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We obtain analytical gravitational waveforms in the frequency domain for precessing, quasicircular

compact binaries with small spins, applicable, for example, to binary neutron star inspirals. We begin by

calculating an analytic solution to the precession equations, obtained by expanding in the dimensionless

spin parameters and using multiple-scale analysis to separate time scales. We proceed by analytically

computing the Fourier transform of time-domain waveform through the stationary phase approximation.

We show that the latter is valid for systems with small spins. Finally, we show that these waveforms have a

high overlap with numerical waveforms obtained through direct integration of the precession equations

and discrete Fourier transformations. The resulting, analytic waveform family is ideal for detection and

parameter estimation of gravitational waves emitted by inspiraling binary neutron stars with ground-based

detectors.
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I. INTRODUCTION

Gravitational waves (GWs) are expected to be detected
soon by advanced ground-based interferometric GW de-
tectors, such as Advanced LIGO [1,2] and Advanced Virgo
[3,4]. One of the prime candidates for detection are GWs
emitted during the inspiral of neutron star (NS) binaries.
Ground-based detectors will be sensitive to GWs in the
frequency range ð10; 103Þ Hz, which corresponds to the
last 104 orbits prior to merger. Merger itself is expected
to occur at kHz frequencies, where second generation
detectors will not be very sensitive. Therefore, the inspiral
phase is by far the most important one for detection and
parameter estimation of NS binary signals.

The inspiral phase of binary NS coalescences can bewell
modeled with the post-Newtonian (PN) approximation, i.e.
an expansion in powers of v=c, where v is the orbital
velocity and c is the speed of light. NSs will take a long
time to evolve into the sensitive band of ground-based
detectors; by then, they are expected to be old, cold, slowly
spinning, and with orbits that have circularized. Accurate
predictions of the range of eccentricities and spins expected
is currently lacking, but estimates suggest values smaller
than 0.1 in dimensionless units [5]. This is why the model-
ing of NS inspirals has so far been restricted to mostly
quasicircular systems that are nonspinning. Limited studies
of spinning systems have been performed for systems with
spins that are aligned/antialigned with the orbital angular,
where analytic Fourier domain waveforms are available.

The first GW detections are expected to be buried in
detector noise, and thus, detection and parameter estimation
will require accurate waveform templates. In particular, if
NSs are spinning with their spin angular momenta mis-
aligned with the orbital angular momentum, the precession
of the spins and the orbital plane will induce strong devia-
tions from what one would expect in the spin aligned/

antialigned case. This complexity can be leveraged to break
parameter degeneracies present in spin aligned/antialigned
waveforms to better estimate parameters [5–10].
What waveform templates should we then use for de-

tection and parameter estimation to describe NS inspirals?
For detection, recent studies have shown that nonspinning
[11] or spin aligned/antialigned templates [12–15] are
sufficient, provided the NS spin magnitudes are small
enough. These same template families, however, would
be inherently unable to estimate spin parameters, introduc-
ing systematic errors [16]. Numerical waveforms, either
computed from a direct integration of the PN equations
[17,18] or from an integration of Hamilton’s equations
[19–22], would be ideal both for detection and parameter
estimation, but they are very computationally expensive.
Recently, there has been a concerted effort to construct

accurate and computationally inexpensive template fami-
lies for generically precessing, spinning, compact binary
systems. These efforts are hindered by two facts: (i) no one
has yet managed to analytically solve the precession equa-
tions for generic spin configurations, and (ii) the number of
parameters needed to describe a generically precessing
spinning system is very large. In particular, (i) has pre-
vented a well-defined perturbative waveform solution valid
for all spins orientations and magnitudes simultaneously.
Keeping these limitations in mind, one can organize all
template families for binary NS inspirals into the following
categories:
(1) Phenomenological [15,16,23–32]: One introduces

parameters to describe the waveforms emitted
from spinning systems, driven by the requirements
that the waveforms be as computationally efficient
as possible.

(2) Geometrical [33–35]: One computes the waveforms
in a specific frame, chosen such that the precession
modulations are minimized. One then numerically
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calculates how this frame precesses and coordinate
transforms the waveforms to this frame.

Although an excellent first step toward the construction of
accurate and computationally efficient templates, both phe-
nomenological and geometrical templates have serious
drawbacks for modeling NS inspirals. Phenomenological
templates, like the Buonanno-Chen-Vallisneri ones [25,26],
are adept at matching some of the precessional modulations,
but due to their intrinsic phenomenological nature, they are
difficult to systematically extend to higher order in perturba-
tion theory.Moreover, due to their phenomenological nature,
they are not necessarily superior to using simple nonspinning
SPAwaveforms for detection [16,27].Geometrical templates
are very promising, but still require a numerical solution1

for the precession of the frame in which waveforms are
calculated. The use of a numerical solution then forces one
to use discrete Fourier transforms, which become computa-
tionally prohibitive in a Bayesian analysis when the dimen-
sionality of the template space is high.

A third category of waveform families has been
proposed:

(3) Analytical [36–41]: One makes approximations that
correspond to certain physical systems and solves
the precession equations perturbatively.

These waveforms are constructed so that they are purely
analytical, and thus computationally inexpensive, but also
so that they can be systematically improved by carrying out
calculations at higher order in perturbation theory.
Reference [41] implemented such a perturbative frame-
work for compact binaries with spins almost aligned with
the orbital angular momentum, but of arbitrary magnitude.

This paper proposes a new template family that fits in
the analytical class for quasicircular inspiraling compact
binaries, whose spin angular momentum is arbitrarily
oriented, but small relative to their mass. This family is
ideal to efficiently model precessing NS/NS inspirals for
detection and parameter estimation purposes. The wave-
forms are obtained through multiple-scale expansions,
which allow us to accurately solve the precession equations
in the time domain, and the well-known stationary phase
approximation (SPA), which allows us to model the Fourier
transform of the waveform. Such a procedure is a direct
application of the general framework of [41] but for a
different physical system.

The time-domain waveforms are obtained by expanding
the differential equations describing precession in the di-
mensionless spin parameters, which then leads to a sepa-
ration of time scales that is amenable to multiple scale
analysis: the differential system is reexpanded in the ratio
of the precession to the radiation-reaction time scales and
solved order by order, while ensuring that resonances are
not introduced. One thus obtains an analytic solution to the

precession equations for the orbital and spin angular mo-
menta as a bivariate expansion in the dimensionless spin
and the ratio of the precession to the radiation-reaction
time scales. We work here to first order in both expansion
parameters, but the formalism can easily be extended to
higher order. An analytic approximation for the time evo-
lution of the momenta then leads to an analytic time-
domain waveform that accurately models the precession
of the spin and orbital angular momenta.
The resulting, analytic, time-domain waveform contains

pieces of different PN and spin order (see Table I). Clearly,
the zeroth order in spin terms are the dominant contribution
to the waveform, since we are expanding about small di-
mensionless spin. One can think of the nonspinning terms in
the waveform as a ‘‘background solution’’ to which we find
spin perturbations; thus, we will try to model this back-
ground as accurately as possible. In particular, the non-
spinning orbital frequency evolution equation is modeled
to 3.5PN order with mass-ratio corrections and up to 5.5PN
order in the test particle limit.2 We solve this equation to
8PN order, which artificially extends the series beyond its
formal expansion order, so that any differences between our
analytic and numerical frequency evolution are exclusively
due to spin. We also include nonspinning PN corrections to
the time-domain waveform amplitude up to 2.5PN order.
The first order in spin terms in the waveforms are pertur-

bations to the nonspinning waveform background and we
model them by expanding in the ratio of the precession to
the radiation reaction time scale. We model the spin-orbit
precession equations to 2PN order and include first order in
spin terms in the frequency evolution equation up to 4PN
order with mass-ratio corrections. Such precession effects
introduce corrections in thewaveform phase starting at 3PN
order due to a Thomas precession effect.

TABLE I. PN order (relative to the leading-order Newtonian
term) of the various ingredients used in this paper for the spin
precession evolution equations and the radiation reaction evolu-
tion equations. NonS stands for nonspinning, SO for spin-orbit,
SS for spin-spin, and pp for point-particle. The spin precession
equations are solved to linear order in spin, which is why SS-full
and SS-pp are labeled as N=A.

Spin Precession

Eqs. (1)–(3)

Radiation Reaction

Eqs. (4) and (12), App. A

NonS-full N=A 3.5

NonS-pp N=A 5.5

SO-full 2 2.5

SO-pp 2 2.5

SS-full N=A 0

SS-pp N=A 0

1An exception here is Ref. [35], where the restriction to one
spinning body allows for a fully analytical waveform.

2An NPN order term is one that scales with ðv=cÞ2N relative to
the leading-order term, where v is the characteristic orbital
velocity.
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The second order in spin terms are even smaller pertur-
bations to the nonspinning background, which we will not
systematically include in this paper. For example, the spin
precession equations contain spin-spin interactions that we
will ignore when analytically solving for the angular mo-
menta. However, we will keep the second-order in spins
terms in the frequency evolution, since they lead to better
agreement between our analytical results and numerical
solutions (see Sec. II C). This results in the inclusion of a
2PN second-order in the spin term in the waveform phase
that is evaluated assuming the spins are time independent.

Table II summarizes the various equations that are
combined in the full and the restricted PN,3 frequency-
domain waveform together with their PN and spin order.
All PN orders are counted relative to the leading-order
(Newtonian) term of each quantity. The frequency-domain
waveform is obtained by Fourier transforming the time-
domain waveform in the SPA [42]. Previous work has
shown that the SPA might break for precessing systems
[41]. However, we find that for systems with small spin, the
SPA remains valid with probability higher than 99.8%.

The main product of this paper is an analytic, frequency-
domain template family for neutron star binary inspirals
that accounts for spin precession. The restricted PN version
of this family leads to faithfulnesses4 above 99% relative to

fully numeric templates for systems with dimensionless
spin parameters below 0.2. Figure 1 shows the averaged
faithfulness of the full SPA family (red, solid line),
the restricted PN SPA family (green dot-dashed line), the
full spin-aligned SPA family (blue, dashed line) and
the full nonspinning SPA family (magenta dotted line)
relative to numerical waveforms as a function of

TABLE II. Ingredients of the full and restricted PN, frequency-domain gravitational wave response function, together with the PN
and spin order. All PN orders are given relative to the leading order of each quantity. The symbol X means that the particular term is
composed of ingredients of different PN order. The PN orders listed here are not necessarily complete, in the sense that terms at certain
high-PN orders may be missing because they have not yet been calculated. The high powers of spin that enter �

nonprec
n and �1;2 come

from cross terms of the spin-orbit and spin-spin couplings that appear at lower PN order, when one artificially extends the series to high
PN order.

Full GW Restricted GW

Quantity Symbol Eq. or App. PN order Eq. or App. PN order Spin order

Gravitational wave ~hðfÞ (98)–(100) X (105)–(107) X X

Nonprecessing phase �
non-prec
n (102),H 8 (102),H 8 8

Phase log correction �
log
n (91) 1 (91) 1 0

SPA phase correction ��n (103) 3 (103) 3 2

Thomas phase ��n (73) and (76) 1 (73) and (76) 1 2

Inclination angle �n (66) X (66) X 1

Polarization angle c n (69) X (69) X 1

PN amplitudes An;k;m F 2.5 F 0 0

2nd derivative of �orb
n

€�orb
n (E1) 5.5 (E1) 0 2

2nd derivative of ��n � €�n (E5) 0 (E5) 0 1

2nd derivative of �n €�n (E6) 0 (E6) 0 1

2nd derivative of c n
€c n (E7) 0 (E7) 0 1

Angular momentum L (54)–(56) X (54)–(56) X 1

Precession phase �1;2 (35) 4 (35) 4 4

Stationary point �SP
n (97) 0 (97) 0 0

FIG. 1 (color online). Mean faithfulness of the full SPA family
(red, solid line), the restricted PN SPA family (green dot-dashed
line), the full spin aligned SPA family (blue dashed line), and the
full nonspinning SPA family (red dotted line) against numerical
waveforms for 1000 different systems with randomized parame-
ters. The shaded areas show the faithfulness regions for 68% of
the systems considered. For reference, the black solid line
corresponds to a faithfulness of 97%. The overlaps presented
here were not maximized over parameters, except for the time
and phase of coalescence.

3The restricted PN approximation keeps all PN terms in the
waveform phase, but truncates the amplitude to leading PN order.

4The faithfulness between two waveforms is the noise-
weighted cross-correlation of their Fourier transforms only max-
imizing over the time and phase of coalescence.
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dimensionless spin parameter, for 1,000 systems with ran-
dom parameters. This figure also shows faithfulness inter-
vals (shaded regions) for 68% of the systems considered
(1� quantiles).

Observe that the performance of the new analytic, re-
stricted PN family is as good as that of the full family. This
is because amplitude corrections become important for
systems with large dimensionless mass differences, which
is never large in NS binaries. Higher harmonic effects
become important for F * 0:999. Observe also that both
of these families perform dramatically better than spin-
aligned or nonspinning SPA families for dimensionless
spin parameters larger than 0.01. This last two lead to
almost indistinguishable faithfulnesses on a logarithmic
scale. This figure suggests that the new template families
constructed here may be sufficiently accurate for parameter
estimation with advanced ground detectors.

The remainder of this paper deals with the details of our
calculation and it is organized as follows. In Sec. II we
solve for the time evolution of the spin and orbital angular
momenta. In Sec. III we obtain time-domain waveforms,
while in Sec. IV we obtain frequency-domain waveforms.
In Sec. V we compare the analytic waveforms to numerical
ones by calculating their match. In Sec. VI we discuss the
finite-size corrections that arise at high frequencies for
neutron star binaries. In Sec. VII we conclude and point
to future research. The appendices present all details
necessary to reproduce the results of this paper.

Throughout this paper we use geometric units with
G ¼ c ¼ 1; we will retain powers of c to denote the PN
order of any given term. We also employ the following
conventions:

(i) Vectors are written in boldface, while their compo-
nents are denoted by A ¼ ½Ax; Ay; Az�. Unit vectors
are denoted with a hat, e.g. Â.

(ii) The masses of the two objects are MA, with A 2
ð1; 2Þ, the total mass is M � M1 þM2, the reduced
mass is � � M1M2=M, the symmetric mass ratio is
� � �=M, and the dimensionless mass difference
is �M ¼ ðM1 �M2Þ=M. Capital letters are used
here to distinguish masses from the mth harmonic
number.

(iii) The orbital angular frequency in a frame fixed to
the orbital plane is !, while the PN expansion

parameter will here be chosen to be � � ðM!Þ1=3.
(iv) The orbital angular momentum of the system is L,

while the spin angular momenta of each object is
SA, with SA the (constant) spin magnitude. The
dimensionless spin parameter of each object is
then �A � SA=M

2
A with A 2 f1; 2g.

(v) The unit vector pointing form the GW detector to

the source is N̂.
(vi) Vectors with a subscript d, such as Ad, are defined

in the detector frame, while those with a subscript s,
such as As, are defined in the source frame.

II. EVOLUTION OF THE SPIN AND ORBITAL
ANGULAR MOMENTUM

In this section, we solve for the time evolution of the
spin and orbital angular momentum as a series in the
dimensionless spin parameters and the ratio of the preces-
sion to the radiation-reaction time scales. We begin by
presenting the precession equations and expanding them
in small spin magnitude. We continue by solving the
precession equations order by order in this perturbation
parameter. At linear order in spin, we solve the precession
equations using multiple scale analysis. We conclude with
a summary of results and a comparison between the nu-
merical solution and the analytic approximation to the
evolution of the angular momenta.

A. Precession equations and the small spin expansion

In the PN approximation, the equations that govern the
evolution of the orbital angular momentum L and the spin
angular momenta Si averaged over one orbit are [43,44]

_L¼!2

M

X2
n¼0

�nðM!Þ2n=3½CðnÞ
1 S1þCðnÞ

2 S2��L

�3

2

!2

M
½ðS2 � L̂ÞS1þðS1 � L̂ÞS2�� L̂�kL; (1)

_S1 ¼!2

M

X2
n¼0

CðnÞ
1 �nðM!Þ2n=3L�S1

þ!2

M

�
1

2
S2�3

2
ðS2 � L̂ÞL̂

�
�S1; (2)

_S2 ¼ !2

M

X2
n¼0

CðnÞ
2 �nðM!Þ2n=3L� S2

þ!2

M

�
1

2
S1 � 3

2
ðS1 � L̂ÞL̂

�
� S2; (3)

where we have defined

k¼ 1

3

a0
M

ðM!Þ8=3
�
1þX11

i¼2

½aiþbi ln ðM!Þ�ðM!Þi=3
�
; (4)

Cð0Þ
A ¼ 2þ 3

2

MB

MA

; (5)

Cð1Þ
A ¼ 3

MA

MB

þ 35

6
þ 4

MB

MA

þ 9

8

M2
B

M2
A

; (6)

Cð2Þ
A ¼ 27

4

M2
A

M2
B

þ 31

2

MA

MB

þ 137

12
þ 19

4

MB

MA

þ 15

4

M2
B

M2
A

þ 27

16

M3
B

M3
A

; (7)

CHATZIIOANNOU et al. PHYSICAL REVIEW D 88, 063011 (2013)

063011-4



where ðA; BÞ 2 f1; 2g, A � B, and ! is the orbital fre-
quency of the binary, with coefficients ðai; biÞ given in
Appendix A.

The evolution equation for L contains two types of
terms that are valid to different PN orders: conservative
terms and dissipative terms. The dissipative ones are all
contained in the last term of Eq. (1), which changes the
magnitude of the orbital angular momentum, and governs
the GW frequency evolution. The conservative terms [the
Si-dependent terms in Eq. (1) and all terms in Eqs. (2)
and (3)] describe spin-spin and spin-orbit interactions to
3.5PN order. These terms do not change the magnitude of
L, but only its direction. We work to the highest PN order
known (3.5PN) in the spin-orbit interactions [44].
However, since we are carrying a small spin magnitude
analysis we keep here only the leading-order spin-spin
interaction terms (2PN). We will later ignore this term
when deriving an analytic solution for the angular mo-
menta, but include it in the numerical solutions we will
compare against, to show that indeed such a term can be
neglected.

The evolution of the magnitude of the angular momen-
tum, and thus, the frequency evolution, is controlled by k,
which is given in Eq. (4) by a sum taken to 5.5PN order.
The coefficients ðai; biÞ listed in Appendix A are known to
2.5PN order including all spin terms, to 4PN to linear-order
in spin [44] and to 22PN order in the test particle limit
neglecting spins and black hole (BH) absorption terms
[45–48]. Since the evolution of nonspinning binaries acts
as a background upon which we perturbative expand in
�1;2, we will model the former very accurately, keeping

nonspinning terms in ðai; biÞ to 3.5PN order with � cor-
rections and to 5.5PN order without all � corrections. To
linear-order in spin, we keep terms in ðai; biÞ up 4PN order,
while to quadratic-order we keep terms up to 2PN order.
We express the evolution equation (and its solution later
on) in terms of ðai; biÞ, so that higher-order PN corrections
can be easily incorporated in our analysis by simply mod-
ifying these coefficients, when higher PN order terms
become available in the future.

For those astrophysically realistic NS binaries that are
expected to be detected by advanced ground-based detec-
tors, the dimensionless spin parameter is not expected to
exceed �A � 0:1 [5]. We can, therefore, define the book-
keeping parameter 	s as a way to count powers of �A.
When working to leading order in 	s, we can neglect the
spin-spin interactions (the last terms) in Eqs. (2) and (3),
and the first term of the second line in Eq. (1), which leads
to the precession equations

_L¼!2

M

X2
n�0

�nðM!Þ2n=3½CðnÞ
1 S1þCðnÞ

2 S2��L�kL; (8)

_S1 ¼ !2

M

X2
n�0

�nðM!Þ2n=3CðnÞ
1 L� S1; (9)

_S2 ¼ !2

M

X2
n�0

�nðM!Þ2n=3CðnÞ
2 L� S2; (10)

where the coefficients CðnÞ
i are given in Eqs. (5)–(7). In

Eq. (8), we can rewrite _L ¼ L _̂Lþ _L L̂ to separate pre-
cession effects from radiation-reaction effects. The magni-
tude of the spin angular momentum is conserved due to the
particular choice of variables [44].
The precession equations will be solved as a function of

the independent variable �, a PN expansion parameter
defined by

� � ðM!Þ1=3 ¼ M2�L�1; (11)

where ! is the orbital frequency and L is the Newtonian
expression for the magnitude of the orbital angular mo-

mentum, L ¼ M2�ðM!Þ�1=3. The radiation-reaction
equation for the magnitude of the orbital angular moment
allows us to write an evolution equation for �

_� ¼ a0
3M

�9

�
1þX11

i¼2

½ai þ 3bi ln ð�Þ��i

�
; (12)

where the coefficients ðai; biÞ are the same as before.
Just like velocity or angular frequency, our PN expansion

parameter is time dependent, approaching �� v�
ðM=r12Þ1=2 � ½M=ð2RÞ�1=2 � 0:3 by the end of the inspiral,
where R is the NS radius.
Having set up the problem, the remainder of this section

solves Eqs. (8)–(10) perturbatively in �A. To do so, we
perturbatively expand all quantities in 	s:

A ¼ XN
n¼0

	nsA
ðnÞ; (13)

where A is any of L, S1, or S2, while AðnÞ is a term
proportional to ð�AÞn. Equation (13) is nothing but the
mathematical definition of the small-spin expansion, where
we will here work to Oð	sÞ, i.e. to N ¼ 1.

B. Oð�0s Þ solution
At this order, the NS’s spin angular momenta vanish:

Sð0Þ
1 ¼ 0; Sð0Þ

2 ¼ 0: (14)

while the orbital angular momentum evolves according to

_Lð0Þ ¼ �kð0ÞLð0Þ: (15)

This equation implies that the angular momentum does not
change in direction, but only shrinks in magnitude due to
radiation reaction.
Let us then work in a coordinate system that is adapted

to the problem at hand by choosing ẑ ¼ Ĵð0Þ. Since J is
evolving at higher orders in 	s, the ẑ axis of the frame will
not remain aligned with J at later times. However, to

Oð	0sÞ, Ĵð0Þ is not evolving, and thus, ẑ ¼ Ĵð0Þ ¼ L̂ð0Þ.
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With this choice of coordinate system, Lx and Ly simply

vanish to this order.
The ẑ component of the orbital angular momentum

Lð0Þ
z ¼ Lð0Þ satisfies the evolution equation

_Lð0Þ ¼ �a0
3

M7�8

Lð0Þ7

�
1þX11

i¼2

�
að0Þi þ 3bð0Þi ln

�
M�

Lð0Þ

��
Mi�i

Lð0Þi

�
;

(16)

where recall that Lð0Þ is the magnitude of the orbital
angular momentum to order Oð	0sÞ and the coefficients

að0Þi ¼ aiðSA ¼ 0Þ. Since all the coefficients are constant,
we can directly integrate the above equation, invert the PN

expansion, and obtain Lð0Þ as a function of time. We rewrite

Eq. (16) in terms of the PN parameter �ð0Þ, related to Lð0Þ
z

through Eq. (11), namely,

Lð0Þ
z ¼ M2�

�ð0Þ ; (17)

and solve this equation to obtain

�ð0Þ ¼ 


�
1þX11

i¼2

�ð0Þ
i 
i þX11

i¼6

�‘;ð0Þ
i 
i ln ð
Þ

þX11
i¼8

�‘2;ð0Þ
i 
iðln 
Þ2 þOðc�12Þ

�
; (18)

where we have defined the function of time


 �
�

3M

8a0ðtc � tÞ
�
1=8

; (19)

with tc the time of coalescence. The PN coefficients

ð�ð0Þ
i ; �‘;ð0Þ

i ; �‘2;ð0Þ
i Þ can be obtained from Appendix B by

setting SA ¼ 0. Combining Eq. (18) with Eq. (17) com-
pletes the solution for the time evolution of the spin and
angular momenta to Oð	0sÞ.

As explained before, this solution keeps terms beyond
3.5PN order, even though the evolution equation is for-
mally only known to that order. We do so to minimize the
difference between the numerical solution to the evolution
of the angular momentum and the analytic approximation
in Eq. (18) in the nonspinning case. In fact, taking this
series to 5.5PN order guarantees that the frequency to time
mapping is accurate to roughly 10�2 Hz during the entire
inspiral (from 10 Hz up to 400 Hz, where finite size effects
become important [49–51]). Doing so will allow us to
isolate any spin precession effects cleanly. Ultimately,
however, we will be interested in the frequency-domain
waveform, which can be constructed without knowledge
of Eq. (18).

C. Oð�1s Þ solution
At this order, the orbital and spin angular momenta

evolve according to

_Lð1Þ ¼ �6

M3

X2
n¼0

�n�2n½CðnÞ
1 Sð1Þ

1 þ CðnÞ
2 Sð1Þ

2 �

�Lð0Þ � kð0ÞLð1Þ � kð1ÞLð0Þ; (20)

_Sð1Þ
1 ¼ �6

M3

X2
n¼0

�n�2nCðnÞ
1 Lð0Þ � Sð1Þ

1 ; (21)

_Sð1Þ
2 ¼ �6

M3

X2
n¼0

�n�2nCðnÞ
2 Lð0Þ � Sð1Þ

2 ; (22)

where Lð0Þ is given by Eqs. (17) and (18). The above
equations are easy to decouple: we first use Eqs. (21) and

(22) to solve for Sð1Þ
1 and Sð1Þ

2 , and we then substitute these

solutions into Eq. (20) to solve for the orbital angular
momentum.

1. Solution for Sð1Þ
1 and Sð1Þ

2

Without loss of generality, we focus on Sð1Þ
1 ; the solution

for Sð1Þ
2 can be obtained by exchange symmetry, i.e. 1 $ 2.

In term of its components, Eq. (21) can be written as

_Sð1Þ1;x ¼ � �6

M3

X2
n¼0

�n�2nCðnÞ
1 LSð1Þ1;y; (23)

_Sð1Þ1;y ¼
�6

M3

X2
n¼0

�n�2nCðnÞ
1 LSð1Þ1;x; (24)

_Sð1Þ1;z ¼ 0; (25)

which we can rewrite as

d�ð1Þ
1

d�1

¼ i�ð1Þ
1 ; (26)

where we have defined

�ð1Þ
1 ¼ Sð1Þ1;x þ iSð1Þ1;y; (27)

and the new independent variable

d�1

dt
¼ �5�

M2

X2
n¼0

�n�2nCðnÞ
1 : (28)

Notice that we have not included a superscript index in �A

because this will act as an independent variable, just like
time and orbital frequency.
The combined spin evolution equation can now be inte-

grated directly. Doing so, decoupling Eq. (27) and using
exchange symmetry, we are led to the solution

Sð1Þ1;x ¼ Sð1Þ1;xð0Þ cos�1 � Sð1Þ1;yð0Þ sin�1; (29)

Sð1Þ1;y ¼ Sð1Þ1;yð0Þ cos�1 þ Sð1Þ1;xð0Þ sin�1; (30)
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Sð1Þ1;z ¼ Sð1Þ1;zð0Þ; (31)

Sð1Þ2;x ¼ Sð1Þ2;xð0Þ cos�2 � Sð1Þ2;yð0Þ sin�2; (32)

Sð1Þ2;y ¼ Sð1Þ2;yð0Þ cos�2 þ Sð1Þ2;xð0Þ sin�2; (33)

Sð1Þ2;z ¼ Sð1Þ2;zð0Þ; (34)

where �2 is defined by Eq. (28) with 1 $ 2. Observe that
this is a simple harmonic oscillator with precession fre-

quency _�A.
To complete the calculation, one must solve Eq. (28) for

the phase angle�A. Doing so as an expansion in �, we find

�A

Cð0Þ
A

¼ �0;A � �

a0�
3

�
1þX8

i¼2

�i;A�
i þX8

i¼3

�‘
i;A�

i ln�

þOðc�9Þ
�
; (35)

with A 2 f1; 2g, where the coefficients �i;A are given in

Appendix C and �0;A is a constant of integration picked

such that �Aðt ¼ 0Þ ¼ 0 to satisfy Eqs. (29)–(34). One
could include higher-order PN terms in this expansion.
However, we find that truncating it at 4PN order is suffi-
cient to obtain an accurate time-domain waveform phase,
i.e. higher-order PN terms induce phase corrections that are
smaller than those induced by neglected terms of Oð	2sÞ.

In principle, the coefficients ðai; biÞ that appear in
Eq. (35) are given in Appendix A with all spins set to
zero, since �i;A should be kept to Oð	0sÞ. However, we
will here use the full expressions in Appendix A for the
coefficients ðai; biÞ, with the spin couplings �i and �i

evaluated at the initial spin and orbital angular momenta
Lðt ¼ 0Þ and Siðt ¼ 0Þ. The solution obtained with this
substitution differs with the initial Oð	0sÞ solution by terms
ofOð	2sÞ, and is thus equally valid. In practice, we find that
using these coefficients leads to better agreement between
the analytical approximation and the numerical solution of
the orbital phase, as quantitatively presented in Sec. III D.

2. Solution for Lð1Þ

The evolution equation [Eq. (20)] contains terms that
change on two different time scales: a radiation-reaction
time scale trr and a precession time scale tpr. The former is

associated with the last two terms in Eq. (20) and it is
defined by

trr � �
_�
�M

�
��8; (36)

while the latter is associated with the first two terms in
Eq. (20) and it is defined by

tpr � M

!2L
�M

�
��5: (37)

The ratio of these time scales is tpr=trr � �3 ¼ Oðc�3Þ,
which then suggests one should use multiple scale analysis
to solve Eq. (20) (see e.g. [41]).
Let us then define a new perturbative (bookkeeping)

parameter 	p that counts powers of (tpr=trr) and expand

all quantities in a bivariate series

A ¼ XN
n¼0

XM
m¼0

	ns	
m
pA

ðn;mÞ; (38)

where A is any of L, S1, or S2, while Aðn;mÞ is a term

proportional to �n
1;2ðtpr=trrÞm. Of course, Að0;mÞ 8 m has

already been obtained in Eq. (18).
In multiple scale analysis, all quantities must be as-

sumed to depend on all independent time scales, and thus,

Aðn;mÞ ¼ Aðn;mÞðt; 
Þ; (39)

where we have defined the long time scale

d
 ¼ 	p

�
tpr

trr

�
dt: (40)

The differential operator of Eq. (20) is then

d

dt
¼ @

@t
þ 	p

�
tpr
trr

�
@

@

: (41)

The solution forLð1;0Þ is more easily obtained if wework
with the total angular momentum instead. Recall that the

latter is defined by Jð1Þ ¼ Lð1Þ þ Sð1Þ
1 þ Sð1Þ

2 to Oð	sÞ, and
satisfies the equation

_Jð1Þ ¼ �kð0ÞLð1Þ � kð1ÞLð0Þ: (42)

This last equation can in turn be expanded in 	p to obtain a

bivariate series. Now we can proceed to solve Eq. (42)
order by order in 	p.

3. Solution to Oð	s; 	0pÞ
To zeroth order in radiation reaction we have the simple

partial differential equation

@Jð1;0Þ

@t
¼ 0; (43)

the solution to which is

Jð1;0Þ ¼ ½Jð1;0Þx ð
Þ; Jð1;0Þy ð
Þ; Jð1;0Þz ð
Þ�: (44)

The quantity Jð1;0Þð
Þ are functions of the long time scale,
i.e. they change over the radiation-reaction time scale, but
are constant on a precession time scale. The functional
form of these quantities can only be determined by going to
next order in 	p.

4. Solution to Oð	s; 	pÞ
To Oð	pÞ, the evolution equation for the total angular

momentum is
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@Jð1;1Þ

@t
þ tpr

trr

Jð1;0Þ

@

¼ �kð0;1ÞLð1;0Þ � kð1;1ÞLð0;0Þ; (45)

where Lð1;0Þ is to be understood as shorthand for Jð1;0Þ �
Sð1;0Þ
1 � Sð1;0Þ

2 . Equation (45) is a differential equation for

Jð1;1ÞðtÞ, whose solution will grow linearly (a behavior that
characterizes a resonance) if sourced by a t-independent
term. One can eliminate such t-independent terms by re-
quiring that

tpr
trr

dJð1;0Þx ð
Þ
d


¼ �kð0;1ÞJð1;0Þx ð
Þ; (46)

tpr
trr

dJð1;0Þy ð
Þ
d


¼ �kð0;1ÞJð1;0Þy ð
Þ; (47)

whose solution is

Jð1;0Þx ¼ Jð1;0Þx ð0Þ exp
�
�
Z

kð0;1Þ
�
trr
tpr

�
d


�
;

¼ Jð1;0Þx ð0Þ exp
�Z _Lð0;1Þ

Lð0;1Þ dt
�
;

¼ Jð1;0Þx ð0Þ Lð0;1Þ

Lð0;1Þð0Þ ¼ Jð1;0Þx ð0Þ�
ð0;1Þð0Þ
�ð0;1Þ ; (48)

and Jð1;0Þy is obtained by replacing x $ y. Collecting all the

results, after imposing the initial conditions ẑ ¼ Ĵð0Þ, the
solutions for Lð1;0Þ

x and Lð1;0Þ
y are

Lð1;0Þ
x ¼ �Sð1Þ1;xð0Þ cos�1 þ Sð1Þ1;yð0Þ sin�1 � Sð1Þ2;xð0Þ cos�2

þ Sð1Þ2;yð0Þ sin�2; (49)

Lð1;0Þ
y ¼ �Sð1Þ1;yð0Þ cos�1 � Sð1Þ1;xð0Þ sin�1 � Sð1Þ2;yð0Þ cos�2

� Sð1Þ2;xð0Þ sin�2: (50)

The z component of the orbital angular momentum to
first order in the spins can be obtained in the following way.
First, we notice that

� � M2�

L
¼ M2�

Lz

þOð	2sÞ: (51)

Therefore, to this order we have

Lz ¼ Lð0Þ
z þ 	sL

ð1Þ
z þOð	2sÞ ¼ M2�

�
þOð	2sÞ: (52)

We can further improve on the solution for � as a
function of time to Oð	sÞ by revisiting its evolution equa-
tion. Equation (12) depends on the PN coefficients ðai; biÞ
(see Appendix A), which in turn depend on the spins only

through combinations SA � L̂ and SA � SB. The spin-spin
terms are of Oð	2sÞ and can thus be neglected, while the
spin-orbit terms are constant to Oð	sÞ. We can then sub-

stitute SA � L̂ ! SA;z in Eq. (12), treat all the PN coeffi-

cients ðai; biÞ as constant, and integrate to obtain

�¼ �ð0Þ þ 	s�
ð1Þ þOð	2sÞ

¼ 


�
1þX11

i¼2

ð�ð0Þ
i þ 	s�

ð1Þ
i Þ
iþX11

i¼6

ð�‘;ð0Þ
i þ	s�

‘;ð1Þ
i Þ
i ln


þX11
i¼8

ð�‘2;ð0Þ
i þ 	s�

‘2;ð1Þ
i Þ
iðln
Þ2þOð	2s ; c�12Þ

�
:

(53)

Recall that ð�ð0Þ
i ; �‘;ð0Þ

i ; �‘2;ð0Þ
i Þ are those in Appendix B with

SA ¼ 0, while the new coefficients ð�ð1Þ
i ; �‘;ð1Þ

i ; �‘2;ð1Þ
i Þ are

those in Appendix B that are linear in SA.
However, as in Eq. (35), we will here include higher-

order terms in 	s to improve the mapping between fre-

quency and time. The coefficients (�ð0Þ
i þ 	s�

ð1Þ
i , �‘;ð0Þ

i þ
	s�

‘;ð1Þ
i , �‘2;ð0Þ

i þ	s�
‘2;ð1Þ
i ) will be replaced by those in

Appendix B but with ðai; biÞ coefficients evaluated at the
initial spin and orbital angular momenta Lðt ¼ 0Þ and
SAðt ¼ 0Þ. As before, this replacement adds terms of
Oð	2sÞ and higher to the precession phase that improve the
accuracy of the analytical solution, as we show in Sec. II E.

D. Summary of results

The final solutions for the orbital angular momentum to
first order in spin are

Lx ¼ 	sf�S1;xð0Þ cos�1 þ S1;yð0Þ sin�1 � S2;xð0Þ cos�2

þ S2;yð0Þ sin�2g þOð	2s ; 	pÞ; (54)

Ly ¼ 	sf�S1;yð0Þ cos�1 � S1;xð0Þ sin�1 � S2;yð0Þ cos�2

� S2;xð0Þ sin�2g þOð	2s ; 	pÞ; (55)

Lz ¼ M�

�
þOð	2sÞ; (56)

while for the spin angular momenta we find

S1;x ¼ 	s½S1;xð0Þ cos�1 � S1;yð0Þ sin�1� þOð	2sÞ; (57)

S1;y ¼ 	s½S1;yð0Þ cos�1 þ S1;xð0Þ sin�1� þOð	2sÞ; (58)

S1;z ¼ 	sS1;zð0Þ þOð	2sÞ; (59)

S2;x ¼ 	s½S2;xð0Þ cos�2 � S2;yð0Þ sin�2� þOð	2sÞ; (60)

S2;y ¼ 	s½S2;yð0Þ cos�2 þ S2;xð0Þ sin�2� þOð	2sÞ; (61)

S2;z ¼ 	sS2;zð0Þ þOð	2sÞ: (62)

The phase angles �A are given explicitly in Eq. (35) in
terms of �, which is given explicitly as a function of
time in Eq. (53). Both of these equations depend on the
coefficients ðai; biÞ which are given in Appendix A, with
½LðtÞ;SAðtÞ� ! ½Lðt ¼ 0Þ;SAðt ¼ 0Þ�.
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E. Numerical comparison

We can now show that the bivariate, analytic solution
found above is indeed an accurate representation of the full
numerical solution. By the latter, we mean the numerical
solution to Eqs. (1)–(3), with k given by Eq. (4). Notice that
these equations contain spin-spin interactions, i.e. terms
of Oð	2sÞ that are neglected in the analytic solution
of the previous sections. We use an adaptive Cash-Karp,
fifth-order Runge-Kutta method to solve these equations
[52]. We have performed convergence tests to guarantee
that the numerical error introduced by the integrator is well
controlled and not visible in any of the figures we show in
this paper.

For the comparisons to follow, we choose a particular
system with the following properties:

Test system:
(i) M1 ¼ 1:4M	 and M2 ¼ 1:6M	, which then implies

� ¼ 0:2489, �M ¼ �0:067, M ¼ 3M	;
(ii) �1 ¼ 0:1 and �2 ¼ 0:1, which then implies S1 


0:196M2	, S2 
 0:256M2	;
(iii) ŜAð0Þ ¼ ðcos�SA sin �SA ; sin�SA sin �SA; cos �SAÞ,

where ð�S1 ;�S1Þ¼ð�=4;17�=24Þ and ð�S2 ; �S2Þ ¼
ð�=3;��=6Þ.

(iv) The source is located at polar angles ð�d; �dÞ ¼
ð�=3; 2�=3Þ in the detector frame.

Notice also that L ranges from about 29M2	 at 10 Hz to
8:5M2	 at 400 Hz, which thus implies SA=L � 1 during the
entire inspiral. This system experiences approximately 55
precession cycles from 10 Hz to 400 Hz, during which it
accumulates�14; 500 cycles of GW phase. We choose the
integration constants in the analytic solution such that the
quantities compared agree at 10 Hz. Although we choose a
particular system for the figures to come, the results are
representative of all systems we investigated.

Figure 2 presents the numerical (black solid curve) and
analytical (red dashed curve) approximation to the x com-
ponent of orbital (top) and spin angular momentum of NS 1
(bottom) as a function of the dominant GW frequency
(twice the orbital frequency) in units of Hz. The y compo-
nents present similar behavior. Observe that the analytical
result tracks the numerical solution closely, becoming out
of phase by the end of the inspiral. This analytic solution is
dramatically better than that which assumes these compo-
nents simply vanish, as is done when one neglects preces-
sion and uses a spin aligned/antialigned approximation.
The analytical approximation can, of course, be improved
if taken to next order in 	s.

The dephasing seen here can be significantly reduced by
perturbing the system parameters, such as the individual
masses and spin magnitudes slightly, as one does when
calculating fitting factors. We do not show the minimized
dephasing here, because we are interested in calculating
faithfulnesses, instead of fitting factors.

Figure 3 shows the numerical (black solid curve)
and analytical (red dashed curve) approximation to the z

component of the spin angular momentum for NS 1 (top)
and NS 2 (bottom) as a function of the GW frequency in
Hz. Both solutions start at the same initial value, but the
analytical approximation remains constant, while the nu-
merical one oscillates. The amplitude of this oscillation is
ofOð	2sÞ, which for this system is ofOð10�2Þ; the solutions
can only be improved by going to next order in spin.
The top panel of Fig. 4 presents the numerical (black

solid curve) and analytical (red dashed curve) approxima-
tion to the z component of the orbital angular momentum

FIG. 2 (color online). Numerical solution (solid black curve)
and analytical approximation (red dashed curve) to Lx (top) and
S1;x (bottom) as a function of the GW frequency f (twice the

orbital frequency). Observe that the analytical solution tracks
closely the numerical solution, losing coherence as the frequency
increases. This analytical approximation is dramatically better
than setting these components at zero, as one would do for spin
aligned/antialigned binaries.
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FIG. 3 (color online). Numerical solution (solid black curve)
and analytical approximation (red dashed curve) to S1;z (top) and
S2;z (bottom) as a function of the GW frequency. Observe that

the numerical and analytical solutions start with the same initial
condition, but the former oscillates with an amplitude of Oð	2sÞ,
roughly 10�2 for this system.
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as a function of GW frequency. Observe that indeed the
analytical approximation is so good that it cannot be dis-
tinguished from the numerical result. This is why the
bottom panel of Fig. 4 shows the absolute value of the
fractional difference between the numerical and the ana-
lytical result, again as a function of GW frequency. The
fractional error never exceeds one part in 103.

The construction of time-domain waveforms also re-
quires a mapping between time and frequency. The top
panel of Fig. 5 shows the numerical (solid black curve) and
analytical approximation (red dashed curve) to the evolu-
tion of time as a function of GW frequency in Hz; the

bottom panel of this figure shows their difference. Observe
again that the analytical result tracks the numerical one to a
precision better than a few times 10�4.

III. TIME-DOMAIN WAVEFORM

Given the approximate analytical solution to the orbital
angular momentum derived in the previous section, we can
now construct an analytical approximation to the time-
domain GW response function. We begin by defining the
basic ingredients that go into the waveform construction.
We then derive analytic approximations to the waveform
phase, and mode-decompose the response function. We
conclude with a comparison between the analytic approxi-
mation to the time-domain waveform phase and the phase
derived from a numerical solution.

A. Basics

Let N̂ ¼ ½Nx; Ny; Nz� be a unit vector that points in the

direction of the center of mass of the compact binary
relative to the detector. The time-domain response function
in the long wavelength approximation can then be written
as a sum of harmonics [53]

hðtÞ ¼ X
n�0

ðFþhn;þ þ F�hn;�Þ; (63)

hn;þ ¼ An;þð�Þ cos n�þBn;þð�Þ sin n�; (64)

hn;� ¼ An;�ð�Þ cos n�þBn;�ð�Þ sin n�; (65)

where n 2 N is the harmonic number, the inclination
angle is

� � arccos ½L̂ � N̂�; (66)

the antenna pattern functions are given by

Fþ ¼ 1

2
ð1þ cos 2�Þ cos 2� cos 2c � cos� sin 2� sin 2c ;

(67)

F� ¼ 1

2
ð1þ cos 2�Þ cos 2� sin 2c þ cos � sin 2� cos 2c ;

(68)

and c is the polarization angle:

c ¼ tan�1

�
L̂ � ẑ� ðL̂ � N̂Þðẑ � N̂Þ

N̂ � ðL̂� ẑÞ
�
: (69)

The precession of the orbital angular momentum, i.e.
of the orbital plane, has two main effects on the
waveform [36]:
(i) the inclination and the polarization angles become

time dependent and;
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FIG. 4 (color online). Top: numerical solution (solid black
curve) and analytical approximation (red dashed curve) to Lz

(top) as a function of the GW frequency. Bottom: fractional
difference of numerical and analytical Lz as a function of GW
frequency. Observe that the fractional error is always less than
4� 10�4 during the entire inspiral.
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FIG. 5 (color online). Top: numerical solution (solid black
curve) and analytical approximation (red dashed curve) to tðfÞ
with time in seconds and frequency in Hz. Bottom: absolute
value of the difference between the numerical and analytical
times as a function of GW frequency in seconds. Observe that
the analytical solution tracks the elapsed time to better than 10�4

during the entire inspiral.
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(ii) the reference frame used to define the orbital fre-

quency in the orbital plane, L̂� N̂, is no longer
constant in time.

These effects will induce corrections to the waveform
phase, as well as amplitude modulations. We investigate
these effects below.

B. Waveform phase

The waveform phase can be decomposed as follows:

� ¼ �orb þ ��; (70)

where �orb is the orbital phase and �� is a precession
correction, induced by the changing reference frame. We
will refer to the latter as the Thomas precession phase.

The orbital phase can be computed directly from

�orb ¼
Z

!dt ¼
Z �3

M

d�
_�

¼ �c � 3

5a0�
5

�
1þX16

i¼2

�orb
i �i þX16

i¼5

�orb;‘
i �n ln�

þ X16
i¼12

�orb;‘2

i �iðln�Þ2 þOðc�17Þ
�
; (71)

where �c is a constant of integration (the so-called phase
of coalescence, corresponding to the value of the
phase when the frequency diverges) and the PN coeffi-

cients ð�orb
i ;�orb;‘

i ;�orb;‘2

i Þ to 8PN order are given in
Appendix D. As discussed in Sec. II, we extend the series
here to 8PN order, so that when spins are zero, the error
between this analytical phase and the numerical solution is
negligibly small. Doing so will allow us to isolate any
dephasings induced by spin.

The Thomas precession phase �� satisfies the differen-
tial equation [36]

� _� ¼ 1

L

L � N̂
L2 � ðL � N̂Þ2 ðL� N̂Þ � _L: (72)

Reference [41] found a uniform asymptotic expansion to
the solution of this equation to Oð	sÞ, which works both

when N̂2
x þ N̂2

y ¼ Oð	sÞ and when N̂x ¼ Oð	sÞ ¼ N̂y,

namely

��ð1Þ ¼ �N̂z arctan

�
N̂xLz � Lx

N̂yLz � Ly

�
þOð	2sÞ; (73)

where recall thatN is constant butL varies on a precession
time scale as given by Eqs. (54)–(56).

We here improve on this solution by including theOð	2sÞ
secular growth of ��. To do so, we first expand Eq. (72) to
Oð	2sÞ. The Oð	2sÞ term depends on the L and SA solutions
found in Eqs. (54)–(62), and after expanding it in
SA;x=Lz � 1 � SA;y=Lz and averaging over a precession

cycle, we find

h� _�ð2Þi ¼ 1

4�2

Z 2�

0

Z 2�

0
� _�ð2Þd�1d�2;

¼ 1

2

_�1

L2
z

S21;?ð0Þ þ 1 $ 2; (74)

where we have defined S21;?ð0Þ ¼ S1;xð0Þ2 þ S1;yð0Þ2. We

can conveniently rewrite this as

�
d

d�
��ð2Þ

�
¼ X2

n¼0

�n�2nCðnÞ
1

2M5�
S21;?ð0Þ

�7

_�
þ 1 $ 2: (75)

Solving this differential equation to 1PN order, we obtain
the Oð	2sÞ secular correction

h��ð2Þi ¼� 5

64
S21;?ð0Þ

1

M4�2

1

�
½Cð0Þ

1 þða2Cð0Þ
1 ��Cð1Þ

1 Þ�2�

þ1$ 2þOð	3sÞ: (76)

The constant of integration can be absorbed in the constant
�c introduced in Eq. (71). We empirically find that it is
sufficient to keep terms up to 1PN order in this secular
approximation, relative to numerical solutions.
The final expression for the Thomas phase �� is then

the sum of Eq. (73) and (76):

�� ¼ ��ð1Þ þ 	2sh��ð2Þi þOð	3sÞ: (77)

This expression, of course, is missing the nonsecular evo-

lution of ��ð2Þ, but this cannot be computed without
knowledge of the evolution of the angular moment to
Oð	2sÞ. We will see later that even without these nonsecular
terms, Eq. (77) is an excellent approximation to the nu-
merical Thomas phase.
In order to calculate the GW signal that will be measured

by a ground-based detector on Earth, we need to work in a
frame attached to the arms of the detector. We choose the
ẑd axis to be perpendicular to the detector plane and the x̂d
and ŷd axes to be aligned with the detector’s arms. The
subscript d denotes the detector frame, while the subscript s
denotes the source frame (see e.g. Fig. 1 in [36]). In this

frame, the position of the binary in the sky is given by N̂d ¼
½sin �N cos�d; sin �N sin�d; cos�N�. In order to transform
vectors from the source frame to the detector frame, we
assume that the binary is oriented in such away that its total
angular momentum at t ¼ 0 in the detector frame is given

by Ĵdð0Þ � ½sin �0 cos�0; sin �0 sin�0; cos�0�. Then, the
rotation matrix relating the frames is

Rd!s ¼
cos �0 cos�0 cos�0 sin�0 � sin �0

� sin�0 cos�0 0

sin �0 cos�0 sin �0 sin�0 cos�0

2
664

3
775: (78)

We apply this matrix to rotate Nd into Ns and ẑd into ẑs
when computing the polarization angle and the Thomas
precession angle.
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C. Mode decomposition

The analytical approximations to the Fourier transform
that we will employ require that we cast the time-domain
response function in the following form

hðtÞ ¼ AðtÞei�GWðtÞ; (79)

whereAðtÞ is a slowly varying amplitude and�GWðtÞ is a
rapidly varying phase. Therefore, we must express all the
terms that vary in the orbital or the precessional time scales
in terms of exponentials. This includes �orb, ��, �, and c
because

_�orb �Oðc�3Þ; � _�� _c � _��Oðc�6Þ; (80)

and

€�orb �Oðc�11Þ; � €�� €c � €��Oðc�11Þ: (81)

We then leave in the amplitude only terms that vary on the
radiation-reaction time scale.

Expressing the � dependence of hnðtÞ in Eq. (63) and
the c dependence of antenna pattern functions in Eqs. (67)
and (68) as exponentials, we find [41]

hn;þ ¼ 1

2
ðAn;þ � iBn;þÞein� þ c:c:; (82)

hn;� ¼ 1

2
ðAn;� � iBn;�Þein� þ c:c:; (83)

Fþ ¼ 1

2
ðAF þ iBFÞe2ic þ c:c:; (84)

F� ¼ 1

2
ðBF � iAFÞe2ic þ c:c:; (85)

where c.c. stands for complex conjugate. The amplitudes

AF � 1

2
ð1þ cos 2�Þ cos 2�; (86)

BF � cos � sin 2�; (87)

depend only on the slowly varying sky-location angles
ð�;�Þ. The amplitudes ðAn;þ;An;�;Bn;þ;Bn;�Þ depend
on the rapidly varying � which we also express in terms of
complex exponentials.

Combining all these results and expanding all terms in a
Fourier series we obtain [41]

hðtÞ ¼ ��2

DL

X
n�0

X
k2Z

X
m¼
2

hn;k;mðtÞ; (88)

where DL is the luminosity distance and

hn;k;mðtÞ ¼ An;k;mð�;�Þei�GW
nkm

ðtÞ þ c:c:; (89)

where we have defined

�GW
nkmðtÞ � n�orbðtÞ þ n��ðtÞ þ n�log ðtÞ þ k�ðtÞ

þmc ðtÞ; (90)

and

�log ðtÞ � ð6� 3��2Þ�3 ln�: (91)

This last term arises when converting certain log-dependent
amplitude terms into phase terms [54] and from now on it
will be included in � ¼ �orb þ ��þ�log . The slowly
varying amplitudes are given in Appendix E of [41] to 2PN
order, while Appendix F of this paper presents the 2.5PN
contribution.

D. Numerical comparison

Let us now compare the analytical approximate wave-
form response of Eq. (88) to a numerical one. The latter is
computed by numerically solving Eqs. (1)–(3) for the
momenta, with k given by Eq. (4), and then inserting these
into the response function of Eq. (63). The numerical
solutions are obtained with the same numerical algorithms
discussed in Sec. II E. Moreover, for the comparisons to
follow, we will choose the same test system as in that
section. Additionally, we choose ð�N;�NÞ ¼ ð�=3; 2�=3Þ
for the polar angles of the line-of-sight unit vector in the
detector frame, and ð�0; �0Þ ¼ ð2�=3;�2�=3Þ for the total
angular momentum at t ¼ 0 in the detector frame. Finally,
we align thewaveform time offset so that the phases agree at
fGW ¼ 10 Hz. As explained then, this system is represen-
tative of a variety of other systems studied; we postpone a
more detailed population study to Sec. V.
Figure 6 shows the dominant (n ¼ 2) harmonic of the

total waveform phase as a function of the GW frequency in
Hz. The bottom panel shows the phase difference in radi-
ans as a function of the GW frequency. Observe that the
analytical approximation tracks the numerical solution to
better than 0.3 radians over 9� 104 radians of evolution in
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FIG. 6 (color online). Dominant harmonic of the total wave-
form phase (top) and phase difference (bottom) in radians as a
function of GW frequency in Hz, computed numerically (black
solid curve) and analytically (red dashed curve). Observe that the
dephasing never exceeds 0.3 radians in over 9� 104 radians of
inspiral evolution.
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the phase. The error is a combination of a secular drift of
the mean, superimposed with an oscillation; we shall see
below that all of this error is induced by different Oð	2sÞ
effects, which could be recovered if our calculation was
carried out to next order.

Figure 7 shows different pieces of the dominant (n ¼ 2)
harmonic of the waveform phase as a function of frequency
(top panels), together with the dephasing between analyti-
cal and numerical expressions. The top-left plot shows the
orbital phase in radians, which is by far the dominant
contribution to the total phase. Observe that the analytical
approximation tracks the numerical result to about 2�
10�2 radians. The oscillatory features of the phase in
Fig. 6 are due to the Thomas phase, the inclination angle
and the polarization angle, shown in the top-right, bottom-
left, and bottom-right plots respectively. Observe that in all
cases the analytical approximation tracks the numerical
solution accurately, with dephasing of order a few times
10�2. The Thomas phase, in addition, presents a secular
drift, which we can see is accurately matched by the
analytical approximation due to the correction in Eq. (76).

We haveverified that these errors scalewith spin squared, as
expected from the fact that the analytic approximation does
not consistently account for all Oð	2sÞ effects.

IV. FREQUENCY-DOMAIN WAVEFORMS

In this section, we construct an analytical approximation
to the Fourier transform of the approximate time-domain
response function found in the previous section. We begin
by defining the basic tools needed and then we apply them
to the approximate time-domain response function of
Eq. (88). We conclude with a comparison of this analytical
frequency-domain waveform to the discrete Fourier trans-
form (DFT) of the numerical time-domain waveform used
in the previous section.

A. Basics

Having expressed the time-domain waveform in the
desired form, i.e. as a product of a slowly varying ampli-
tude and a rapidly varying phase, we can now Fourier-
transform it. The technique that we are going to use is the
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FIG. 7 (color online). Different pieces of the dominant harmonic of the total waveform phase (top panels) in radians and phase
difference (bottom panels) in radians and as a function of GW frequency in HZ, computed numerically (black solid curve) and
analytically (red dashed curve). These pieces include the orbital phase (top left), the Thomas phase (top right), the inclination angle
(bottom left) and the polarization phase (bottom right). Observe that the dephasing is always of the order of 10�2 radians.
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stationary phase approximation [55], where one approxi-
mates the Fourier transform

~hðfÞ ¼
Z

hðtÞe2�iftdt (92)

by taking into account only the part of the integrand where
the integral accumulates the most.

Let us rewrite the Fourier transform of Eq. (92) as a sum
of harmonics

~hðfÞ ¼ ��2

DL

X
n�0

X
k2Z

X
m¼
2

~hn;k;mðfÞ; (93)

where

~hn;k;mðfÞ ¼
Z

An;k;me
ið2�ftþn�þk�þmc Þdt

þ
Z

A�
n;k;me

ið2�ft�n��k��mc Þdt: (94)

These integrals are dominated by the regions where the
phase is stationary, i.e. where the argument of the exponen-
tial is nearly constant. Otherwise, the integrand oscillates
rapidly and the integral cancels out by the Riemann-
Lebesgue Lemma [55]. Given this and the symmetry prop-
erties of Fourier transforms of real signals, the first term of
Eq. (94) is subdominant for positive frequencies and can be
neglected.

The SPA replaces the argument in the exponential of
Eq. (94) by a Taylor expansion about the stationary point
tSP defined by

2�f ¼ n _�ðtSPÞ þ k _�ðtSPÞ þm _c ðtSPÞ: (95)

This approximation works provided the amplitude varies
much more slowly than the phase:								

_An;k;m

An;k;m

								� jn _�þ k _�þm _c j: (96)

In the SPA, one must invert Eq. (95) to obtain a relation
for the orbital frequency, or equivalently the PN expansion
parameter �, as a function of the Fourier frequency f.
When precession is present, an exact inversion is not
possible because Eq. (95) is transcendental. One can, how-
ever, take Eq. (80) into account and approximate the
inversion by setting

�SP
n ¼

�
2�Mf

n

�
1=3 � vn; (97)

which is an excellent approximation to the location of the
stationary point. We have investigated perturbative correc-
tions to Eq. (97) due to precession effects and found that
these have a very small effect on the Fourier domain
waveform. In fact, this effect is much smaller than other
errors already contained in the time-domain waveform.

B. Waveform families

1. Full SPA

With all of this at hand, the full SPA (labeled FSP) to the
Fourier transform of Eq. (92) is

~hFSPðfÞ ¼ �M�2

DL

X
n�0

X
k2Z

X
m¼
2

AGW
n;k;mðfÞei�nkmðfÞ: (98)

The decomposed Fourier amplitude is

AGW
n;k;mðfÞ ¼

ffiffiffiffiffiffiffi
2�

p
A�

n;k;m

jn €�orb
n þ n� €�n þ n €�

log
n þ k€�n þm €c nj1=2

;

(99)

whereA�
n;k;mð�nÞ, €�orb

n ¼ €�orbð�nÞ, � €�n¼� €�ð�nÞ, €�log
n ¼

€�logð�nÞ, €�n ¼ €�ð�nÞ and €c n ¼ €c ð�nÞ are to be evaluated
at the stationary point of Eq. (97). These second time
derivatives are presented explicitly in Appendix E.
The decomposed Fourier phase is

�nkmðfÞ ¼ �
nonprec
n � n��n � k�n �mc n; (100)

where the nonprecessing Fourier phase is given by

�
nonprec
n ðfÞ� 2�ftn�n�orb

n �n�
log
n þ��n��

4
: (101)

The time-frequency function tn is given in Appendix G, the

orbital phase�orb
n in Eq. (71), and the log-phase term�

log
n

is in Eq. (91) all as a function of �. The Thomas phase ��
is given in Eqs. (73), (76), and (35), while the inclination
and the polarization angles are given by Eqs. (66) and (69)

respectively, all as a function of L̂. The angular momentum
is given in Eqs. (54)–(56) in terms of �1;2, which in turn is

given in Eq. (35) as a function of �. All of these expres-
sions must be evaluated at the stationary point � ¼ vn of
Eq. (97), which is why we included an n subindex.
The nonprecessing Fourier phase can be simplified to

�nonprec
n ðfÞ ¼ 2�ftc � n�c � n�log

n þ ��n � �

4

þ 3n

256�
v�5
n

X16
i¼0

½�i þ�‘
i lnvn

þ�‘2

i ðlnvnÞ2�vi
n þOðc�17Þ; (102)

where tc is the time of coalescence, �c is the phase of

coalescence, and the coefficients ð�i;�
‘
i ;�

‘2

i Þ are given in
Appendix H for convenience. As before, recall that for-
mally, the sum in Eq. (102) is consistent only up to 3.5PN
order, but we here artificially keep terms up to 8PN order,
so that any dephasings found when comparing to numerical
waveforms are induced purely by spin-precession effects.
The SPA phase correction ��n is the first subleading

modification to the SPA condition, i.e. to Eq. (96). This
term arises by retaining the third time derivative in the
Taylor expansion of the argument of the exponential in
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Eq. (94). Reference [56] calculated this correction to lead-
ing PN order for the n ¼ 2 harmonic in the nonspinning
case. We have here extended this to 3PN order beyond
leading for arbitrary harmonic number:

��n¼ 184

45n
�v5

n

�
1þ61

46
a2v

2
nþ89

46
a3v

3
n

þ
�
123

46
a4�131

184
a22

�
v4
nþ

�
�175

92
a3a2þ163

46
a5

�
v5
n

þ
�
147

46
b6þ627

46
b6 lnvnþ233

368
a32�

225

92
a4a2

�227

184
a23þ

209

46
a6

�
v6
n

�
: (103)

This phase correction improves the agreement between our
SPA waveforms and numerical ones for nonspinning sys-
tems by as much as an order of magnitude at low frequen-
cies. One could include spin corrections to this equation that,
for example, arise from the secular correction to the Thomas
phase in Eq. (76). We have empirically found, however, that
these effects are much smaller than Oð	2sÞ errors already
contained in the time-domain waveform approximant.

The nonspinning ingredients that go into the SPA phase
in Eq. (100) are artificially of higher PN order than what
one is allowed to formally keep. For example, tn ¼ tð�nÞ,

�orb
n ¼ �orbð�nÞ and �

nonprec
n ¼ �nonprecð�nÞ are given to

8PN order in the appendices. As already discussed, when-
ever possible we keep all such nonspinning ingredients to
8PN order so as to minimize the dephasing for nonspinning
inspirals between our SPA waveform and the DFT of the
time-domain numerical waveform described of Sec. III D.
Indeed, we find that keeping terms up to this order reduces
the dephasing to Oð10�5Þ radians in the nonspinning case.
Therefore, any dephasings we show next for spinning sys-
tems are exclusively due to spin-precession effects and not
due to any disagreement between the SPA and numerical
waveforms for the backgroung nonspinning motion.

2. Restricted PN SPA

Now that we have an analytical understanding of the full
SPAwaveform, we can apply some further approximations
to simplify the waveform family. A typical approximation
is the restricted PN one, where one retains only the
leading-order PN terms in the Fourier amplitude, but in-
cludes all known PN order terms in the Fourier phase. We
calculate this waveform here.
The restricted PN (labeled RSP) approximation amounts

to retaining only the n ¼ 2 term in the sum of Eq. (98),
namely

~h RSPðfÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
�

j €�orbj
s

�M�2

DL

eið2�ft�2�orb�2�logþ��SP��
4Þ
X2
k¼0

X
m¼
2

A�
2;k;m

								1þ � €�
€�orb

þ k

2

€�
€�orb

þm

2

€c
€�orb

								�1
2

e�ið2��þk�þmc Þ:

(104)

where €�orb is to be substituded with its leading-order PN
value €�orb ¼ 96��11=ð5M2Þ, � is to be evaluated at �2 as
given in Eq. (97), and we have eliminated the subindex n,
since all quantities here are to be evaluated at n ¼ 2. To
leading PN order the amplitudes A�

2;k;m are given by
Eqs. (E14)–(E16) of [41] with � ¼ 0. Notice that, even
though one can safely ignore €�log � c�19, one cannot
expand the square root in the second line of Eq. (104)
because €�orb is of the same PN order as � €�, €� and €c .

We can rewrite the above in the more suggestive form

~hRSPðfÞ ¼ hnonprecðfÞhprecðfÞ; (105)

where we have defined the nonprecession contribution

hnonprec ¼
ffiffiffiffiffiffi
5

96

s
��2=3 �

1=2M5=6

DL

f�7=6ei�
nonprec
2

ðfÞ; (106)

and the precession correction

hprecðfÞ¼e�2i��
X2
k¼0

X
m¼
2

A�
2;k;me

�iðk�þmc Þ

�
								1þ5M2

96�
��11

�
� €�þk

2
€�þm

2
€c

�								�1=2

; (107)

where the second time derivatives of the phases are given in

Eqs. (E5)–(E7), we have used that €�orb ¼ 96��11=ð5M2Þ
to leading PN order and ignored €�log again, since it is
subdominant. The Thomas phase, the inclination angle,
and the polarization angle can be found in Eqs. (73), (76),
(35), (66), and (69). The amplitudesAn;k;m can be found in

Eqs. (E14)–(E16) of [41] with � ¼ 0. The nonprecessing

phase is given in Eq. (102) with n ¼ 2 evaluated at v2 ¼
ð�MfÞ1=3 with the coefficients ð�i;�

‘
i ;�

‘2

i Þ given in
Appendix H.

C. Applicability of the SPA

Both the restricted and full SPA waveform families
defined above rely on the assumptions of the SPA being
valid. In particular, these solutions require that the first
nonvanishing time derivative of the argument of the ex-
ponential in Eq. (94) be the second time derivative. If this
is not the case, then the denominator in Eqs. (99) or (104)
would vanish and the SPA amplitude would diverge.
When this is the case, a more sophisticated approximation
to the generalized Fourier integral is required, such as the
method of steepest descent and uniform asymptotics
[41,55].

GRAVITATIONAL WAVEFORMS FOR PRECESSING, . . . PHYSICAL REVIEW D 88, 063011 (2013)

063011-15



Whether the second time derivative of the phase van-
ishes or not depends sensitively on the system considered.
The parameters that affect this the most for small spin

systems are the angles associated with N̂ and those asso-

ciated with L̂. Indeed, as we can see in Appendix E, €�orb,

� €�, €�, and €c are all of the same PN order. However, €�orb is
of Oð	0sÞ, whereas the others are of Oð	sÞ. Furthermore,
€�orb is always positive whereas the others oscillate around
zero. Thus, for the second time derivative of the phase to

vanish, a factor of Oð	�1
s Þ has to multiply � €�, €�, or €c in

order for these phases to be comparable to €�orb. By looking
at their expressions, we can see that this is the case when

the angle between N̂ and L̂ is of Oð	�1
s Þ.

To verify this scaling, we carried out a set of
Monte Carlo studies by randomizing over all parameters,
except for the dimensionless spin parameters that we kept
equal for both NSs and fixed for each run. The left panel of
Fig. 8 shows the probability that the SPA will break down
as a function of the spin parameter. Observe that for
systems with �A < 0:1, this probability is smaller than
0.2%. This is because the SPA breaks only when large
amounts of precession are present. In particular, the SPA

breaks when N̂ and L̂ are coaligned, so that the system
wobbles the most as seen from the detector. This can be
seen on the right panel of Fig. 8, which shows the proba-
bility the SPAwill break as a function of the square of the
cosine of the inclination angle, where we have fixed both
�A and �. Observe that for systems with the angle between

N̂ and L̂ larger than 4�, this probability is less than 2%.
One should note that the systems for which the SPA

would break down are precisely those that could lead to a
coincident short gamma-ray burst (short GRB) and GW
observation. One of the possible progenitors of short
GRBs are NS mergers. The electromagnetic observation

of such a GRB would require N̂ and L̂ to be almost exactly
aligned or antialigned. In both cases, the SPA waveforms

constructed here and elsewhere in the literature may be
ineffective at extracting a GW signal. However, we know
in advancewhich systems will have a failing SPA, and thus,
an analysis using our waveforms could switch to the full
numerical solution in this (rather small) corner of parameter
space. The degree towhich this is feasible and effectivewill
be studied in a data analysis framework elsewhere.

D. Numerical comparison

Having constructed a full and restricted analytical SPA
model for the Fourier transform of the analytical waveform
response we now compare it to the purely numerical wave-
form. The two former ones are given by Eqs. (98) and (105),
respectively. The latter is computed by first applying a
window function to the numerical, time-domain waveform
of Sec. III D, then discretizing this waveform and finally
computing the Fourier transform using the FFTW routine.
We ensure that the number of points used in the discretized
waveform time series is large enough that the Nyquist
frequency is at least 5 times larger than the highest fre-
quency of interest in our analysis.
We use a Tukey function, with parameters such that the

window varies from zero to unity between fGW;1 and fGW;2

remains unity until fGW ¼ 500 Hz and then falls off to
zero between fGW ¼ 500 Hz and fGW;3, where fGW is the

frequency of the dominant harmonic, at twice the orbital
frequency. We choose the frequencies fGW;1 and fGW;2 to

be 8.5 Hz and 9.5 Hz respectively when studying wave-
forms that only include the n ¼ 2 harmonic, or 19=7 Hz
and 20=7 Hz, respectively, when studying ones that in-
clude all harmonics.5 The window goes to zero at fGW;3

which corresponds roughly to twice the orbital frequency
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FIG. 8. Probability that the SPA fails as a function of the dimensionless spin parameter of the system (left) and as a function of the
squared of the cosine of the inclination angle (right). Observe that the probability of the SPA breaking down is extremely small for the
systems considered here. Observe also that this probability increases for systems with N̂ and L̂ aligned or antialigned.

5When including all harmonics, a smaller starting frequency is
required, so that the highest harmonic is included at the begin-
ning of the frequency band, i.e. at 10 Hz.
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of a test particle in the innermost stable circular orbit of a
Schwarzschild BH with mass equal to the total mass of the
test system. We could have chosen a different maximum
frequency, but this would not have changed the results we
will show in this section. We investigated a variety of
filters, including the Planck-taper function of [57], but
found that a Tukey window with the above parameters is
optimal for minimizing spectral leakage inside the fre-
quency regime of interest.

For the comparisons that follow, we choose the same test
system as in Sec. II E, which is representative of all sys-
tems considered, and concentrate on the frequency region
(10, 400) Hz. We stop all comparisons at 400 Hz because
(i) finite size effects cannot be neglected beyond that
frequency and (ii) most of the SNR is contained in this
frequency region for binary NS coalescences. The align-
ment of the time-domain waveforms at 10 Hz does not
guarantee alignment in the frequency domain. We have
freedom to choose the phase and time of coalescence to
perform such an alignment. However, in this section, we
will present the waveforms as they are, i.e. without align-
ing them in frequency space. This implies that the errors
shown here are an overestimate of the inaccuracies in our
waveforms, i.e. they are conservative.

1. Leading-order PN amplitude

Let us begin by focusing on waveforms that contain only
the leading-order PN amplitude. The numerical waveform
will then be the DFT of Eq. (88), keeping only the n ¼ 2
(dominant) harmonic. The full SPA waveform is similarly

given by Eq. (98), keeping only the leading-order n ¼ 2
harmonic, while the restricted SPA is given by Eq. (105).
Notice that the restricted SPA waveform is less accurate
than the full SPAwaveform because the former keeps only
the leading-order PN terms in the amplitude of the SPA

Fourier transform, which amounts to setting €�orbð�Þ to its
leading-order PN expression.
The left panel of Fig. 9 shows the difference in Fourier

phase between the DFT and either the SPA (solid black
curve), an SPA Fourier phase that assumes aligned spins
(dot-dashed green curve), or an SPA that sets all spins to
zero (dotted blue curve).6 The bottom horizontal axis shows
the GW frequency, while the top axis shows the accumu-
latedGWphase in the time domain.A horizontal line (thick,
solid red curve) at 1 rad is also shown for reference. Observe
that while the aligned-spin and the nonspinning SPA phases
build dephasings ofOð103Þ rads very quickly, the new SPA
waveform of this paper remains in phase to better than
0.4 rads in �105 rads of GW evolution. Notice that the
dephasing is insensitive to whether we use a restricted PN
or a full PN SPAwaveform, as the phase is exactly the same
for both. Notice also that this dephasing is dominated by the
error in the tð�Þ function, i.e. the error in the time inversion
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FIG. 9 (color online). Left: Fourier dephasings between the DFT and either the SPA waveform (solid black curve), a spin-aligned
SPA waveform (dot-dashed green curve), and a nonspinning SPA waveform (dotted blue curve), together with a reference line (thick
red curve) at 1 rad, as a function of frequency on the bottom x axis, and accumulated time-domain GW phase on the top x axis. Observe
that the SPA phase approximates the DFT one to high accuracy over the entire inspiral evolution, which spans nearly 105 radians of
GW phase. Right: DFT (solid black curve), full SPA (dashed orange curve), restricted PN SPA (dashed red curve), spin-aligned SPA
(dot-dashed green curve), and nonspinning SPA (dotted blue curve) Fourier amplitudes. Observe that the full and restricted SPA
amplitudes can faithfully model the precession amplitude oscillations, while the spin-aligned and nonspinning models cannot. Observe
also that the overall frequency dependence of the DFT amplitude is not quite f�7=6 due to PN corrections to the orbital frequency
evolution, and that it is correctly modeled in the full SPA.

6The latter two waveforms are well known in the literature
[12,13], and they can be obtained by setting either the spin
angular momentum to be aligned with the orbital angular mo-
mentum or the spins to zero in Eq. (105). In either case there is
no precession.
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is roughly 0.2 milliseconds at 400 Hz (see Fig. 5), and thus,
the error in 2�ftðfÞ 
 0:5 rads at 400 Hz.

The right panel of Fig. 9 shows the Fourier amplitude

multiplied by ðDLf
7=6Þ as a function of GW frequency in

Hz for the DFTwaveform (solid black curve), the full SPA
waveform (dashed orange curve), the restricted PN SPA
waveform (dashed red cube), the spin-aligned SPA wave-
form (dot-dashed green curve), and the nonspinning SPA
waveform (dotted blue curve). Observe that the latter two
are flat since these waveforms neglect precession alto-
gether. Observe also that both the restricted and the full
SPA waveforms can capture the precession amplitude os-
cillations present in the DFT amplitude. The full SPA
amplitude, however, does better than the restricted one.
Both the restricted and the full SPA amplitudes, however,
dephase with respect to the DFTamplitude after roughly 35
cycles of precession oscillations. This dephasing could be
eliminated if one extended the results of this paper to
include all Oð	2sÞ effects. In practice, this dephasing will
induce a systematic error in the determination of spin
parameters, but we expect this systematic error to be small.

Figure 10 verifies that the error contained in the SPA
waveform indeed scales with spin squared. This figure
shows the Fourier phase difference as a function of GW
frequency in Hz between the DFT and either the restricted

SPAwaveforms with equal spins of �ð1Þ ¼ 0:1 (solid black

curve), �ð2Þ ¼ �ð1Þ=2 ¼ 0:05 (red dashed curve), or �ð3Þ ¼
�ð1Þ=4 ¼ 0:025 (blue dotted curve). The differences com-

puted for the �ð2Þ and �ð3Þ systems were multiplied by a

factor of ð�ð1Þ=�ð2ÞÞ2 ¼ 4 and ð�ð1Þ=�ð3ÞÞ2 ¼ 16, respec-
tively. If the uncontrolled remainder in the SPA is of

Oð	2sÞ, we would expect these phase differences to roughly
lay on top of each other; Fig. 10 verifies this expectation.
Notice that the restricted SPAwaveform contains errors of
Oð	sÞ in the waveform amplitude because of the truncation

of €� at leading PN order. Therefore, we do not expect the
same scaling to be true for the Fourier amplitude of the
restricted SPA.
Figure 9 suggests that nonspinning and spin-aligned

SPA waveforms are inadequate for parameter estimation
of precessing and spinning inspirals, but is there a suffi-
ciently small value of �1;2 for which this would not be the

case? Figure 11 investigates this question by plotting the
dephasing between the DFTand either the SPA (solid black
curves), the spin-aligned SPA (dot-dashed green curves) or
the nonspinning SPA (dotted blue curves) waveforms, for
systems with equal spins of 0.1 (thicker curves) and spins
of 10�3 (thinner curves). Observe that only when the spins
become smaller than Oð10�3Þ does the dephasing of the
spin-aligned or nonspinning SPAwaveforms become com-
parable to 1 rad. This suggests that parameter estimation
systematics would be introduced if one used spin-aligned
waveforms to analyze precessing signals when the dimen-
sionless spin magnitude of the latter exceeds 10�3.
One may also wonder whether there are small enough

misalignment angles ð�SA; �SAÞ that the DFT Fourier phase

can be well modeled by a spin-aligned SPA waveform.
Figure 12 addresses this question by plotting the dephasing
between spin-aligned SPA waveform and the DFT of a
waveform corresponding to a system with the same pa-
rameters as those of the test system, but with misalignment

angles between ŜA and L̂ multiplied by a small factor 	.
Different curves in this figure correspond to different
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FIG. 10 (color online). Phase difference as a function of GW
frequency in Hz. The solid black curve corresponds to the test
system with equal spins of �ð1Þ ¼ 0:1, while the dashed red and
dotted blue ones to the same system but with equal spins of
�ð2Þ ¼ �ð1Þ=2 ¼ 0:05 and �ð3Þ ¼ �ð1Þ=4, respectively. The latter
are multiplied by a factor of ð�ð1Þ=�ð2ÞÞ2 ¼ 4 and ð�ð1Þ=�ð3ÞÞ2 ¼
16. Observe that the curves lie roughly on top of each other,
indicating that uncontrolled remainders in the SPA waveform
phase are of Oð	2sÞ as expected.
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FIG. 11 (color online). Dephasing between the DFT Fourier
phase and the SPA (solid black curves), the spins-aligned SPA
(dot-dashed green curves) and the nonspinning SPA (dotted blue
curves), for systems with dimensionless spins of 10�1 (thicker)
and 10�3 (lighter). Observe that the dephasing between the DFT
and the spin-aligned or nonspinning SPA waveforms reaches
roughly 10 rads even for spins of 10�3.
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values of 	. For reference, we include a (thick, red) line at
1 rad of dephasing. We also include the dephasing between
the DFT of a waveform for a system with 	 ¼ 1 and the
new SPA waveforms computed in this paper (black solid
curve). Observe that for the spin-aligned SPAwaveform to
dephase by less than 1 rad, 	 < 0:05, implying misalign-
ment angles of less than 4�. Even for such small misalign-
ment angles, the spin-aligned SPA waveform will miss all

the precession-induced amplitude modulations, inducing
systematic errors in parameter estimation.

2. Full waveform

Let us now focus on waveforms that include all PN
amplitude corrections, including higher harmonics. The
numerical waveform will then be the DFT of Eq. (88),
keeping all known modes, i.e. up to n ¼ 7. This then
implies that numerical solutions to the time evolution of
the angular momenta must be started at sufficiently low
orbital frequency, such that the highest harmonic (n ¼ 7)
contributes at 10 Hz (see discussion in Sec. IVD). The full
SPA waveform is similarly given by Eq. (98), keeping all
known harmonics, while the restricted SPA is again given
by Eq. (105).
The left panel of Fig. 13 shows the difference between

the full DFT and SPA (solid black curve) Fourier phases as
a function of GW frequency in Hz, for the test system
described in Sec. II E. For reference, we include a hori-
zontal (thick red) curve at 1 rad. We only show a single
curve for the SPAwaveform, since the Fourier phase is the
same for the restricted and full SPA templates. Observe
that the dephasing is still roughly 10�1 rads, as we found
earlier when looking at a single harmonic.
The right panel of Fig. 13 shows the full DFT (black

solid curve), the full SPA (dashed orange curve), and the
restricted SPA (solid red curve) Fourier amplitudes, nor-

malized to f7=6DL, as a function of GW frequency in Hz.
The inset shows a zoom to the region close to 10 Hz. This
figure presents a number of interesting features. First,
notice that the full DFT and SPA amplitude curves are
thick. This thickness is not due to numerical noise, but
rather due to the beating of higher harmonics that induce
high frequency oscillations. This feature is not present in
the restricted SPA amplitude, as this neglects higher
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FIG. 12 (color online). Dephasing between a spin-aligned SPA
phase and the DFT Fourier phase of a system with misalignment
angles ð�SA ;�SA Þ equal to the test system’s but multiplied by 	.

In all cases, the spin magnitude is �A ¼ 0:1 and all other
parameters are identical to the test system’s. Different curves
correspond to different values of 	. We include, for reference, a
(thick, red) horizontal line at a dephasing of 1 rad, and the
dephasing between the DFT and the SPA misaligned waveform
of this paper for 	 ¼ 1. Observe that only for values of 	 < 0:05,
which corresponds to an angle of only 4� between the spin and
the orbital angular momenta, is the dephasing of Oð1 radÞ when
using a spin-aligned SPA template.

FIG. 13 (color online). Left: difference between the full DFT and SPA Fourier phases (solid black curve) as a function of GW
frequency in Hz, together with a reference line (thick red curve) at 1 rad. Observe that the SPA phase approximates the Full DFTone to
high accuracy over the entire inspiral evolution. Right: full DFT (solid black curve), full SPA (dashed orange curve), and restricted PN
SPA (solid red curve) Fourier amplitudes. Observe that the full and restricted SPA amplitudes can faithfully model the precession
amplitude oscillations, with the latter losing accuracy as the frequency increases.

GRAVITATIONAL WAVEFORMS FOR PRECESSING, . . . PHYSICAL REVIEW D 88, 063011 (2013)

063011-19



amplitude harmonics all together. Second, notice that the
average of the full DFT Fourier amplitude tends to de-
crease with frequency. This feature is captured by the full
SPA amplitude, because it includes high PN order effects
that induce this trend. The restricted SPA amplitude, how-
ever, cannot recover this trend, since it retains the lowest
PN order terms only. Third, in spite of not perfectly match-
ing the full DFT waveform, the restricted SPA amplitude
does a superb job at catching the initial oscillations of the
full DFT up to roughly 100 Hz. This is important because
most of the power accumulates between 10 and 100 Hz for
NS binary inspirals.

V. DATA ANALYSIS COMPARISONS

In this section we perform a more detailed data analysis
comparison for a variety of different systems. This com-
parison will be based on the faithfulness measure, namely

Fh1;h2 �
ðh1jh2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðh1jh1Þðh2jh2Þ

p ; (108)

where h1;2 are different waveforms with the same physical

parameters. The inner-product is defined in the usual way:

ðh1jh2Þ � 4<
Z fmax

fmin

~h1 ~h
�
2

Sn
df; (109)

where <½�� is the real part operator, ðfmin ; fmax Þ are the
boundaries of the detector’s sensitivity band, Sn is the de-

tector’s spectral noise density, and ~h denotes the Fourier
transformofh. Given this definition, the fitting factorFF~h1 ~h2

is nothing but the faithfulness maximized over all template
parameters, which then implies that FF~h1 ~h2

� F~h1 ~h2
.

We concentrate here on NS binary inspirals, and thus, on
sources suitable for detection with ground-based instru-
ments, such as LIGO. When calculating overlaps through
Eq. (108), we choose fmin ¼ 10 Hz and fmax ¼ 10 kHz,
with observation times of about 3� 105 seconds since the
lowest harmonic evolves from forb ¼ 10=7 Hz to coales-
cence. We here employ an Advanced LIGO noise curve
given by [58]

SnðfÞ ¼ 10�49

�
�f�4:14 � 5

�f
þ 111

�
1� �f2

�
1� 1

2
�f2
��

�
�
1� 1

2
�f2
��1

�
; (110)

where we have defined the dimensionless frequency �f ¼
f=ð215 HzÞ. We use a Tukey window in all our waveforms
with the parameters described in Sec. IVD. The Tukey
window is sufficiently slowly varying that we can include it
in the amplitudes of our SPA waveforms.

The image of the faithfulness measure is in the interval
½�1; 1�; it quantifies how well waveforms agree with each
other, with unity representing perfect agreement. All inte-
grations are done numerically, with errors of Oð10�5Þ;

thus, we consider that a match of F~h1 ~h2
¼ 0:9999 is con-

sistent with unity. Conventionally, a fitting factor about
97% is generally considered to be sufficient for detection.
Therefore, a faithfulness of 98% certainly implies a fitting
factor of at least 98%, which is also good enough for
detection.
The faithfulness measure will be evaluated using a full

DFT waveform as the signal and either the full SPA or the
restricted SPA as the template. That is, the full DFT
waveform will be our reference waveform, to which the
other two template families will be compared.
Before proceeding, let us add one last word of caution.

Faithfulness comparisons are conservative because the
match is not maximized over physical parameters, such
as the total mass, mass ratio, spin magnitudes, or angles.
Higher matches would indeed be obtained if we allowed
the templates to have different physical parameters from the
signal, as one does in parameter estimation. Such higher
matches, of course, will come at the cost of a systematic bias
in the recovered parameters. We leave such a study for
future work.
Instead of working with a particular system (like the test

one of Sec. II E), we perform a Monte-Carlo simulation
with 1000 points in parameter space, with all system
parameters randomized, except for the dimensionless
spin magnitudes, which will be set to be equal to each
other and constant along each run. We consider systems
with individual masses in the range ð1:2; 2Þ M	, appropri-
ate for NSs, with a flat distribution in log space. The
distribution of unit vectors is chosen to be uniform on the
sphere.
Figure 1 already showed the median match and 68%

(1�) interval regions between the full DFT-full SPA
waveform (red solid curve), the full DFT-restricted SPA
waveform (green dot-dashed curve), the full DFT-full spin-
aligned SPA waveform (blue dashed curve), and the full
DFT-full nonspinning SPA waveform (magenta dotted
curve) as a function of spin magnitude �A. We observed
that the faithfulness of the new precessing waveform fam-
ilies is above 99% for all systems considered, which is
dramatically better than the faithfulness when using spin-
aligned or nonspinning templates. In fact, this figure sug-
gests that the latter two could introduce serious systematic
errors in parameter estimation. The performance of the full
and restricted SPA families is very similar because their
difference is dominantly due to odd amplitude harmonics,
which are proportional to the dimensionless mass differ-
ence, a small number for binary NSs. This results in higher
harmonic corrections being unimportant when the faithful-
ness reaches F * 0:999.
One may wonder how the faithfulness behaves as a

function of intrinsic parameters. The two that are perhaps
most important are the component masses; in this case,M1

and M2 have a rather limited range because we are con-
sidering NS binaries. Figure 14 presents contour plots of
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the faithfulness in the ðM1;M2Þ plane for systems with
equal dimensionless spin magnitudes of 0.04 (left panel)
and 0.1 (right panel). We considered 1000 systems with all
parametrized randomized, except for the spin magnitudes.
The value of the faithfulness at any given point is the
median value inside a circle centered at that point with
radius 0:1M	. Observe that the faithfulness is largest along
the equal-mass symmetry line. Perhaps this is because in
the equal-mass limit, odd harmonics are suppressed and
precession becomes simple harmonic, when neglecting
spin-spin interactions.

VI. BEYOND THE EARLY INSPIRAL

The starting frequency of our numerical comparisons cor-
responds to the beginning of the LIGO sensitivity band, but
the ending frequency (400Hz) does not correspond to the end
of this band or to themerger frequency. Rather, it corresponds
to the frequency at which finite-size effects can no longer be
neglected [49–51]. In this section we summarize how such
effects could be taken into account, extending thewaveforms
obtained in this paper beyond 400 Hz.

The finite-size effects give rise to two types of deforma-
tions: (i) multipole and (ii) tidal. The former are described
by the NS’s multipole moments, which measure how much
the object is deformed away from sphericity. The latter are
caused by the companion’s external field and they are
quantified by the tidal Love number [59–61] that character-
izes the deformability of the NS.

The leading-order multipole effect is the quadrupole one
which is an Oð	2sÞ effect entering the GW as a 2PN phase
correction given by [62,63]

��Q
n ¼ 75n

256vn

�
Q1

M2
1M2

þM1

M2

�2
1

�
½3ðŜ1 � L̂Þ2�1�þ1$ 2;

(111)

where recall that vn ¼ ð2�Mf=nÞ1=3 and n is the harmonic
number. In the above equation, QA is the quadrupole mo-
ment of each binary component.7 In principle there are
higher-order multipole deformations that affect the wave-
form phase, but these are proportional to higher powers of
spin, and thus, negligible.
On the other hand, the tidal deformations caused by the

gravitational field of the companion will result in a 5PN
phase correction [65]

���
n ¼ � 9n

32�

�
1þ 12

M2

M1

�
�1

M5
v5
n þ 1 $ 2; (112)

where �A is the tidal Love number of the Ath binary
component. Corrections to the above equation up to
2.5PN can be found in [66,67].
Even though we can use Eqs. (111) and (112) to mini-

mize the error induced by the point-particle approximation,
we still cannot extend the region of validity of inspiral PN
waveforms beyond a certain frequency. For sure one can-
not use simple inspiral waveform beyond the frequency at
which the two NSs touch. This contact frequency can be
approximated by that at which the NS’s separation is equal
to the sum of their radii, neglecting tidal deformations.

FIG. 14. Faithfulness contour plot in the ðM1;M2Þ plane for systems with equal spin magnitudes of 0.04 (left panel) and 0.1 (right
panel). Each point in the contour plot corresponds to the median faithfulness inside a circle centered at the given point with a radius of
0:1M	. We considered a total of 1000 system with all parameters (except for the spin magnitudes) randomized over. Observe that the
faithfulness is highest along the equal mass line because precession is suppressed there by symmetry.

7As in Ref. [64], we normalize QA such that Eq. (111) gives
the contribution to the phase from deviations of the quadrupole
moment from the BH value.
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In Table III we give an estimate of that frequency for our
test system [see Sec. II E] for various equations of state
(EoS). We see that for all EoS considered here, the regime
we study can be considered to be the early inspiral, where
finite-size effects have not yet started to have an observable
signature in the waveforms.

Beyond this frequency the system enters the highly
nonlinear and dynamical merger phase, the outcome of
which is still rather uncertain [72–78]. Depending on the
EoS and the mass ratio, the merger remnant might be a
hypermassive NS, which then collapses to a BH, or it could
simply collapse directly to a BH. In either case, nonlinear
dynamics play an important role and would have to be
mimicked in some phenomenological way if one wishes to
construct an effective analytical template.

VII. DISCUSSION

We provided computationally inexpensive, analytical
waveforms for spinning binaries with small spins. We do
so by first obtaining an analytic perturbative solution to the
spin precession equations and, then, by analytically Fourier
transforming the resulting time domain waveform.

Each step of the calculation has been aided by a series of
approximations which we have tried to make explicit
throughout the main body of this paper. In what follows,
we discuss how to improve on these approximations and
comment on the implications:

(1) PN order: Equations (1)–(3) describe the conserva-
tive evolution of the spin angular momenta, which
are here modeled to next-to-next-to-leading order in
the spin-orbit interaction and to leading order in the
spin-spin interaction. The spin-orbit terms lead to
corrections in the waveform phase up to 3.5PN
relative order, while the spin-spin terms lead to
correction at 2PN order. When higher PN order
corrections to these equations are computed, one
could include these in the formalism presented
here in a straightforward manner.

(2) Adiabatic approximation: Equations (1)–(3) are
valid in an adiabatic approximation, because they
are derived after orbit averaging the full evolution
equations [79], thus ignoring oscillations that could
appear on an orbital time scale. These oscillations
could lead to nonsecular effects that we expect
would be greatly subdominant relative to all other

uncontrolled remainders already present in our
waveforms. But if the adiabatic approximation is
not valid or if eccentricity is present, these oscilla-
tions could lead to secularly growing effects that do
not average out and lead to corrections larger than
other uncontrolled remainders. One could investi-
gate whether the adiabatic approximation is valid or
not by comparing our solution to a numerical one
obtained from the full equations.

(3) Spin magnitude: Perhaps the most important ap-
proximation made in this paper is that of the mag-
nitude of the spins being small. Figure 1 shows that
even for values of �� 0:2, the faithfulness is still
above 99%. Extending our calculation to second
order in spin is straightforward. One would first
include the spin-spin interactions in Eqs. (1)–(3),
and then extend their solution to Oð	2sÞ.

(4) Separation of time scales: Another important ap-
proximation used to derive our waveforms is that
all time scales in the problem separate, so that
multiple scale analysis can be employed when solv-
ing the Oð	sÞ precession equations. One could im-
prove on this approximation by keeping the next
order term in 	p terms. In practice, however, we find

that this improvement is truly negligible, because it
would be of Oð	s � 	2pÞ.

(5) SPA: The validity and suitability of the SPA may be
compromised for two reasons: (i) the leading-order
correction to the SPA may be necessary to accu-
rately model the Fourier transform; (ii) precession
may lead to a complete break-down of the SPA. As
for (i), we extended the results of [56] to 3PN
beyond leading, which were found to be important;
further extensions are straightforward, but seem
unnecessary. As for (ii), Fig. 8 explicitly shows
that the probability the SPA will break for binary
neutron star systems is remarkably tiny.

(6) Tidal interactions: All the equations used in this
paper, and therefore, the waveforms derived here,
neglect finite-size effects. In particular, we have
neglected all multipole deformations as well as tidal
effects that NSs can experience during coalescence.
One could easily include these corrections by add-
ing the terms given in Eqs. (111) and (112).

The waveform family presented here is a definite step
towards modeling spinning binaries and constructing
waveforms that can be used for parameter estimation.
Figure 1 has explored how efficient this waveform family
is by calculating the faithfulness between full numerical
waveforms and analytical ones, but a full data analysis
parameter estimation study is still missing. In the future,
one could carry out such a study by injecting a generically
spinning, precessing signal, and measuring how well it
could be recovered by the templates calculated here
through Bayesian tools [80,81].

TABLE III. Frequency at which the separation of the two NSs
is equal to the sum of their radii for various EoS.

EoS R1 (km) R2 (km) f (Hz)

APR [68] 12.2 12.2 1425

SLy [69] 11.4 11.6 1553

LS220 [70] 12.7 13.4 1292

Shen [71] 14.5 14.9 1089
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The waveform family computed in this paper fails to
capture the strong precession effects induced by rapidly
spinning compact objects with arbitrary spin orientations,
like BHs. Astrophysical BHs can easily have dimension-
less spin magnitudes larger than 0.1, thus violating our
small spins approximation. One could extend the calcula-
tion of this paper to next order in Oð	sÞ and study whether
the extended solution is now accurate enough to model
moderately spinning BHs.

Another approach would be to use a slightly different
background to perturb about, instead of nonspinning bi-
naries. Reference [36] showed that when only a single
component of a spinning binary is actually spinning, then
the precession equations can be solved exactly and the
resulting motion is simple precession. Introducing a small
spin on the companion and perturbing about simple
precession, one may obtain waveforms that could model
BH-NS binaries. We leave the study of this system for
future work.
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APPENDIX A: RADIATION-REACTION
COEFFICIENTS

The PN equation for the evolution of the orbital fre-
quency is given by

_! ¼ a0
M2

ðM!Þ11=3
�
1þX11

i¼2

½ai þ bi ln ðM!Þ�ðM!Þi=3
�

þOðc�12Þ: (A1)

The evolution equation including spins is known up to
3.5PN order [82–85], where the nonzero coefficients of
the log-independent terms are

a0 ¼ 96

5
�; (A2)

a2 ¼ � 743

336
� 11

4
�; (A3)

a3 ¼ 4�� �3; (A4)

a4 ¼ 34103

18144
þ 13661

2016
�þ 59

18
�2 � �4; (A5)

a5 ¼ � 4159
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�� 189
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��� �5; (A6)

a6 ¼ 16447322263

139708800
þ 16

3
�2 � 856
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ln 16� 1712

105
�E � �6

þ �

�
451

48
�2 � 56198689

217728

�
þ �2 541

896
� �3 5605

2592
;

(A7)

a7 ¼ � 4415

4032
�þ 358675

6048
��þ 91495

1512
��2 � �7: (A8)

with

�3 ¼ 1

M2

X
A�B

�
113

12
þ 25

4

MB

MA

�
SA � L̂; (A9)

�5 ¼ 1

M2

X
A�B
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31319

1008
� 1159

24
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84
� 281

8
�

��
SA � L̂; (A10)

�6 ¼ �
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X
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SA � L̂; (A11)

�7 ¼ 1

M2

X
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� 796069
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�þ 100019
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�
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� 257023
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�þ 2903
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SA � L̂;

(A12)

�4 ¼ 1

�M3

�
247

48
S1 � S2 � 721

48
ðS1 � L̂ÞðS2 � L̂Þ

�

þX
A

1

M2M2
A

�
233

96
S2A � 719

96
ðSA � L̂Þ2

�
: (A13)

where �E is the Euler constant. To this same order,
the nonzero coefficients of the log-dependent terms
are [82–85]

b6 ¼ � 1712

315
: (A14)

In reality, the evolution of the orbital frequency in
Eq. (A1) is consistent only up to 2.5PN order, since it
does not include 3PN and 3.5PN spin-spin terms. The latter,
to our knowledge, have not been calculated to date.
One can extend the evolution equation of the orbital

frequency [Eq. (A1)] beyond 3.5PN order by including
higher-order terms in the binding energy and GW luminos-
ity known in the nonspinning, point-particle limit, namely
[47,86], and then keeping higher orders in the Taylor ex-
pansion of _! ¼ LGWðdE=d!Þ�1. Note that we do not
include here BH absorption terms, as we are interested in
binary NS systems. Also, the 4PN spin-orbit term has been
recently calculated [87]. Then, the log-independent coeffi-
cients are

GRAVITATIONAL WAVEFORMS FOR PRECESSING, . . . PHYSICAL REVIEW D 88, 063011 (2013)

063011-23



a8 ¼ 3971984677513

25427001600
þ 127751

1470
ln 2� 47385

1568
ln 3þ 124741

4410
�E � 361

126
�2 þ 82651980013

838252800
�� 1712

315
� ln 2

� 856

315
�E�� 31495

8064
�2�þ 54732199

93312
�2 � 3157

144
�2�2 � 18927373

435456
�3 � 95

3888
�4 � �8; (A15)

a9 ¼ 343801320119

745113600
�� 13696

105
� ln 2� 6848

105
��E � 51438847

48384
��þ 205

6
�3�þ 42680611

145152
��2 þ 9731

1344
��3; (A16)

a10 ¼ 29619150939541789

36248733480960
� 107638990

392931
ln 2þ 616005

3136
ln 3� 11821184

1964655
�E � 21512

1701
�2 � 884576519037433

228843014400
�

þ 2105111

8820
� ln 2� 15795

3136
� ln 3þ 3090781

26460
�E�þ 14555455

217728
�2�þ 1175999369413

914457600
�2 � 4708

945
�2 ln 2

� 126809

3024
�2�2 � 2354

945
�E�

2 � 9007327699

11757312
�3 þ 9799

384
�2�3 þ 51439207

1741824
�4 � 34613

186624
�5; (A17)

a11 ¼ 91347297344213

81366405120
�þ 5069891

17640
� ln 2� 142155

784
� ln 3þ 311233

5880
��E � 1903651780081

4470681600
��� 6848

315
�� ln 2

� 3424

315
��E�� 26035

16128
�3�þ 1760705531

290304
��2 � 112955

576
�3�2 � 7030123

13608
��3 þ 49187

6048
��4; (A18)

where
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is the 4PN spin-orbit term and the log-dependent coefficients are

b8 ¼ � 856

315
�þ 124741
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; (A20)
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�; (A21)
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b11 ¼ 311233
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�� 3424

315
��: (A23)

We stop the expansion at 5.5PN order for convenience only; if deemed necessary, one could include higher-order
terms [48,86].

APPENDIX B: COEFFICIENTS IN THE TIME-DOMAIN EXPANSION OF THE PN PARAMETER �

The PN parameter � � ðM!Þ1=3 with 5.5PN radiation reaction, is given as a function of time to 5.5PN by

� ¼ 
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where the nonzero PN coefficients are
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where tc is an integration constant at which 
 diverges. In our analysis, tc is picked such that at t ¼ 0 the system enters the
LIGO band with f ¼ 10 Hz, where f is the gravitational wave frequency, which is twice the orbital frequency.

The coefficients ðai; biÞ are given in Appendix A.

APPENDIX C: PRECESSION PHASE COEFFICIENTS

The precession phase is given by Eq. (35) where we have defined the nonzero coefficients
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where A 2 f1; 2g and the constants CðnÞ
A are given in Eqs. (5)–(7).

APPENDIX D: ORBITAL PHASE COEFFICIENTS

The orbital phase to 8PN order as a function of � is given by Eq. (71), where the nonzero PN coefficients are
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a10a4a2 þ 15

11
a10a

2
3

� 20

11
a10a

3
2 þ

30

121
b10a6 � 180

1331
b10b6 � 90

121
b10a4a2 � 45

121
b10a

2
3 þ

60

121
b10a

3
2 �

10

11
a9a7 þ 30

11
a9a5a2

þ 30

11
a9a4a3 � 60

11
a9a3a

2
2 þ

30

121
b9a7 � 90

121
b9a5a2 � 90

121
b9a4a3 þ 180

121
b9a3a

2
2 �

5

11
a28 þ

30

11
a8b8

þ 30

11
a8a6a2 � 90

121
a8b6a2 þ 30

11
a8a5a3 þ 15

11
a8a

2
4 �

60

11
a8a4a

2
2 �

60

11
a8a

2
3a2 þ

25

11
a8a

4
2 �

90

1331
b28

� 90

121
b8a6a2 þ 540

1331
b8b6a2 � 90

121
b8a5a3 � 45

121
b8a

2
4 þ

180

121
b8a4a

2
2 þ

180

121
b8a

2
3a2 �

75

121
b8a

4
2 þ

15

11
a27a2

þ 30

11
a7a6a3 � 90

121
a7b6a3 þ 30

11
a7a5a4 � 60

11
a7a5a

2
2 �

120

11
a7a4a3a2 � 20

11
a7a

3
3 þ

100

11
a7a3a

3
2 þ

15

11
a26a4

� 30

11
a26a

2
2 �

90

121
a6b6a4 þ 180

121
a6b6a

2
2 þ

15

11
a6a

2
5 �

120

11
a6a5a3a2 � 60

11
a6a

2
4a2 �

60

11
a6a4a

2
3 þ

100

11
a6a4a

3
2

þ 150

11
a6a

2
3a

2
2 �

30

11
a6a

5
2 þ

270

1331
b26a4 �

540

1331
b26a

2
2 �

45

121
b6a

2
5 þ

360

11
b6a5a3a2 þ 180

121
b6a

2
4a2 þ

180

121
b6a4a

2
3

� 300

121
b6a4a

3
2 �

450

121
b6a

2
3a

2
2 þ

90

121
b6a

5
2 �

60

11
a25a4a2 �

30

11
a25a

2
3 þ

50

11
a25a

3
2 �

60

11
a5a

2
4a3 þ

300

11
a5a4a3a

2
2

þ 100

11
a5a

3
3a2 �

150

11
a5a3a

4
2 �

5

11
a44 þ

50

11
a34a

2
2 þ

150

11
a24a

2
3a2 �

75

11
a24a

4
2 þ

25

11
a4a

4
3 �

300

11
a4a

2
3a

3
2 þ

35

11
a4a

6
2

� 75

11
a43a

2
2 þ

105

11
a23a

5
2 �

5

11
a82; (D14)

�orb;‘
5 ¼ 5a5 � 10a3a2; (D15)

�orb;‘
6 ¼ 15b6; (D16)

�orb;‘
8 ¼ 5b8 � 10b6a2; (D17)

�orb;‘
9 ¼ 15

4
b9 � 15

2
b6a3; (D18)

�orb;‘
10 ¼ 3b10 � 6b8a2 � 6b6a4 þ 9b6a

2
2; (D19)

�orb;‘
11 ¼ 5

2
b11 � 5b9a2 � 5b8a3 � 5b6a5 þ 15b6a3a2; (D20)

� 30

7
a6b6 þ 90

49
b26 þ

90

7
b6a4a2 þ 45

7
b6a

2
3 �

60

7
b6a

3
2; (D21)

CHATZIIOANNOU et al. PHYSICAL REVIEW D 88, 063011 (2013)

063011-28



�orb;‘
12 ¼ � 30

7
b10a2 � 30

7
b9a3 � 30

7
b8a4 þ 45

7
b8a

2
2

�orb;‘
13 ¼ � 15

4
b11a2 � 15

4
b10a3 � 15

4
b9a4 þ 45

8
b9a

2
2 �

15

4
b8a5 þ 45

4
b8a3a2 � 15

4
a7b6 þ 45

4
b6a4a3

þ 45

4
b6a5a2 � 45

2
b6a3a

2
2; (D22)

�orb;‘
14 ¼ � 10

3
b10a45b10a2a2 � 10

3
b9a5 þ 10b9a3a2 � 10

3
a8b6 � 10

3
b8a6 þ 20

9
b8b6 þ 10b8a4a2 þ 5b8a

2
3 �

20

3
b8a

3
2

� 10

3
b11a3 þ 10a6b6a2 � 10

3
b26a2 þ 10b6a5a3 þ 5b6a

2
4 � 20b6a4a

2
2 � 20b6a

2
3a2 þ

25

3
b6a

4
2; (D23)

�orb;‘
15 ¼ �3b11a4 þ 9

2
b11a

2
2 � 3b10a5 þ 9b10a3a2 � 3a9b6 � 3b9a6 þ 9

5
b9b6 þ 9b9a4a2 þ 9

2
b9a

2
3 � 6b9a

3
2

� 3b8a7 þ 9b8a5a2 þ 9b8a4a3 � 18b8a3a
2
2 þ 9a7b6a2 þ 9a6b6a3 � 27

10
b26a3 þ 9b6a5a4 � 18b6a5a

2
2

� 36b6a4a3a2 � 6b6a
3
3 þ 30b6a3a

3
2; (D24)

�orb;‘
16 ¼ � 30

11
b11a5 þ 90

11
b11a3a2 þ 45

11
b10a

2
3 �

60

11
b10a

3
2 þ

180

121
b10b6 � 30

11
a10b6 � 30

11
b10a6 þ 90

11
b10a4aþ

90

11
a9b6a22

� 30

11
b9a7 þ 90

11
b9a5a2 þ 90

11
b9a4a3 � 180

11
b9a3a

2
2 �

30

11
a8b8 þ 90

121
b28 þ

90

11
b8a6a2 � 540

121
b8b6a2

þ 90

11
b8a5a3 þ 45

11
b8a

2
4 �

180

11
b8a4a

2
2 �

180

11
b8a

2
3a2 þ

75

11
b8a

4
2 þ

90

11
a7b6a3 þ 90

11
a6b6a4 � 180

11
a6b6a

2
2

� 270

121
b26a4 þ

540

121
b26a

2
2 þ

45

11
b6a

2
5 �

360

11
b6a5a3a2 � 180

11
b6a

2
4a2 �

180

11
b6a4a

2
3 þ

300

11
b6a4a

3
2

þ 450

11
b6a

2
3a

2
2 �

90

11
b6a

5
2; (D25)

�orb;‘2

12 ¼ � 45

7
b26; (D26)

�orb;‘2

14 ¼ 15b26a2 � 10b8b6; (D27)

�orb;‘2

15 ¼ 27

2
b26a3 � 9b9b6; (D28)

�orb;‘2

16 ¼ � 90

11
b10b6 � 45

11
b28 þ

270

11
b8b6a2 þ 135

11
b26a4 �

270

11
b26a

2
2: (D29)

The constant of integration �orb
0 is calculated by solving �orbðt ¼ 0Þ ¼ 0 and the radiation reaction coefficients ðan; bnÞ

are given in Appendix A.

APPENDIX E: SECOND TIME DERIVATIVE OF PHASES

In this appendix, we provide the second time derivatives of different phases that go into the Fourier amplitude of
Eq. (99). The second time derivative of the orbital phase as a function of � is

€�orb ¼ 3
�2 _�

M
¼ a0

M2
�11

�
1þX11

i¼2

ðai þ 3bi ln�Þ�i

�
; (E1)

where the ðai; biÞ coefficients are given in Appendix A. The second time derivative of the Thomas phase is, at leading order
in the spin parameters,

� €� ¼ L̂ � N̂
1� ðL̂ � N̂Þ2 ðL̂� N̂Þ � €̂L; (E2)

while the second time derivative of the inclination and polarization angle is, at leading order in the spin parameters,
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€� ¼ �
€̂L � N̂

½1� ðL̂ � N̂Þ2�1=2 ; (E3)

and the polarization phase is, at leading order in the spin parameters,

€c ¼ N̂ � ðL̂� ẑÞ½ €̂L � ẑ� ð €̂L � N̂Þðẑ � N̂Þ� � N̂ � ð €̂L� ẑÞ½L̂ � ẑ� ðL̂ � N̂Þðẑ � N̂Þ�
½N̂ � ðL̂� ẑÞ�2 þ ½L̂ � ẑ� ðL̂ � N̂Þðẑ � N̂Þ�2 : (E4)

Equations (E2)–(E4) depend on derivatives of the unit vector angular momentum. The second time derivative
€̂L is

computed from the analytical solution to the angular momentum in Eqs. (54)–(56).
To first order in the spins, and ignoring radiation reaction, since these terms are subdominant, the above equations

simplify to

� €� ¼ Nz;s

1� N2
z;s

C2
1�

11�

M2
f½S1;yð0ÞNx;s � S1;xð0ÞNy;s� cos�1 þ ½S1;xð0ÞNx;s þ S1;yð0ÞNy;s� sin�1g þ 1 $ 2; (E5)

€� ¼ � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� N2

z;s

q C2
1�

11�

M2
f½S1;xð0ÞNx;s þ S1;yð0ÞNy;s� cos�1 � ½S1;yð0ÞNx;s � S1;xð0ÞNy;s� sin�1g þ 1 $ 2; (E6)

€c ¼ ðNx;s sin�0 � Nz;s cos �0Þ2 � 1

N2
y;ssin

2�0 þ ½Nx;sNz;s sin �0 þ ð1� N2
z;sÞ cos �0�2

C2
1�

11�

M2
f½S1;yð0ÞNx;s � S1;xð0ÞNy;s� cos�1

þ ½S1;xð0ÞNx;s þ S1;yð0ÞNy;s� sin�1g þ 1 $ 2; (E7)

where N̂s ¼ ðNx;s; Ny;s; Nz;sÞ is the line-of-sight vector in the source frame and �0 is the polar angle of the total angular
momentum in the detector frame.

Finally, we can ignore €�log since it is proportional to �19 and truly negligible.

APPENDIX F: TIME-DOMAIN WAVEFORM AMPLITUDES

In this appendix, we provide explicit expressions for the 2.5PN term of the amplitude coefficients An;k;m that

parametrize the response function in Eqs. (88) and (89). This term is to be added to the expressions given in
Appendix E of [41], that are valid to 2PN order. If we define

AF � 1

2
ð1þ cos 2�Þ cos 2�; (F1)

BF � cos � sin 2�; (F2)

and use [54] to compute the amplitudes An;k;m, we find at 2.5PN order

A1;1;2 ¼ �A1;�1;2 ¼ �A�
1;1;�2 ¼ A�

1;�1;�2 ¼ �MðBF � iAFÞ
�
262901

3932160
þ 392045

589824
�� 188615

2359296
�2

�
�5; (F3)

A1;2;2 ¼ �A1;�2;2 ¼ A�
1;2;�2 ¼ �A�

1;�2;�2 ¼ �MðBF � iAFÞ
�
1527

327680
� 52195

147456
�þ 16105

589824
�2

�
�5; (F4)

A1;3;2 ¼ �A1;�3;2 ¼ �A�
1;3;�2 ¼ A�

1;�3;�2 ¼ ��MðBF � iAFÞ
�

75691

3932160
þ 209

196608
�� 10739

786432
�2

�
�5; (F5)

A1;4;2 ¼ �A1;�4;2 ¼ A�
1;4;�2 ¼ �A�

1;�4;�2 ¼ ��MðBF � iAFÞ
�
1249

245760
� 463

36864
�þ 581

147456
�2

�
�5; (F6)

A1;5;2 ¼ �A1;�5;2 ¼ �A�
1;5;�2 ¼ A�

1;�5;�2 ¼ �MðBF � iAFÞ
�

863

2359296
� 415

589824
�� 35

2359296
�2

�
�5; (F7)

A1;6;2 ¼ �A1;�6;2 ¼ A�
1;6;�2 ¼ �A�

1;�6;�2 ¼ �MðBF � iAFÞ 7

589824
ð�� 1Þð3�� 1Þ�5; (F8)
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A1;7;2 ¼ �A1;�7;2 ¼ �A�
1;7;�2 ¼ A�

1;�7;�2 ¼ ��MðBF � iAFÞ 1

2359296
ð�� 1Þð3�� 1Þ�5; (F9)

A2;0;2 ¼ ðAF þ iBFÞ
�
91

24
�� 9

8
���

�
1

16
þ 163

20
�

�
i

�
�5; (F10)

A 2;1;2 ¼ A2;�1;2 ¼ �ðAF þ iBFÞ
�
7

3
�� 1

6
���

�
13

40
þ 167

40
�

�
i

�
�5; (F11)

A2;2;2 ¼ A2;�2;2 ¼ ðAF þ iBFÞ
�
7

24
�þ 5

6
���

�
21

40
� 9

10
�

�
i

�
�5; (F12)

A2;3;2 ¼ A2;�3;2 ¼ ðAF þ iBFÞ
�
1

6
�� 1

2
��þ

�
11

40
� 47

40
�

�
i

�
�5; (F13)

A2;4;2 ¼ A2;�4;2 ¼ �ðAF þ iBFÞ
�
1

48
�� 1

16
��þ

�
7

160
� 7

40
�

�
i

�
�5; (F14)

A2;0;�2 ¼ ðAF � iBFÞ
�
91

24
�� 9

8
���

�
1

16
þ 163

20
�

�
i

�
�5; (F15)

A2;1;�2 ¼ A2;�1;�2 ¼ ðAF � iBFÞ
�
7

3
�� 1

6
���

�
13

40
þ 167

40
�

�
i

�
�5; (F16)

A2;2;�2 ¼ A2;�2;�2 ¼ ðAF � iBFÞ
�
7

24
�þ 5

6
���

�
21

40
� 9

10
�

�
i

�
�5; (F17)

A2;3;�2 ¼ A2;�3;�2 ¼ �ðAF � iBFÞ
�
1

6
�� 1

2
��þ

�
11

40
� 47

40
�

�
i

�
�5; (F18)

A2;4;�2 ¼ A2;�4;�2 ¼ �ðAF � iBFÞ
�
1

48
�� 1

16
��þ

�
7

160
� 7

40
�

�
i

�
�5; (F19)

A3;1;2 ¼ �A3;�1;2 ¼ �A�
3;1;�2 ¼ A�

3;�1;�2 ¼ �MðBF � iAFÞ
�
645381

1310720
� 275649

65536
�þ 285123

262144
�2

�
�5; (F20)

A3;2;2 ¼ �A3;�2;2 ¼ A�
3;2;�2 ¼ �A�

3;�2;�2 ¼ ��MðBF � iAFÞ
�
15417

327680
� 39333

16384
�þ 29103

65536
�2

�
�5; (F21)

A3;3;2 ¼ �A3;�3;2 ¼ �A�
3;3;�2 ¼ A�

3;�3;�2 ¼ ��MðBF � iAFÞ
�
544779

1310720
� 174891

327680
�þ 436353

1310720
�2

�
�5; (F22)

A3;4;2 ¼ �A3;�4;2 ¼ A�
3;4;�2 ¼ �A�

3;�4;�2 ¼ �MðBF � iAFÞ
�
22437

81920
� 13941

20480
�þ 17703

81920
�2

�
�5; (F23)

A3;5;2 ¼ �A3;�5;2 ¼ �A�
3;5;�2 ¼ A�

3;�5;�2 ¼ ��MðBF � iAFÞ
�

57591

1310720
� 27351

327680
�� 4347

1310720
�2

�
�5; (F24)

A3;6;2 ¼ �A3;�6;2 ¼ A�
3;6;�2 ¼ �A�

3;�6;�2 ¼ ��MðBF � iAFÞ 1701

327680
ð�� 1Þð3�� 1Þ�5; (F25)

A3;7;2 ¼ �A3;�7;2 ¼ �A�
3;7;�2 ¼ A�

3;�7;�2 ¼ �MðBF � iAFÞ 729

1310720
ð�� 1Þð3�� 1Þ�5; (F26)

A4;0;2 ¼ �ðAF þ iBFÞ
�
5

3
�� 5��þ

�
7

2
� 1193

96
�� 10

3
ln 2þ 10� ln 2

�
i

�
�5; (F27)

A4;1;2 ¼ A4;�1;2 ¼ ðAF þ iBFÞ
�
2

3
�� 2��þ

�
7

5
� 1193

240
�� 4

3
ln 2þ 4� ln 2

�
i

�
�5; (F28)

A4;2;2 ¼ A4;�2;2 ¼ ðAF þ iBFÞ
�
2

3
�� 2��þ

�
7

5
� 1193

240
�� 4

3
ln 2þ 4� ln 2

�
i

�
�5; (F29)
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A4;3;2 ¼ A4;�3;2 ¼ �ðAF þ iBFÞ
�
2

3
�� 2��þ

�
7

5
� 1193

240
�� 4

3
ln 2þ 4� ln 2

�
i

�
�5; (F30)

A4;4;2 ¼ A4;�4;2 ¼ ðAF þ iBFÞ
�
1

6
�� 1

2
��þ

�
7

20
� 1193

960
�� 1

3
ln 2þ � ln 2

�
i

�
�5; (F31)

A4;0;�2 ¼ �ðAF � iBFÞ
�
5

3
�� 5��þ

�
7

2
� 1193

96
�� 10

3
ln 2þ 10� ln 2

�
i

�
�5; (F32)

A4;1;�2 ¼ A4;�1;�2 ¼ �ðAF � iBFÞ
�
2

3
�� 2��þ

�
7

5
� 1193

240
�� 4

3
ln 2þ 4� ln 2

�
i

�
�5; (F33)

A4;2;�2 ¼ A4;�2;�2 ¼ ðAF � iBFÞ
�
2

3
�� 2��þ

�
7

5
� 1193

240
�� 4

3
ln 2þ 4� ln 2

�
i

�
�5; (F34)

A4;3;�2 ¼ A4;�3;�2 ¼ ðAF � iBFÞ
�
2

3
�� 2��þ

�
7

5
� 1193

240
�� 4

3
ln 2þ 4� ln 2

�
i

�
�5; (F35)

A4;4;�2 ¼ A4;�4;�2 ¼ ðAF � iBFÞ
�
1

6
�� 1

2
��þ

�
7

20
� 1193

960
�� 1

3
ln 2þ � ln 2

�
i

�
�5; (F36)

A5;1;2 ¼�A5;�1;2 ¼�A�
5;1;�2 ¼A�

5;�1;�2 ¼��MðBF� iAFÞ
�
1894375

786432
�3723125

589824
�þ5569375

2359296
�2

�
�5; (F37)

A5;2;2 ¼ �A5;�2;2 ¼ A�
5;2;�2 ¼ �A�

5;�2;�2 ¼ �MðBF � iAFÞ
�
749375

589824
� 469375

147456
�þ 608125

589824
�2

�
�5; (F38)

A5;3;2 ¼ �A5;�3;2 ¼ �A�
5;3;�2 ¼ A�

5;�3;�2 ¼ �MðBF � iAFÞ
�
1506875

2359296
� 1086875

589824
�þ 686875

786432
�2

�
�5; (F39)

A5;4;2 ¼ �A5;�4;2 ¼ A�
5;4;�2 ¼ �A�

5;�4;�2 ¼ ��MðBF � iAFÞ
�
101875

147456
� 66875

36864
�þ 100625

147456
�2

�
�5; (F40)

A5;5;2 ¼ �A5;�5;2 ¼ �A�
5;5;�2 ¼ A�

5;�5;�2 ¼ �MðBF � iAFÞ
�
254375

2359296
� 38125

196608
�� 56875

2359296
�2

�
�5; (F41)

A5;6;2 ¼ �A5;�6;2 ¼ A�
5;6;�2 ¼ �A�

5;�6;�2 ¼ �MðBF � iAFÞ 21875589824
ð�� 1Þð3�� 1Þ�5; (F42)

A5;7;2 ¼ �A5;�7;2 ¼ �A�
5;7;�2 ¼ A�

5;�7;�2 ¼ ��MðBF � iAFÞ 15625

2359296
ð�� 1Þð3�� 1Þ�5; (F43)

A7;1;2 ¼ �A7;�1;2 ¼ �A�
7;1;�2 ¼ A�

7;�1;�2 ¼ �MðBF � iAFÞ 117649262144
ð�� 1Þð3�� 1Þ�5; (F44)

A7;2;2 ¼ �A7;�2;2 ¼ A�
7;2;�2 ¼ �A�

7;�2;�2 ¼ ��MðBF � iAFÞ 117649589824
ð�� 1Þð3�� 1Þ�5; (F45)

A7;3;2 ¼ �A7;�3;2 ¼ �A�
7;3;�2 ¼ A�

7;�3;�2 ¼ ��MðBF � iAFÞ 223533111796480
ð�� 1Þð3�� 1Þ�5; (F46)

A 7;4;2 ¼ �A7;�4;2 ¼ A�
7;4;�2 ¼ �A�

7;�4;�2 ¼ �MðBF � iAFÞ 117649737280
ð�� 1Þð3�� 1Þ�5; (F47)

A7;5;2 ¼ �A7;�5;2 ¼ �A�
7;5;�2 ¼ A�

7;�5;�2 ¼ �MðBF � iAFÞ 117649

11796480
ð�� 1Þð3�� 1Þ�5; (F48)

A7;6;2 ¼ �A7;�6;2 ¼ A�
7;6;�2 ¼ �A�

7;�6;�2 ¼ ��MðBF � iAFÞ 1176492949120
ð�� 1Þð3�� 1Þ�5; (F49)

A7;7;2 ¼ �A7;�7;2 ¼ �A�
7;7;�2 ¼ A�

7;�7;�2 ¼ �MðBF � iAFÞ 117649

11796480
ð�� 1Þð3�� 1Þ�5: (F50)

CHATZIIOANNOU et al. PHYSICAL REVIEW D 88, 063011 (2013)

063011-32



APPENDIX G: COEFFICIENTS IN THE TIME-FREQUENCY INVERSION

The evolution for the PN expansion parameter � as given in Eq. (12) can be solved to obtain a relation between
time and �

t ¼ � 3

8

M

a0�
8

�
1þX16

i¼2

ti�
i þX16

i¼6

t‘i �
i ln�þX16

i¼8

t‘
2

i �
iðln�Þ2

�
þOðc�17Þ; (G1)

where we have defined the nonzero PN coefficients

t2 ¼ � 4

3
a2; (G2)

t3 ¼ � 8

5
a3; (G3)

t4 ¼ �2a4 þ 2a22; (G4)

t5 ¼ � 8

3
a5 þ 16

3
a3a2; (G5)

t6 ¼ �4a6 � 6b6 þ 8a4a2 þ 4a23 � 4a32; (G6)

t7 ¼ �8a7 þ 16a5a2 þ 16a4a3 � 24a3a
2
2; (G7)

t9 ¼ 8a9 � 24b9 � 16a7a2 � 16a6a3 þ 48b6a3 � 16a5a4 þ 24a5a
2
2 þ 48a4a3a2 þ 8a33 � 32a3a

3
2; (G8)

t10 ¼ 4a10 � 6b10 � 8a8a2 þ 12b8a2 � 8a7a3 � 8a6a4 þ 12a6a
2
2 þ 12b6a4 � 18b6a

2
2 � 4a25 þ 24a5a3a2
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2
3 � 16a4a
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2 � 24a23a

2
2 þ 4a52; (G9)
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40
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4
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2 þ 3b8a4 � 9

2
b8a

2
2 � 4a7a5 þ 12a7a3a2 � 2a26 þ 3a6b6

þ 12a6a4a2 þ 6a6a
2
3 � 8a6a

3
2 �

9

4
b26 � 9b6a4a2 � 9

2
b6a

2
3 þ 6b6a

3
2 þ 6a25a2 þ 12a5a4a3 � 24a5a3a

2
2

þ 2a34 � 12a24a
2
2 � 24a4a

2
3a2 þ 10a4a

4
2 � 2a43 þ 20a23a

3
2 � 2a62; (G11)
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5
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3
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3
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2
2 �

48

5
a3a

5
2; (G12)

t14 ¼ � 8
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3
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3
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2 þ
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2 �

8

3
a9a5 þ 8a9a3a2 þ 4

3
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3
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3
a8a
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3
b8a
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4
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a27 þ 8a7a5a2

þ 8a7a4a3 � 16a7a3a
2
2 þ 4a26a2 � 4a6b6a2 þ 8a6a5a3 þ 4a6a

2
4 � 16a6a4a

2
2 � 16a6a

2
3a2 þ

20

3
a6a

4
2 þ 2b26a2

� 4b6a5a3 � 2b6a
2
4 þ 8b6a4a

2
2 þ 8b6a

2
3a2 �
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3
b6a

4
2 þ 4a25a4 � 8a25a

2
2 � 32a5a4a3a2 � 16

3
a5a

3
3 þ

80

3
a5a3a

3
2

� 16

3
a34a2 � 8a24a

2
3 þ

40

3
a24a

3
2 þ 40a4a

2
3a

2
2 � 8a4a

5
2 þ

20
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a43a2 � 20a23a
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4

3
a72; (G13)
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þ 48

49
a9b6 þ 48

7
a9a4a2 þ 24

7
a9a

2
3 �

32

7
a9a

3
2 þ

48

49
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a7a5a3 þ 24

7
a7a
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7
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2 �
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7
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2
3a2 þ

40

7
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2 þ
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� 144

49
a6b6a3 þ 48
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3
2 þ

432

343
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144

49
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þ 288

49
b6a5a

2
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576

49
b6a4a3a2 � 480

49
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96

49
b6a
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8
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a35 �

96
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a25a3a2 �

96
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a5a

2
4a2 �

96
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3

þ 160

7
a5a4a

3
2 þ

240

7
a5a

2
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2
2 �
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7
a5a

5
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a34a3 þ

240

7
a24a3a
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2 þ
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7
a4a

3
3a2 �

240

7
a4a3a

4
2

þ 8

7
a53 �

160

7
a33a

3
2 þ 8a3a

6
2; (G14)

t16 ¼ �2a11a5 þ 6a11a3a2 þ 3

4
b11a5 � 9

4
b11a3a2 � 2a10a6 þ 3

4
a10b6 þ 6a10a4a2 þ 3a10a

2
3 � 4a10a

3
2 þ

3

4
b10a6

� 9

16
b10b6 � 9

4
b10a4a2 � 9

8
b10a

2
3 þ

3

2
b10a

3
2 � 2a9a7 þ 6a9a5a2 þ 6a9a4a3 � 12a9a3a

2
2 þ

3

4
b9a7 � 9

4
b9a5a2

� 9

4
b9a4a3 þ 9

2
b9a3a

2
2 � a28 þ

3

4
a8b8 þ 6a8a6a2 � 9

4
a8b6a2 þ 6a8a5a3 þ 3a8a

2
4 � 12a8a4a

2
2 � 12a8a

2
3a2

þ 5a8a
4
2 �

9

32
b28 �

9

4
b8a6a2 þ 27

16
b8b6a2 � 9

4
b8a5a3 � 9

8
b8a

2
4 þ

9

2
b8a4a

2
2 þ

9

2
b8a

2
3a2 �

15

8
b8a

4
2 þ 3a27a2

þ 6a7a6a3 � 9

4
a7b6a3 þ 6a7a5a4 � 12a7a5a

2
2 � 24a7a4a3a2 � 4a7a

3
3 þ 20a7a3a

3
2 þ 3a26a4 � 6a26a

2
2

� 9

4
a6b6a4 þ 9

2
a6b6a

2
2 þ 3a6a

2
5 � 24a6a5a3a2 � 12a6a

2
4a2 � 12a6a4a

2
3 þ 20a6a4a

3
2 þ 30a6a

2
3a

2
2 � 6a6a

5
2

þ 27

32
b26a4 �

27

16
b26a

2
2 �

9

8
b6a

2
5 þ 9b6a5a3a2 þ 9

2
b6a

2
4a2 þ

9

2
b6a4a

2
3 �

15

2
b6a4a

3
2 �

45

4
b6a

2
3a

2
2 þ

9

4
b6a

5
2

� 12a25a4a2 � 6a25a
2
3 þ 10a25a

3
2 � 12a5a

2
4a3 þ 60a5a4a3a

2
2 þ 20a5a

3
3a2 � 30a5a3a

4
2 � a44 þ 10a34a

2
2

þ 30a24a
2
3a2 � 15a24a

4
2 þ 5a4a

4
3 � 60a4a

2
3a

3
2 þ 7a4a

6
2 � a82 � 15a43a

2
2 þ 21a23a

5
2; (G15)

t‘6 ¼ �12b6; (G16)

t‘8 ¼ 8a8 � 16a6a2 � 16a5a3 � 8a24 þ 24a4a
2
2 þ 24a23a2 � 8a42; (G17)

t‘9 ¼ 24b9 � 48b6a3; (G18)

t‘10 ¼ 12b10 � 24b8a2 � 24b6a4 þ 36b6a
2
2; (G19)

t‘11 ¼ 8b11 � 16b9a2 � 16b8a3 � 16b6a5 þ 48b6a3a2; (G20)

t‘12 ¼ �12b10a2 � 12b9a3 � 12b8a4 þ 18b8a
2
2 � 12a6b6 þ 9b26 þ 36b6a4a2 þ 18b6a

2
3 � 24b6a

3
2; (G21)

t‘13 ¼ � 48

5
b11a2 � 48

5
b10a3 � 48

5
b9a4 þ 72

5
b9a

2
2 �

48

5
b8a5 þ 144

5
b8a3a2 � 48

5
a7b6 þ 144

5
b6a5a2

þ 144

5
b6a4a3 � 288

5
b6a3a

2
2; (G22)

t‘14 ¼ �8b11a3 � 8b10a4 þ 12b10a
2
2 � 8b9a5 þ 24b9a3a2 � 8a8b6 � 8a6b8 þ 8b8b6 þ 24b8a4a2 þ 12b8a

2
3

� 16b8a
3
2 þ 24a6b6a2 � 12b26a2 þ 24b6a5a3 þ 12b6a

2
4 � 48b6a4a

2
2 þ 20b6a

4
2 � 48b6a

2
3a2; (G23)
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t‘15 ¼ � 48

7
b11a4 þ 72

7
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2
2 �

48

7
b10a5 þ 144
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a9b6 � 48
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49
b9b6 þ 144

7
b9a4a2 þ 72

7
b9a

2
3

� 96

7
b9a

3
2 �

48

7
b8a7 þ 144

7
b8a5a2 þ 144

7
b8a4a3 � 288
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7
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49
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þ 144

7
b6a5a4 � 288

7
b6a5a

2
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7
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7
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3
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7
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3
2; (G24)
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b10b6 þ 18b10a4a2 þ 9b10a

2
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3
2 � 6b9a7 þ 18b9a5a2

þ 18b9a4a3 � 36b9a3a
2
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4
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5
2; (G25)

t‘
2

8 ¼ 12b8 � 24b6a2; (G26)

t‘
2

12 ¼ �18b26; (G27)

t‘
2

14 ¼ �24b8b6 þ 36b26a2; (G28)

t‘
2

15 ¼ � 144

7
b9b6 þ 216

7
b26a3; (G29)

t‘
2

16 ¼ �18b10b6 � 9b28 þ 54b8b6a2 þ 27b26a4 � 54b26a
2
2: (G30)

These coefficients depend on ðai; biÞ, which can be found in Appendix A. Some of these coefficients depend on spins, and
we evaluate them at their initial spin values, as explained at the end of Sec. II C 1.

APPENDIX H: COEFFICIENTS IN THE SPA PHASE

The nonprecessing part of the SPA phase is given by Eq. (102) where we have defined the nonzero coefficients

�2 ¼ � 20

9
a2; (H1)

�3 ¼ �4a3; (H2)

�4 ¼ �10a4 þ 10a2; (H3)

�5 ¼ 40

9
a5 � 80

9
a3a2; (H4)
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2; (H6)
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3
2; (H8)
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3
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2
3 þ
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27
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9
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9
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9
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2
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9
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9
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9
a6a

2
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9
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9
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2
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9
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3
3 �
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3
2 þ
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2
3
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3
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9
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2
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2
2 þ
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2 �
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�15 ¼ 8
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a11a4 � 12

7
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2
2 �

204
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2
2 þ

8

7
a10a5 � 24

7
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b10a5 þ 612
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b10a3a2 þ 8

7
a9a6
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7
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7
a9a

2
3 þ
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7
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3
2 �
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2
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3
2
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7
a8a7 � 24

7
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7
a8a4a3 þ 48

7
a8a3a

2
2 �
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b8a7 þ 612
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b8a5a2 þ 612
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b8a4a3 � 1224
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2
2
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7
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7
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7
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2
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7
a7a4a

2
2 þ
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7
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2
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7
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7
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7
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7
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7
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3
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7
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3
2 �
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2
2 �
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3
3 þ
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3
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2
4a2 þ
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2
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7
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2
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6
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2
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4275
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2
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2
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855
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2
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60
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2
2
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11
a5a3a

4
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5
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2
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2
3a2 þ
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4
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4
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a4a

2
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3
2 �
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a4a

6
2
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2
2 �
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a23a

5
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5
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a82; (H15)

�‘
5 ¼

40

3
a5 � 80

3
a3a2; (H16)

�‘
6 ¼ 60b6; (H17)

�‘
8 ¼ � 40

3
a8 þ 40

3
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3
a6a2 � 80

3
b6a2 þ 80

3
a5a3 þ 40

3
a24 � 40a4a

2
2 � 40a23a2 þ

40

3
a42; (H18)

�‘
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�‘
10 ¼ �12b10 þ 24b8a2 þ 24b6a4 � 32b6a

2
2; (H20)

�‘
11 ¼ � 20

3
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3
b9a2 þ 40

3
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3
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12 ¼
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7
b10a2 þ 60

7
b9a3 þ 60

7
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7
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2
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7
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b6a4a2 � 90

7
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2
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7
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3
2; (H22)
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2
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2
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15 ¼

24

7
b11a4 � 36

7
b11a

2
2 þ

24

7
b10a5 � 72

7
b10a3a2 þ 24

7
a9b6 þ 24
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3
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a8b6a2 � 855
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2
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11
b8a

4
2 þ

180
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2
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2
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45
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2
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2
4a2 þ
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2
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3
2
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2
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2
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�‘2
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�‘2
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7
b26; (H28)

�‘2

14 ¼
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3
b8b6 � 20b26a2; (H29)

�‘2

15 ¼
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7
b9b6 � 108

7
b26a3; (H30)

�‘2

16 ¼
90
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b10b6 þ 45

11
b28 �
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11
b8b6a2 � 135
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b26a4 þ
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11
b26a
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