are responsible for both the dominant
nondiagonal reconstruction power autocovariance (28)
and the noise contribution (35) to the temperature-lensing
power cross-covariance. It is therefore desirable to avoid
these noise terms. In practice, a brute-force way to achieve

this would be to subtract Ĉ�̂�̂
noise from Ĉ�̂�̂ directly or,

equivalently, to restrict the summation over the li in
Eq. (C1) appropriately. A more efficient method is ob-
tained from a ‘‘partial-averaging’’ procedure, which will

turn out to be equivalent to the empirical N̂ð0Þ subtraction.20

Guided by the fact that both covariances (28) and (25) are
due to disconnected terms containing the contraction

[see Eqs. (C8) and (C10)], we take the corresponding
expectation value already at the level of evaluating
Eq. (C2), before computing covariances, by defining the
partial averaging operation, R, by

R½ ~Tl1
~Tl2

~Tl3
~Tl4

� � h ~Tl1
~Tl2

i ~Tl3
~Tl4

þ 5 perms; (C13)

i.e., we average out two of the four modes while keeping
the unaveraged realization of the other two modes. This

leaves contractions of the form (C8) in the disconnected
(4þ 2)-point function and contractions of the form (C10)
in the disconnected (4þ 4)-point function invariant in the
sense that

hR½ ~Tl1
~Tl2

~Tl3
~Tl4

� ~TL0M0 ~TL0;�M0 iðC8Þ terms
disconn

¼ h ~Tl1
~Tl2

~Tl3
~Tl4

~TL0M0 ~TL0;�M0 iðC8Þ terms
disconn (C14)

and

hR½ ~Tl1
� � � ~Tl4

�R½ ~Tl5
� � � ~Tl8

�iðC10Þ terms
disconn

¼ hR½ ~Tl1
� � � ~Tl4

�ð ~Tl5
� � � ~Tl8

ÞiðC10Þ terms
disconn

¼ h ~Tl1
� � � ~Tl8

iðC10Þ terms
disconn : (C15)

Therefore, both covariance contributions (28) and (35)
are still eliminated if instead of subtracting the full
noise term (C2) from the reconstruction power we subtract
the partial average of this noise term, i.e., if we consider
(up to realization-independent bias mitigation terms)

Ĉ�̂�̂
L �R½Ĉ�̂�̂

L;noise�. We find that this partially averaged

noise mitigation reduces to the empirical N̂ð0Þ subtraction,

R½Ĉ�̂�̂
L;noise� ¼ 2N̂ð0Þ

L : (C16)

Thus, the empirical N̂ð0Þ subtraction can be interpreted as an
efficient method to mitigate disconnected (auto- and cross-)
covariance contributions generated by the chance-aligned
noise terms (C2) in the reconstruction power spectrum. In

contrast to the noise terms (C2), the empirical N̂ð0Þ defined in
Eq. (17) can be evaluated very efficiently because the empiri-
cal temperature power spectrum is isolated in the sum.

APPENDIX D: TEMPERATURE-LENSING POWER
COVARIANCE FROM THE CMB TRISPECTRUM

We will show here that contributions from the lensed
CMB trispectrum to the temperature-lensing power
covariance have a subdominant effect on parameter
estimation compared to the fully disconnected Oð�0Þ
contribution and the Oð�4Þ contribution from the con-
nected 6-point function. The connected 4-point func-
tion contributes to Eq. (33) with couplings of the form
h ~T1

~T3ih ~T2
~T4

~TL0M0 ~TL0;�M0 ic (‘‘type A’’) and h ~T1
~TL0M0 i �

h ~T2
~T3

~T4
~TL0;�M0 ic (‘‘type B’’). Other couplings either

cancel in Eq. (33) or vanish because h�̂LMi ¼ 0. The
contribution from type A can be expressed nonperturba-
tively in terms of the derivative in Eq. (31) and the
connected 4-point contribution to the temperature power
autocovariance as

covðĈ�̂�̂
L ; Ĉ

~T ~T
L0;exptÞconn 4 pt A

¼ X
l2

@ð2N̂ð0Þ
L Þ

@Ĉ
~T ~T
l2;expt

covðĈ ~T ~T
l2;expt

; Ĉ
~T ~T
L0;exptÞconn 4 pt: (D1)

Perturbatively, up to Oð�4Þ, we have

20An alternative would be ‘‘phase randomization’’ following
Ref. [10]. Alternatively, one could split ~Tlm into in- and out-
annuli [47], which, however, reduces the signal-to-noise [12].
Note that while the goal of Ref. [47] was to avoid the Gaussian
Nð0Þ noise bias for any CMB realization, our goal is to simplify
the reconstruction power auto- and cross-covariance.
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covðĈ�̂�̂
L ; Ĉ

~T ~T
L0;exptÞconn 4 pt A

¼ X
l2

@ð2N̂ð0Þ
L Þ

@Ĉ
~T ~T
l2;expt

½covðĈ ~T ~T
l2;expt

; Ĉ
~T ~T
L0;exptÞjOð�2Þ

þ covðĈ ~T ~T
l2;expt

; Ĉ
~T ~T
L0;exptÞjOð�4Þ�; (D2)

where the perturbative temperature covariances are given
by Eq. (24). The covariance (D2) can be interpreted as the
correction to the noise contribution of Eq. (36) due to the
nondiagonal Oð�2Þ and Oð�4Þ parts of the temperature
power autocovariance (24). The correlation corresponding
to Eq. (D2) is at most 5� 10�5, which is 2 orders of
magnitude smaller than the dominant noise contribution.
The induced correlation of the lensing amplitude estimates

Â and Â0 is less than 0.15% (see Fig. 8); i.e., the effect of
(D2) is negligible.

The type-A contribution to the covariance is removed by

the empirical N̂ð0Þ correction introduced in Sec. II. As for
the disconnected contribution to the covariance (see
Appendix B), this is actually a more general result that
applies for anisotropic surveys and for an arbitrary qua-
dratic estimate of the temperature power spectrum. To see

this, we generalize to the Ĉ��
L estimator of Eq. (B2) and to

quadratic temperature power spectrum estimates of the

form Tð1Þ
p Tð2Þ

q . The part of the Ĉ��
L estimator that is quartic

in the data has a type-A, 4-point covariance with Tð1Þ
p Tð2Þ

q

given by

covð �Ti
�Tj
�Tk

�Tl; T
ð1Þ
p Tð2Þ

q Þconn 4 pt A
¼ h �Ti

�TjT
ð1Þ
p Tð2Þ

q ich �Tk
�Tli þ 5 terms; (D3)

where the other five terms are inequivalent permuta-

tions of i, j, k, and l. The part of the Ĉ��
L estimator that

is quadratic in the data is composed of six terms
of the form �h �Ti

�Tji �Tk
�Tl. The contribution from the con-

nected 4-point function to the covariance of these terms

with Tð1Þ
p Tð2Þ

q exactly cancels with the terms of the right-
hand side of Eq. (D3), removing the type-A covariance.
Terms of coupling type B have contributions from the

primary trispectrum term, where sums over mi simplify
due to orthogonality relations of 3j symbols, and from
nonprimary trispectrum terms, where sums over mi lead
to a nontrivial 6j symbol:

covðĈ�̂�̂
L ; Ĉ

~T ~T
L0;exptÞconn 4 pt Bprimary

¼ 2
C��
L

AL

@ð2N̂ð0Þ
L Þ

@Ĉ
~T ~T
L0;expt

2

2L0 þ 1
ðC ~T ~T

L0;exptÞ2

¼ 2
C��
L

AL

covðĈ�̂�̂
L ; Ĉ

~T ~T
L0;exptÞdisconn; (D4)

covðĈ�̂�̂
L ; Ĉ

~T ~T
L0;exptÞconn 4 pt Bnon-primary ¼

X
m0L00
l2l3l4

A2
Lð�1Þm0

C��
L00 ~f

no3j
L0Ll2

~fðuÞl3Ll4
~fðuÞ
L0L00l3

~fðuÞ
l2L

00l4
Gl3Ll4

�m00m0G
L0L00l3
0�m0m0G

l2L
00l4

0m0�m0

4ð2Lþ 1Þð2L0 þ 1ÞC ~T ~T
l2;expt

C
~T ~T
l3;expt

C
~T ~T
l4;expt

þ ðl3 $ l4Þ: (D5)

Here we used Eq. (14) and expressed the product of a 6j
symbol with a 3j symbol as a sum over a product of three
3j symbols [48]. The ~f factors are defined in Appendix C.
Neither contributions in Eqs. (D4) and (D5) is cancelled by
empirical N̂ð0Þ subtraction.

The correlation of unbinned power spectra from the pri-
mary term of Eq. (D4) is shown in Fig. 13. It is at most 0.08%,

which is almost a factor of two larger than the maximum of

the matter cosmic variance contribution [Eq. (E8)] shown in

Fig. 5(a). The structure is very similar to that of the discon-

nected (noise) contribution [Eq. (35)] shown in Fig. 4(a), but

with the additional signal-to-noise factor ofC��
L =AL that falls

off rapidly for L > 200. (Recall AL ¼ Nð0Þ
L for our choice of

optimal weights.) Therefore, the contribution of the primary

type-B covariance to correlations between the lensing ampli-

tudes Â and Â0 is suppressed compared to that of the discon-

nected noise contribution, reaching at most 2% (see Fig. 8). It

is also suppressed compared to the matter cosmic variance

contribution because Â0 gives most weight to CMBmodes at

the acoustic peaks and troughs where the primary type-B
power correlation is small.

While the measured correlation of Â and Â0 is consistent
with our theoretical expectations, the measurements are

too noisy to test subdominant terms such as that in

Eq. (D4). In Fig. 4(c), the lowest L� pixels show hints of

the structure plotted in Fig. 13, but the measurements are,

again, too noisy to provide a conclusive test of Eq. (D4).

The simulations do, however, imply that there cannot be

significantly larger covariance contributions than the ones

we model analytically.
Although the summation in the expression (D5) for the

nonprimary type-B terms is restricted by triangle inequal-
ities, its evaluation is still numerically challenging. We
could only evaluate Eq. (D5) for 30 ðL; L0Þ pairs at L &
400, which is relevant for the current Planck lensing like-
lihood [13]. At these points the power correlation from
Eq. (D5) is at most around 4� 10�5, which is 1 order of
magnitude smaller than the maximum correlation from the
primary term [Eq. (D4)]. The structure of the correlation
matrix seems similar to that of the primary term in the LT

direction but seems to peak toward higher L� (but we

cannot assess the structure reliably from the small number
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of evaluation points). Moreover, given that our simulations
do not show any significant excess covariance, we expect
the nonprimary term of Eq. (D5) to be negligible.

APPENDIX E: TEMPERATURE-LENSING POWER
COVARIANCE FROM THE CONNECTED

CMB 6-POINT FUNCTION

TheOð�2Þ contribution to the connected part of the lensed
temperature 6-point function vanishes [43]. Here we will
compute the Oð�4Þ terms. There are five types of terms,
which involve �4T, �3T�T, �2T�2T, �2T�T�T, or
�T�T�T�T with the appropriate number of factors of the
unlensedCMB.Only the last two types of terms contribute to
the connected 6-point function; the remaining terms contrib-
ute to the full 6-point function but are cancelled when the
connected 4-point and fully disconnected parts are removed.
Writing out only the two relevant types of terms, the full

6-point function at Oð�4Þ is ( ~Ti � ~Tlimi
)

h ~T1
~T2

~T3
~T4

~T5
~T6ið4Þ ¼ 1

12
½h�2T1�T2�T3T4T5T6i þ all perms� þ 1

48
½h�T1�T2�T3�T4T5T6i þ all perms�: (E1)

From this we must subtract the following terms involving the connected 4-point function,

1

48
½h ~T1

~T2
~T3

~T4ich ~T5
~T6i þ all perms�

¼ 1

48
½6h�T1�T2T3T4ih�T5�T6i þ 12h�T1�T2T3T4ih�2T5T6i þ 12h�2T1�T2�T3T4ihT5T6i

þ h�T1�T2�T3�T4ihT5T6i � ð9h�T1�T2i þ 24h�2T1T2iÞh�T3�T4ihT5T6i þ all perms� þ � � � ; (E2)

and the fully disconnected part,

h ~T1
~T2

~T3
~T4

~T5
~T6ið4Þdisc ¼

1

2
½h�2T1�T2ih�T3T4ihT5T6i þ all perms� þ 1

4
½h�2T1T2ih�T3�T4ihT5T6i þ all perms�

þ 1

2
½h�2T1T2ih�T3T4ih�T5T6i þ all perms� þ 1

16
½h�T1�T2ih�T3�T4ihT5T6i þ all perms�

þ 1

4
½h�T1�T2ih�T3T4ih�T5T6i þ all perms� þ � � � : (E3)

To evaluate these expressions, we use, for example,

h�T1�T2T3T4i ¼ h�T1�T2ihT3T4i þ hh�T1T3iCMBh�T2T4iCMBiLSS þ hh�T1T4iCMBh�T2T3iCMBiLSS; (E4)

where hiCMB denotes averaging over unlensed CMB realizations and hiLSS denotes averaging over realizations of the
lensing potential �. Rewriting the other 4- and 6-point functions in a similar way gives the following final expression for
the connected 6-point function:

h ~T1
~T2

~T3
~T4

~T5
~T6ið4Þc ¼ 1

2
covLSSðh�2T1T2iCMB; h�T3T4iCMBh�T5T6iCMBÞ þ all perms

þ 1

4
covLSSðh�T1�T2iCMB; h�T3T4iCMBh�T5T6iCMBÞ þ all perms

¼ 1

16
covLSSðh ~T1

~T2ið2ÞCMB; h ~T3
~T4ið1ÞCMBh ~T5

~T6ið1ÞCMBÞ þ all perms: (E5)

The result is written in terms of the covariance over different realizations of the lensing potential, covLSSðX; YÞ �
hXYiLSS � hXiLSShYiLSS.
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FIG. 13 (color online). Theoretical contribution from the pri-
mary type-B connected 4-point function to the correlation of the
unbinned power spectra of the lens reconstruction and the
(lensed) temperature power spectrum. The covariance (D4) is
converted to a correlation using the same conversion factor as in
Eq. (37). Correlations for L� > 1000 are too small to be visible

in this plot.
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We expect only a few of the 720 permutations in
Eq. (E5) to be relevant for the lensing-temperature power
covariance [Eq. (33)]. The weights ~g in Eq. (33) impose
triangle conditions on l1, l2, L and l3, l4, L, which constrain
the summation volume (especially at low L where the
lensing power dominates). Terms that couple, e.g.,
h ~T1

~T3iCMB impose an additional triangle constraint on l1,
l3, and a lensing multipole ~L, which reduces the summation

volume further. This is not the case for couplings of the
type h ~T1

~T2iCMB and h ~T3
~T4iCMB. For this reason we expect

the dominant terms to come from the couplings 12, 34, and
ðL0;M0;L0;�M0Þ in Eq. (33), i.e., terms which factor most
under the weights [26]. The dominant contribution of the
connected 6-point function at Oð�4Þ to the lensing-
temperature power covariance is therefore expected to
come from

ð�1ÞM0 h ~T1
~T2

~T3
~T4

~TL0M0 ~TL0;�M0 ið4Þc;dom

¼ covLSSðh ~TL0M0 ~T�
L0M0 ið2ÞCMB; h ~T1

~T2ið1ÞCMBh ~T3
~T4ið1ÞCMBÞ þ 2covLSSðh ~T1

~T2ið2ÞCMB; h ~TL0M0 ~T�
L0M0 ið1ÞCMBh ~T3

~T4ið1ÞCMBÞ: (E6)

Here, we have used the result that permutations of the form
1 $ 2, 3 $ 4, ð12Þ $ ð34Þ and ðL0;M0Þ $ ðL0;�M0Þ all
lead to the same contribution to Eq. (33).

The h ~T1
~T2ið1ÞCMB term on the right of Eq. (E6) evaluates to

h ~T1
~T2ið1ÞCMB ¼ X

L1M1

ð�1ÞM1
l1 l2 L1

m1 m2 �M1

 !
fl1L1l2�L1M1

;

(E7)

which combines with the weights, normalization, and one
of the 3j symbols in Eq. (33) to give �LM þOð�2Þ.
Similarly, the h ~T3

~T4ið1ÞCMB term returns �L;�M.

Equation (E7) also shows that the second term on the right
of Eq. (E6) does not contribute to the power covariance

since h ~TL0M0 ~T�
L0M0 ið1ÞCMB returns the monopole of � on

summing over M0.
Putting these pieces together, and using Eq. (44), finally

gives

covðĈ�̂�̂
L ; Ĉ

~T ~T
L0 Þh ~T1��� ~T6ið4Þc;dom

¼ X
L00

@C
~T ~T
L0

@C��
L00

covLSSðĈ��
L00 ; Ĉ

��
L Þ þOð�5Þ

¼ 2

2Lþ 1
ðC��

L Þ2 @C
~T ~T
L0

@C��
L

þOð�5Þ: (E8)

APPENDIX F: EFFECT OF CT�

In this appendix we discuss the contribution of the ISW-
induced large-scale CT� correlation on the temperature-
lensing power covariance. We first compute corrections
due to the ISW-lensing bispectrum and then the ones due
to corrections of the lensed temperature power spectrum.

The lensed temperature 6-point function in the
temperature-lensing power covariance of Eq. (33) involves
the following 3-point terms,

h ~Tl1
~Tl2

~Tl3
~Tl4

~TL0M0 ~TL0�M0 ij3-pt;CT�

¼ h ~Tl1
~Tl2

~Tl3
iISWh ~Tl4

~TL0M0 ~TL0�M0 iISW þ 9 perms; (F1)

where the nonperturbative ISW-lensing bispectrum is
approximately given by [30,49]

h ~Tl1
~Tl2

~Tl3
iISW ¼ l1 l2 l3

m1 m2 m3

 !

BISW
l1l2l3

¼ l1 l2 l3

m1 m2 m3

 !
CT�
l1

~fl2l1l3 þ 2 perms:

(F2)

While the contribution to Eq. (33) from the coupling
ð123Þð4L0L0Þ, which is written out explicitly in Eq. (F1),
vanishes on summing over M0, the couplings of type
ð12L0Þð34L0Þ yield the diagonal covariance contribution21

covðĈ�̂�̂
L ; Ĉ

~T ~T
L0;exptÞjð12L

0Þ;ð34L0Þ
3-pt;CT�

¼ �LL0
2A2

L

ð2Lþ 1Þ3
�X
l1l2

~gl1l2ðLÞBISW
l1l2L

�
2

� �LL0
2

2Lþ 1
ðCT�

L Þ2: (F3)

The approximation on the right is simply the covariance
between the power spectra of the input lensing potential
and the lensed temperature, an intuitive result that we
might have anticipated. For our Planck-like parameters,
the corresponding power correlation is always less than
5% and rapidly decreases with increasing multipoles,
being less than 0.1% for L 
 60 (see Fig. 14). The
induced correlation of the lensing amplitudes A and A0
is less than 10�5 and therefore negligible. This small
correlation arises because most of the information on the
lensing amplitude from the temperature power spectrum

21To obtain the approximate result, in the last step we use
Eq. (10) and neglect all terms depending on CT�

l1
or CT�

l2
because

they enforce l1 or l2 to be small, which reduces the remaining
summation volume due to the triangle condition on l1, l2, and L.
We find that using the approximation instead of the full expres-
sion leads a temperature-lensing correlation which is wrong by at
most 3� 10�6 for L � 300.
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comes from small scales. The power correlation due to
the ISW-lensing effect is small on these scales, and,
additionally, there is limited information in the lensing
reconstruction on such scales as the signal-to-noise is

very low there. We expect that couplings of the type
ð13L0Þð24L0Þ in Eq. (F1), which do not factor under
the weights, are further suppressed as they limit the
summation volume.
The ISW-induced change in the lensed temperature

power spectrum,

�C
~T ~T
L ¼ C

~T ~T
L � C

~T ~T
L jCT�¼0 ¼

1

2Lþ 1

X
L1;L2

F2
LL1L2

CT�
L1

CT�
L2

;

(F4)

leads to a correction of the disconnected noise contribution
[Eq. (35)] to the temperature-lensing power covariance,
which is also second order in CT�. The correction has a
similar structure to the noise contribution itself (shown in
Fig. 4(a)), but it is around 106 times smaller and induces a
lensing amplitude correlation of Oð10�9Þ that is totally
negligible.
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Soc. 400, 2169 (2009).
[47] B. D. Sherwin and S. Das, arXiv:1011.4510.

[48] NIST Digital Library of Mathematical Functions, Release
1.0.5 of 2012-10-01, online companion to [50], http://
dlmf.nist.gov/.

[49] D. Hanson, K.M. Smith, A. Challinor, and M. Liguori,
Phys. Rev. D 80, 083004 (2009).

[50] NIST Handbook of Mathematical Functions, edited by
F.W. J. Olver, D.W. Lozier, R. F. Boisvert, and C.W.
Clark (Cambridge University Press, Cambridge,
England, 2010), print companion to Ref. [48].

JOINT ANALYSIS OF CMB TEMPERATURE AND . . . PHYSICAL REVIEW D 88, 063012 (2013)

063012-31

http://dx.doi.org/10.1103/PhysRevD.71.103010
http://dx.doi.org/10.1103/PhysRevD.66.083007
http://dx.doi.org/10.1103/PhysRevD.66.083007
http://dx.doi.org/10.1103/PhysRevD.85.043016
http://dx.doi.org/10.1111/j.1365-2966.2009.15614.x
http://dx.doi.org/10.1111/j.1365-2966.2009.15614.x
http://arXiv.org/abs/1011.4510
http://dlmf.nist.gov/
http://dlmf.nist.gov/
http://dx.doi.org/10.1103/PhysRevD.80.083004

