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Scalar fields confined either by a mass term or by a mirrorlike boundary condition have unstable modes

in the background of a Kerr black hole. Assuming a time dependence as e�i!t, the growth time scale of

these unstable modes is set by the inverse of the (positive) imaginary part of the frequency, Imð!Þ, which
reaches a maximum value of the order of Imð!ÞM� 10�5, attained for a mirrorlike boundary condition,

where M is the black hole mass. In this paper we study the minimally coupled Klein-Gordon equation for

a charged scalar field in the background of a Reissner-Nordström black hole and show that the unstable

modes, due to a mirrorlike boundary condition, can grow several orders of magnitude faster than in the

rotating case: we have obtained modes with up to Imð!ÞM� 0:07. We provide an understanding, based on

an analytic approximation, of why the instability in the charged case has a shorter time scale than in the

rotating case. This faster growth, together with the spherical symmetry, makes the charged case a

promising model for studies of the fully nonlinear development of superradiant instabilities.
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I. INTRODUCTION

In classical relativistic gravity, black holes are observer
independent space-time regions unable to communicate
with their exterior [1]. Thus, within this description, infor-
mation captured by black holes is trapped therein forever
and cannot be recovered by exterior observers.

Given this picture it is intriguing, at first, to realize that
there is a classical process through which energy can be
extracted from a black hole: superradiant scattering. In one
form, this process amounts to the amplification of waves
impinging on a Kerr black hole, provided the frequency !
and azimuthal quantum numberm of the wave modes obey
the condition!<m�þ, where�þ is the angular velocity
of the outer Kerr horizon [2–4]. The extraction of energy
and consequent decrease of the black hole mass M is,
however, necessarily accompanied by the extraction of
angular momentum and consequent decrease of the black
hole spin J. In fact, it was shown by Christodoulou [5] that
the particle analogue of this process—the Penrose process
[6]—is irreversible, subsequently realized to mean that the
black hole area never decreases [7]. Finally, the identifica-
tion between black hole area and entropy [8,9] made clear
that it is only rotational energy that is being extracted from
the black hole, not information.

In another form, superradiant scattering amounts to the
amplification of charged waves impinging on a Reissner-
Nordström (RN) black hole, provided the frequency ! and
the charge q of the wave modes obey the condition !<
q�þ, where �þ is the electric potential of the outer
Reissner-Nordström horizon [10]. The extraction of
(Coulomb) energy and consequent decrease of the black

hole mass M is, in this case, necessarily accompanied by
the extraction of charge and consequent decrease of the
black hole charge Q, such that, again, the area and entropy
of the RN black hole does not decrease.
The existence of superradiant modes can be converted

into an instability of the background if a mechanism to trap
these modes in a vicinity of the black hole is provided:
heuristically, these modes are then recurrently scattered off
the black hole and amplified, eventually producing a non-
negligible backreaction on the background. This possibil-
ity, anticipated by Zel’dovich [11], was named the black
hole bomb by Press and Teukolsky [4] and has been studied
extensively in the Kerr case within the linear analysis
(see e.g., [12–18]). One of the outcomes of these studies
is that the maximum growth rate for the instabilities is
associated with modes with an imaginary part of their
frequency, Imð!Þ, of Imð!ÞM� 1:74� 10�7 for massive
fields and Imð!ÞM� 6� 10�5 for mirrorlike boundary
conditions [12,18]. The growth time scale is set by the
inverse of Imð!Þ.
The unstable states found in the Kerr case are localized

in a potential well found outside the potential barrier of the
effective potential. The growth of such states can be seen
at linear level, but a fully nonlinear study is required to
address the endpoint of this instability. It has been
suggested that such endpoint is attained after an explosive
event called a bosenova [19]. Progress in understanding
this endpoint has been making use, and will certainly
require further use, of fully nonlinear numerical simula-
tions [20,21].
Considerably less attention has been devoted to the

charged case, perhaps due to the lack of astrophysical
motivation. Moreover, the studies found in the literature
[22–24] discard the possibility of an instability in the
asymptotically flat case, since an analysis of the effective
potential shows no potential well for quasibound states
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compatible with the superradiance condition. Similar
conclusions follow for quasi-normal modes boundary
conditions [25,26]. This picture can be altered, however,
if the black hole is enclosed in a cavity. The purpose of this
work is to show that when imposing a mirrorlike boundary
condition at some radial coordinate rm, the superradiant
instability occurs and can have a much shorter time scale
than in the rotating case. Very slow instabilities prove
challenging to follow numerically since the very small
growth rate may be masked by numerical errors or other
physical effects; an example of the latter is discussed in
[17]. Thus, our result suggests that RN black holes inside a
cavity provide a setup that may facilitate the numerical
study of the nonlinear development of superradiant insta-
bilities, not only because of the shorter time scale but also
due to the spherical symmetry. Such nonlinear study will
certainly yield valuable lessons for the more relevant, but
harder, rotating case.

This paper is organized as follows. In Sec. II we describe
the basic setup for a charged massive scalar field with a
mirrorlike boundary condition in the background of a RN
black hole. In Sec. III we discuss the results for the
imaginary part of the frequencies for various values of
the background and field parameters. In Sec. IV we provide
an understanding of why the growth rate of instabilities in
the charged case can become larger than in the rotating
case and discuss our results.

Throughout the paper we will use Planck units such that
G ¼ c ¼ ℏ ¼ 1, and we use the black hole mass M as a
scale. Then, for instance, conventional physical units
for the charge of the scalar field and the charge of the
black hole can be recovered by making the substitutions

q ! q 1ffiffiffiffi
ℏc

p M
Mpl

and Q ! Qffiffiffiffi
ℏc

p Mpl

M .

II. MIRRORED QUASIBOUND STATES

We shall consider a massive, charged scalar field, �,
with mass � and charge q, propagating in the background
of a Reissner-Nordström black hole. As explained in the
Introduction, in order to have superradiant scattering, the
field needs to be charged, thus making it natural to
be massive as well, in view of the known fundamental
particles. Written in Boyer-Lindquist–type coordinates,
the line element of the background is

ds2 ¼ �fðrÞdt2 þ dr2

fðrÞ þ r2ðd�2 þ sin 2�d�2Þ; (1)

where

fðrÞ¼ðr�rþÞðr�r�Þ
r2

; r��M�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2�Q2

q
: (2)

In the linear regime, the dynamics of the scalar field is
described by the wave equation

½ðD� � iqA�ÞðD� � iqA�Þ ��2�� ¼ 0; (3)

where the electric potential satisfies A�dx
� ¼ �Q=rdt.

Setting �ðt; r; �;�Þ ¼ e�i!t
P

‘;mY
m
‘ ð�;�ÞR‘ðrÞ=r, with

Ym
‘ ð�;�Þ the spherical harmonics, the radial equation for

each mode can be written as

fðrÞ d
2

dr2
R‘ðrÞ þ f0ðrÞ

�
d

dr
R‘ðrÞ � 1

r
R‘ðrÞ

�

þ
�

1

fðrÞ
�
!� qQ

r

�
2 � ‘ð‘þ 1Þ

r2
��2

�
R‘ðrÞ ¼ 0; (4)

where f0ðrÞ ¼ dfðrÞ=dr, and �‘ð‘þ 1Þ is the eigenvalue
of the angular operator. This equation can be written in a
Schrödinger-like form by applying a transformation of
coordinates r ¼ rðr�Þ,

�
� d2

dr�2
þ VðrÞ

�
R‘ðrÞ ¼ !2R‘ðrÞ; (5)

where r� is the Regge-Wheeler tortoise coordinate defined
by dr� ¼ dr=fðrÞ. The effective potential is given by

VðrÞ¼2qQ!

r
�q2Q2

r2
þfðrÞ

�
lðlþ1Þ

r2
þ�2þf0ðrÞ

r

�
: (6)

The fact that the effective potential depends on the un-
known ! makes it unorthodox as compared to standard
potentials in Schrödinger-like problems. Some informa-
tion, nevertheless, can be obtained by studying this unor-
thodox potential. In particular, it has been shown in [23]
that quasibound states of a massive charged scalar field in
an extreme RN geometry do not contain superradiant
states. It has been proven that the conditions for (i) the
effective potential to have a well and (ii) the frequency to
obey !<!c � q�þ cannot be satisfied simultaneously.
For the nonextremal RN geometry, on the other hand, it
was shown in [22], using a matching technique, that the
condition qQ<M� is necessary for the field to satisfy the
regular boundary conditions at infinity. But, as pointed out
in the same reference, this condition is not satisfied by
superradiant states. The previous inequality is the Newton-
Coulomb requirement for the gravitational force to exceed
the electrostatic force, which is naturally associated as a
condition for bound states.
The evidence presented in the previous paragraph points

out that quasibound states for a massive charged scalar
field in a RN background cannot be in the superradiant
regime. There is, however, a way to obtain superradiant
quasibound states in this background. The point is that the
frequencies of the quasibound states are determined by
both the parameters of the system and the boundary con-
ditions; thus, changing the latter may allow bound states to
obey the superradiant condition.
The standard boundary behavior for the quasibound

states of a massive scalar field that can extend to asymp-
totic infinity is to decay exponentially; this follows from
the fact that the effective potential tends asymptotically to
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the mass, generating a well. If a mirror is placed at some
radial coordinate rm outside the black hole, on the other
hand, the outer boundary condition is modified so that the
field vanishes exactly at rm and its proper frequencies
become determined by the position of the mirror
[4,12,27]. Since one can place the mirror at arbitrary
positions, the scalar field might have frequencies that are
in the superradiant regime. As we show in the next section,
this is indeed the case, and, most interestingly, the value
of the time scale of the instability for the charged black
hole can become considerably shorter than in the rotating
counterpart of this problem.

In order to compute the spectrum of bound states, we
found it more convenient to numerically integrate the
radial equation (4), imposing the appropriate boundary
conditions. In the vicinity of the horizon rþ, we impose
an ingoing wavelike condition [4,12]

R‘ðrÞ � e�ið!�!cÞr� : (7)

The outer boundary condition is determined by the position
of the mirror rm. At this radius the mirrored states must
vanish and hence R‘ðrmÞ ¼ 0. The algorithm to find the
frequencies is then the following: we start integrating the
radial equation with the behavior given by (7) outward

from r ¼ rþð1þ "Þ—in the calculations presented in the
following section we used typically "� 10�8—with an
arbitrary value of ! and stop the integration at the radius
of the mirror. This procedure gives us a value for the wave
function at rm, as a function of the frequency. The integra-
tion is repeated varying the frequency until R‘ðrmÞ ¼ 0 is
reached with the desired precision, thus obtaining the
frequency of the mirrored state.

III. RESULTS

We shall now exhibit the behavior of the imaginary part
of the frequency (also the real part in Fig. 2) as a function
of the mirror radius rm, for various values of q, �, and Q.
All the modes displayed correspond to ‘ ¼ 1, since these
are the modes for which the instability is expected to be
stronger [22,28].
In Fig. 1 we show the imaginary part of the frequency as

a function of the mirror radius for different values of the
ratio q=� and Q.
We see that when the ratio is unity, Imð!Þ< 0 for any

value of the black hole charge; that is, there are no super-
radiant modes. As the ratio increases, however, mirror
radii greater than some minimum value will have positive

FIG. 1 (color online). The imaginary part of the frequency plotted versus the radius of the mirror for various ratios of the scalar
charge, q to scalar mass �. The scalar mass is � ¼ 0:3. We included the line Imð!Þ ¼ 0 to help visualize where the curves have
Imð!Þ> 0.
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imaginary parts for a given Q. These facts are compatible
with the following interpretations. First, superradiant
modes have a maximum frequency; thus, they will have a
minimum wavelength and hence a minimum radius for the
mirror is required for obtaining Imð!Þ> 0. Second, an
analysis of the area formula for RN black holes reveals
that an increase of area requires the small quantities of
charge dQ and mass dM extracted to be in a ratio greater
than unity. Indeed, if the area A ¼ 4�r2þ increases by a
small quantity dA, then requiring dA > 0 yields

dA ¼ @A

@M
dMþ @A

@Q
dQ> 0 ) dQ

dM
>

rþ
Q

> 1: (8)

The condition dQ=dM > rþ=Q is actually surprisingly
consistent with the numerical results in Fig. 1 to identify
which values ofQ can yield Imð!Þ> 0, for each ratio q=�.
Since our goal is to analyze how large the instability may
become, we shall focus in the following on values for the
scalar charge and mass where their ratio is larger than
unity.

In Figs. 2 and 3, we fix, respectively, the field charge q
and the field mass�. From these figures we observe that as
the scalar mass (scalar charge) increases, the magnitude of
the imaginary part of the frequency decreases (increases).
A generic observation is that the real part of the frequen-
cies approaches the numerical value of the field’s mass
and the imaginary part decreases monotonically as rm
increases. Moreover, from the latter figure we see that
if the scalar charge is increased, the black hole charge
which gives the maximum imaginary part of the frequency
increases and eventually becomes the extremal case.

These results indicate that in order to get the maximum
amplification of the scalar field, then (i) the black hole
should be extremal, or at least close to extremal, and (ii) the
scalar field should be as light as possible but with the
highest possible charge. This latter expectation is con-
firmed in Fig. 4, where it is seen that fixing Q and rm,
the imaginary part of the frequency grows monotonically
with q (as does the real part).
These data suggests that the growth of Imð!Þwith q will

continue. As q increases, however, the integration of the
radial equation becomes difficult. The first issue arises
because the coefficients of (4) might differ by several
orders of magnitude. Close to the horizon, for instance,
the last term in parentheses of (4) can be up to five orders of
magnitude larger than the terms that multiply the deriva-
tives. In this sense, the equation becomes ‘‘stiff.’’ In order
to ameliorate this difficulty, we integrate the equation using
different methods, and we report the values for the fre-
quency at which both methods give the same value.1

Second, for large values of the frequency, the leading terms
of R‘ðrÞ and its derivative become very small close to the
horizon; with such small values, the integrators find, very
frequently, the trivial solution R‘ðrÞ � 0. For these reasons
the largest imaginary part we can quote is Imð!Þ ¼
0:07099� 0:0002 for q ¼ 40, Q ¼ 0:9, rm ¼ 5:0.

FIG. 2 (color online). The imaginary and real part of ! drawn as a function of the mirror radius rm for various values of the black
hole charge, Q, and the scalar mass, �. � ¼ 0:1, 0.2, 0.3 for the left, middle, and right column, respectively. We took q ¼ 0:6.

1In most cases we used an explicit Runge-Kutta integrator of
third and fourth order; however, for particular parameters we
found it necessary to use the explicit modified midpoint method
provided by MATHEMATICA [29].

DEGOLLADO, HERDEIRO, AND RÚNARSSON PHYSICAL REVIEW D 88, 063003 (2013)

063003-4



In order to estimate the error in the frequencies, we
use two integrators. With one integrator we get one
frequency and one wave function, let us say !ð1Þ and

Rð1Þ, where Rð�Þ stands for the radial part of the wave

function. With the other integrator we get !ð2Þ and Rð2Þ.
When the value kRð1Þ � Rð2Þk1 is less than 10�9, we take

the difference j!ð1Þ �!ð2Þj as the maximum error in the

value of the frequency. The frequency reported is the linear
interpolation between the two values.

IV. DISCUSSION AND CONCLUSIONS

The main message in this paper is that for RN black
holes enclosed in a cavity, superradiant instabilities can be
triggered by a charged scalar field; moreover, these insta-
bilities can have a considerably shorter time scale than the
analogous problem in the Kerr background. A hint to why
there is such a difference between rotating and charged
black holes comes from comparing the critical frequency
for superradiance in both cases: !c ¼ m�þ for the rotat-
ing and !c ¼ q�þ for the charged black holes. It follows
that in the charged case, q plays the same role that m plays
in the rotating case. But whereas the former is bounded by

‘, which should be taken to be ‘ ¼ 1 to maximize the
instability [22,28], there is no bound on q. Thus, the critical
frequency in a fixed RN background can be made as large
as one wishes by increasing q, thus rendering plausible the
existence of superradiant modes with very high frequency.
The fact that!c grows with q does not, however, lead to

the conclusion that the imaginary part of the frequency
should grow with q, but we can complement the above
argument with another one to make this point, as follows.
As we have shown with our numerical results, the

smaller the value of the mass, the greater the value of the
imaginary component of the frequency. In the limit of a
zero mass field, an estimate of the frequencies can be
obtained analytically. The computation follows that in
[12], where the Kerr black hole is considered and we
provide only the main result.
We shall now assume that the Compton wavelength of

the scalar particle is larger than the typical size of the black
hole, 1=! � M (we have restored the mass of the black
hole for clarity). Within this approximation it is possible to
divide the space-time outside the horizon in two regions—
the near region, where ðr� rþÞ 	 1=! and the far region,
where ðr� rþÞ � M. Then, one solves the wave equation
in both regions separately, and where an overlap occurs—
in the region—M 	 ðr� rþÞ 	 1=! the solutions are
matched. Using this matching technique, an approximation
for the real part of frequency of the nth overtone !n in
terms of the mirror radius can be obtained as Reð!nÞ ¼
j‘þ1=2;n=rm, where j‘þ1=2;n is the (nþ 1)th root of the

Bessel function of order ‘, J‘. The imaginary part can be
approximated as

Imð!nÞ ¼ ��
1

r2ð‘þ1Þ
m

ðReð!nÞ �!cÞ; (9)

where

�¼ð�1Þ‘J�‘�1=2ðj‘þ1=2;nÞ
J0�‘�1=2ðj‘þ1=2;nÞ

�
‘!

ð2‘�1Þ!!
�
2

�r2þðM2�Q2Þ‘
ð2‘Þ!ð2‘þ1Þ!

ð2j‘þ1=2;nÞ2‘þ1

2‘þ1

Yl

k¼1

ðk2þ4 ~!2Þ; (10)
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FIG. 4. The imaginary part (real part in the inset) of the
frequency as a function of q for Q ¼ 0:9, � ¼ 0:1, and rm ¼
5, 10, 20, 50.

FIG. 3 (color online). The imaginary and real part of ! drawn as a function of the mirror radius rm for various values of the black
hole charge, Q, and the scalar charge, q. q ¼ 0:9, 1.5, 2.0 for the left, middle, and right column, respectively. We took � ¼ 0:1.
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and ~! ¼ r2þðj‘þ1=2;n=rm �!cÞ=ðrþ � r�Þ. The salient

feature we wish to emphasize is the dependence on q,
which appears via the dependence on !c. By inspection,
this suggests that Imð!Þ grows with !c, and hence with q.
This is indeed the behavior observed in the numerical
results previously presented.

In Table I we show some frequencies obtained by this
analytic approximation and compare them with the values
obtained with the numerical integration scheme previously
presented. From the aforementioned approximations, one
expects that lower frequencies yield a better analytical
approximation. This is indeed observed for the real part.
An empirical observation is that the imaginary part is better
approximated by the analytical formula when the product
qQ is of the order of unity. This is also seen for the
frequencies displayed in the table. Thus, there are indeed
regimes of applicability for which the analytic approxima-
tion is legitimate.

As alreadymentioned in the Introduction, the charged case
we have studied herein does not seem to have astrophysical

relevance, mainly because if Q=M*10�13ða=MÞ�1=2�
ðM=M
Þ1=2, the (Kerr-Newman) black hole is expected to
discharge very quickly [30]. The interest in our study lies on
providing a setup wherein the nonlinear development of the
superradiant instability might be more treatable.

Finally, what will be the end state, in this setup, of the
nonlinear development of the superradiant instability?
Since the scalar field, after being amplified by the insta-
bility, cannot leave the cavity, the end state is likely to be
a scalar condensate around a charged black hole. Observe
that such scalar hair is not precluded by the usual theo-
rems [31], since these assume asymptotic flatness. This
scenario parallels the fate of unstable charged black holes
in asymptotically anti–de Sitter space-times, against the
condensation of a scalar field, which have been of con-
siderable interest over the last few years for studies of
holographic superconductors (see, e.g., [32]). Therefore,
we conjecture that in contrast to the asymptotically flat
case, the Einstein-Maxwell scalar field theory in a cavity
should have two families of spherically symmetric solu-
tions, at least for some range of the physical parameters,
given that the behavior displayed for the frequencies in
the ‘ ¼ 1 case holds in a qualitatively similar way for
‘ ¼ 0 as well. And the existence, in the linear analysis, of
a threshold mode with zero imaginary part (as seen from
the plots in Fig. 1) is, as in other well-known cases such
as the Gregory-Laflamme instability of cosmic strings
[33], indicating such a branching in the solutions of this
theory.
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