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A folded resonant Fabry-Perot cavity has the potential to significantly reduce the impact of coating

thermal noise on the performance of kilometer scale gravitational wave detectors. When constructed using

only spherical mirror surfaces it is possible to utilize the extremely robust TEM00 mode optical mode.

In this paper we investigate the potential thermal noise improvements that can be achieved for third

generation gravitational wave detectors using realistic constraints. Comparing the previously proposed

beam configurations such as e.g. higher order Laguerre-Gauss modes, we find that similar or better

thermal noise improvement factors can be achieved, while avoiding degeneracy issues associated with

those beams.
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I. INTRODUCTION

The field of gravitational wave astrophysics is entering
an exciting new phase. First generation long baseline
interferometers have completed a yearlong integrated
data run and a number of significant upper limits on
astrophysical events have been placed [1,2]. These first
generation detectors are now being replaced by second
generation instruments which are anticipated to have sen-
sitivity that is improved by almost an order of magnitude
and a low frequency cutoff that is reduced from 40 to 10 Hz
or below [3–5]. It is anticipated that the sensitivity of these
instruments will be limited by a combination of thermal
noise and quantum noise which is due to the quantum
nature of the light used in the interferometer see Fig. 1.
Research is now being conducted into possible configura-
tions that are suitable for third generation instruments that
will begin to be constructed around 2020 [6].

To make significant enhancement on the sensitivity of
second generation instruments two stubborn noise sources
must be addressed, namely quantum noise and coating
thermal noise. The use of nonclassical states of light and
filter cavities looks like a promising method to reduce the
quantum noise of second generation interferometers by a
factor of at least 3 [7,8]. The maximum benefit of this noise
improvement will only be achieved if a corresponding
improvement is realized in coating thermal noise.

Coating thermal noise is the name given to the noise
caused by the mechanical dissipation of the dielectric coat-
ings applied to the test masses to create high reflectivity
surfaces. The impact of coating thermal noise on advanced
gravitational wave detectors was first realized over 10 years

ago [9–11]. Since that time a significant amount of
research has been directed into determining the cause of
the mechanical dissipation in coatings and finding new
coatings to reduce it [12]. Despite nearly a decade of
work, these heroic efforts have improved the coating ther-
mal noise of amorphous coatings by 31 percent [12].
Recently crystalline coatings have been demonstrated
that reduce coating thermal noise by a factor of over 3 in
amplitude [13]. This impressive demonstration was per-
formed using a coating whose spatial extent was signifi-
cantly less than 25 mm. Considerable effort is still needed
to determine whether this coating technology can be scaled
to the size needed for third generation optics while main-
taining this thermal noise improvement and all of the other
demanding specification required of such a coating.
In parallel with developing new coatings other research-

ers have been looking at new interferometer topologies to
reduce the impact of coating thermal noise. Nakagawa
et al. showed that delay lines instead of Fabry-Perot arms
can significantly reduce the impact of thermal noise
because of the improved averaging of different spots
reflecting from mirrors [14]. Other researchers have inves-
tigated using higher order Laguerre-Gauss modes [15,16]
and nonspherical mirrors such as the so-called ‘‘sombrero’’
[17] and conical mirrors [18]. TEM00 Gaussian modes
have been shown to have a low sensitivity to mirror per-
turbations compared to these other mirror geometries and
mode types; see for example [19,20]. We have therefore
sought out a mirror geometry that can maintain the advan-
tages offered by resonating TEM00 modes.
Optical delay lines were first proposed by Herriott [21].

They were incorporated in the original paper on interfero-
metric gravitational wave detection by Weiss [22]. In this
paper we present an investigation of resonant delay lines,
also called folded Fabry-Perot cavities, for use in long
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baseline gravitational wave detectors. Our approach uses a
modified Herriott delay line approach to fold a Fabry-Perot
cavity many times to increase the sampling of the mirror
surface and hence reduce coating thermal noise. The tech-
nique however also has possible applications for low noise
reference cavities. The use of resonant delay lines for
improving the sensitivity of the optical readout of resonant
mass detectors has been investigated by Marin et al.
[23,24]. In this paper we address the issues that are relevant
to applying this technique to multikilometer interferomet-
ric gravitational wave detectors. The techniques discussed
here can be applied in isolation or in combination with
improvements to the coatings or with other beam tech-
niques such as the implementation of Laguerre-Gauss
modes.

II. COATING THERMAL NOISE

Second generation gravitational wave detectors are lim-
ited by thermal noise in their most sensitive band.
Specifically the limiting source of noise is the Brownian
motion of the mirror surface, caused by the mechanical
loss in the mirror coating. According to [9] the power
spectral density of this noise is given by

Sxx ¼ 4kBT

�f
�U (1)

where � is the loss angle, and U the strain energy
associated with a static pressure profile on the mirror
surface, normalized by the total driving force.
Specifically for Brownian noise due to mechanical loss in
the coatings, read out by a Gaussian TEM00 mode, U is
given by [25,26]

U ¼ �c

ð1þ �Þð1� 2�Þ
�Yw2

�1 (2)

where �c is the coating thickness, � is the Poisson ratio of
the substrate, Y is the Young’s modulus of the substrate and

w is the Gaussian beam width; i.e. the laser intensity is
proportional to exp ð�2r2=w2Þ. Finally �1 is a correction
factor with �1 ¼ 1 if coating and substrate have the same
Young’s modulus and Poisson ratio. Corrections for higher
order optical modes and finite size mirrors have also been
calculated [26]. Equations (1) and (2) show that the coating
thermal noise is the Brownian surface motion of the optic,
averaged over the laser beam spot area.
In addition we are interested in the spatial correlation of

thermal noise across the mirror surface. For the dominant
coating Brownian noise the intrinsic spatial correlation
drops off over about the coating thickness �c, which for
almost all applications is much smaller than the Gaussian
beam width w. Note that since the coating Brownian noise
calculation depends on the nonlocal elastic Green’s func-
tion, the statement above is not necessarily obvious, and
will break down at the first internal resonance frequency.
The interested reader is referred to a paper by Lovelace
[27]. The noise correlation of neighboring beam spots with
width w at locations xA and xB therefore scales with the
optical overlap

SxAxB ¼ Sxx

R
Ið~r� ~xAÞIð~r� ~xBÞd2rR

I2ð ~rÞd2r ¼ Sxxe
�j ~xA� ~xB j2

w2 : (3)

Here we used the intensity profile of the beam IðrÞ /
exp ð�2r2=w2Þ. In addition, recently proposed crystalline
coating materials may be limited by thermo-optic noise
[13]. Here the spatial correlation is dictated by the
frequency dependent diffusion length

ddiff ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�

2�fC�

s
(4)

with � the thermal conductivity, C the specific heat and �
the density. As long as ddiff is much smaller than the
Gaussian beam width w, Eq. (3) is equally valid for
thermo-optic noise. Note that this condition might be

FIG. 1 (color online). Left: Simplified noise budget for Advanced LIGO, showing the relative contribution of quantum noise, mirror
thermal noise (Brownian and thermo-optic) as well as everything else to the design sensitivity. Right: Example noise budget for a
modified LIGO interferometer with the 4.5 spot resonant delay line shown in Fig. 4. The design uses existing Advanced LIGO mirror
coatings. To improve the quantum noise the test masses were increased from 40 to 160 kg, and a broadband quantum noise reduction of
6 dB through the use of nonclassical states of light was assumed. Finally all mirror reflectivities were then retuned to optimize the
quantum noise in this configuration. Both plots were calculated using the Gravitational Wave Interferometer Noise Calculator
(GWINC) tool, a software developed by the gravitational wave community.
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violated for certain cryogenic reference cavities.
Equation (3) is however not valid for Brownian noise due
to mechanical loss in the mirror substrate. For this case
Nakagawa et al. [14] showed that the spatial correlation is
dictated by the elastic Green’s function of the optic, and is
given by

SSBxAxB ¼ SSBxx e
�j ~xA� ~xB j2

2w2 I0

�j ~xA � ~xBj2
2w2

�
(5)

where I0 is the modified Bessel function of the first kind.
Since substrate Brownian noise is significantly below the
coating noise however, we do not have to be concerned
with this correlation.

The Advanced LIGO coatings are silica-tantala
(SiO2-Ta2O5) dielectric stacks with a titania doping
(TiO2) in the Ta2O5 layers. The same coatings are also
intended to be used in the Advanced Virgo detector. They
were selected for low mechanical loss, while respecting the
additional optical specifications. The dominant mechanical
loss is due to the high-index Ta2O5. The titania doping of
the Ta2O5 layers is the main improvement over the initial
LIGO coatings. It resulted in a reduction of the loss angle
from about 4� 10�4 [25] in undoped coatings to about
2:5� 10�4 with the titania doping [28]. Ideas to further
improve the coating noise roughly fall into three classes:
(i) select an alternative coating material with optimized
material constants. One can directly target the mechanical
loss angle. This approach was chosen in [13] by using
crystalline coatings. The titania-doped tantulum coatings
for Advanced LIGO also fall into that category.
Alternatively one could optimize other parameters. For
instance one could aim for a larger refractive index con-
trast, allowing for thinner, lower noise coatings. (ii) Switch
to cryogenic operation to reduce thermal noise. While
Eq. (1) suggests linear improvement of the noise power
spectral density with temperature, the temperature depen-
dence of other material parameters—in particular the
mechanical loss angle—can negate any benefit. This is
for example the case for the substrate material of choice
at room temperature—fused silica (SiO2). Thus, to benefit
from cryogenic operation of an interferometer, a change
of substrate and coating material is also required.
(iii) Effectively sample a larger mirror area. Resonant
delay lines offer to do the latter while staying away from
extremely degenerate optical cavities. The rest of the paper
will explore this approach.

III. RESONANT DELAY LINES

A resonant delay line can be operated in either a
traveling wave or a standing wave configuration. Figure 2
illustrates simple Fabry-Perot cavities configured in
both standing wave and traveling wave configurations.
The traveling wave geometry clearly has the advantage
of separating the inputs and outputs. This may be
advantageous for introducing squeezed vacuum into the

interferometers because the squeezed vacuum need not be
introduced through an optical isolator with losses that
degrade the potential benefit. This benefit comes with
considerable cost in the form of significantly increased
complexity of the system.
The choice of standing wave or traveling wave also

affects the thermal noise improvement that can be achieved
for a given arm length. In Table I we calculate the rela-
tionship between the number of bounces on each mirror,
the resulting increase in the round trip cavity length and
improvement in coating thermal noise for the simple case
in which all spot sizes are identical and they are sufficiently
separated that their thermal noise contribution is uncorre-
lated to that from adjacent spots. For a traveling wave
interferometer this means that the thermal noise contribu-
tion of each spot is equal. However in a standing wave
geometry the cavity mode samples the intermediate spots
on the mirror twice, picking up the same thermal noise
twice coherently. This leads to a slightly more complicated
scaling of thermal noise with increasing bounce number.
Resonant delay lines increase the sensitivity of the

interferometer because the thermal noise adds incoher-
ently, whereas the gravitational wave signal adds coher-
ently for each additional pass. This coherent addition of the
gravitational wave signal is equivalent to making the arms
of the interferometer longer, which increases the sensitivity
to gravitational wave strain at lower frequencies. However
increasing the round trip length of the arm cavities also
reduces their free spectral range. A gravitational wave
detector with a folded Fabry-Perot arm cavity is insensitive
to gravitational wave strain at its free spectral range, as we
will see below.
Hence we are not able to increase the arm length arbi-

trarily. Further, higher order cavity modes may create
undesired resonances in the detector and these also reduce
in frequency as the arm cavity length increases and the free
spectral range decreases.
For an interferometer with 4 km long beam tubes like

Advanced LIGO this argument limits the effective increase
in arm cavity round trip length to approximately 10 times
which would put the free spectral range and its resulting
zero in interferometer response at 3.75 kHz. This sets the
number of bounces to four bounces on the end test mass
(ETM) and five on the input test mass (ITM) for a standing
wave and ten on each for a traveling wave cavity. This
means a theoretical improvement of 2.1 and 3.2 in
the strain sensitivity for standing wave and traveling
wave cavities respectively compared to a conventional

FIG. 2 (color online). Fabry-Perot cavities configured in
standing wave (left) and traveling wave geometries (right).
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Fabry-Perot cavity with the same spot size at each bounce.
From this point of view traveling wave cavities have a
significant advantage. However this comes at the cost of a
significantly more complicated layout of power and signal
recycling cavities in a gravitational wave interferometer. A
traveling wave interferometer does have the small advan-
tages of lessening the requirements on optical isolation and
provides a convenient port for injecting nonclassical states
of light for squeezed light enhancement of gravitational
wave detectors.

IV. A SIMPLE RING CAVITY SOLUTION

Our goal is to reduce thermal noise by effectively aver-
aging over more of the mirror surface, without introducing
the instabilities associated with using a single large spot.
Further, by using mirrors with a spherical curvature wher-
ever possible the task of polishing the optics becomes
easier. The first geometry that we consider here is a simple
pair of spherical mirrors illustrated in Fig. 3. The solution
that we looked for was a Herriott delay line path in which
the final bounce connected with the input beam position

and upon reflection from the mirror became aligned with
the input beam and hence closed the path forming a reso-
nant delay line. We use geometrical optics and ray transfer
matrices to trace the folded optical axis.
The round trip ray transfer matrix M of a Fabry-Perot

cavity is given by

M ¼ A B

C D

 !

¼ 1 0

� 2
Ritm

1

 !
1 L

0 1

 !
1 0

� 2
Retm

1

 !
1 L

0 1

 !
(6)

where Ritm and Retm denote the radius of curvature of the
input test mass (input mirror) and end test mass (far mirror)
respectively. The product of its eigenvalues is �1�2 ¼ 1,
since the determinant of M is 1. The optical stability
criterion for this cavity is j�ij � 1 for all eigenvalues,
which implies �1 ¼ ei� and �2 ¼ ��

1 [29]. This is a suffi-
cient condition for an optical mode to be present, indepen-
dent of the choice of �. A resonant delay line mode
however needs to repeat itself exactly after Nb bounces

FIG. 3 (color online). Example of a positive branch (left) and negative branch (right) folded Fabry-Perot cavity with four bounces.
Both represent a traveling wave configuration.

TABLE I. Comparison between traveling wave and standing wave configurations. Listed are
the total number of reflections, total round trip length, and amplitude thermal noise scaling
factors (defined as the thermal noise ratio between one mirror reflection and the complete
configuration). For simplicity we assume here that all spots are the same size, and neighboring
spots are completely uncorrelated. All expressions are given in terms of the number of spots per
mirror, Nb, and the cavity length L. For the standing wave configuration Nb can be half-integer,
indicating one additional beam spot on the input coupler. The thermal noise reduction factor is
the improvement in thermal noise compared to a standard Fabry-Perot cavity with identical spot
sizes.

Parameter Traveling wave Standing wave

Spots per mirror Nb Nb

Total reflections 2Nb 4Nb � 2
Round trip length 2NbL ð4Nb � 2ÞL
Displacement amplitude thermal noise factor

ffiffiffiffiffiffiffiffiffi
2Nb

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8Nb � 6

p
Strain amplitude thermal noise factor 1ffiffiffiffiffiffi

2Nb

p ffiffiffiffiffiffiffiffiffiffiffi
8Nb�6

p
4Nb�2 ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ðNb�1
4Þþ 1

8Nb�6

p
Thermal noise reduction factor

ffiffiffiffiffiffi
Nb

p
4Nb�2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16Nb�12

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nb � 1

4 þ 1
16Nb�12

q
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per mirror, leading to additional constraints on the angle�.
In particular, after Nb bounces per mirror we need to fulfill
the condition

MNb
x

x0

 !
¼ 1

x

x0

 !
(7)

with x the beam position and x0 the beam slope. This
implies MNb has one eigenvalue of 1, and since the deter-
minant is also 1, all eigenvalues are 1. A beam path that
connects correctly with itself therefore requires MNb to be
the identity matrix, and Eq. (7) is true for any input beam
ðx; x0Þ. For the eigenvalues of M this implies

�1 ¼ e
i2�nNb ; n ¼ ð1; 2; . . . ; NbÞ (8)

and �2 ¼ ��
1. Using the cavity g-factors gitm ¼ 1� L=Ritm

and getm ¼ 1� L=Retm this can be expressed as (for details
see the Appendix)

gitmgetm ¼<ð�1Þ þ 1

2
¼ cos 2

�n

Nb

� �
; n¼ ð1;2; . . . ;NbÞ:

(9)

Equation (9) is identical to the condition for the Nbth order
transverse modes to be coresonant in the cavity with the
fundamental mode, highlighting the connection between a
higher order transverse mode and a folded beam path in a
two-mirror cavity with spherical mirrors. It implies that
MNb is the identity matrix, which presents a problem for
two reasons. First, our folded cavity is completely degen-
erate, and has a 0 Hz transverse mode spacing. In other
words it has no mode selection ability, similar to short
plane-parallel cavity (etalon). Second, Eq. (9) is a margin-
ally stable point design. Any slight deviations in either
radius of curvature or cavity length will result in a cumu-
lative drift of consecutive reflections, destroying the mode
shape.

We therefore conclude that the simple spherical mirror
design has to be modified. We are interested in a minimal
modification, preserving simple spherical mirrors for most
of the beam spots, for two reasons: (i) having the same
spherical shape for neighboring spots will reduce the clip-
ping loss on reflection, and (ii) retaining the overall spheri-
cal shape of the mirrors will reduce the complexity of
manufacture.

Locally modifying the radius of curvature for a single
reflection (e.g. on the input test mass) does not lead to a
stable cavity configuration. This can be seen by calculating
the modified round trip ray transfer matrix Mmod

r:t: , and
remembering that MNb is the identity matrix:

Mmod
r:t: ¼

1 0

� 2
Rmod
itm

1

0
@

1
A 1 0

� 2
Ritm

1

 !�1

MNb ¼
1 0

� 2
Rmod
itm

þ 2
Ritm

1

0
@

1
A (10)

which has geometric multiplicity of 1 and is not optically
stable. This constraint does not hold if we modify the
radius of curvature for two reflections, which can be shown
by an example. Therefore a stable, folded, traveling wave
optical cavity can be achieved by locally polishing shallow
cups or by perturbing two locations on the spherical
mirrors using thermal compensation [30], thus perturbing
the otherwise spherical mirrors for a total of two spots per
cavity.
To maximize the gain of a folded cavity design the spot

size of each reflection must be kept as big as possible. The
ray transfer matrix analysis above shows that there is an
inherent connection between spot size and number of
bounces Nb if the path is to close on itself. The spot size
on the mirrors in a traditional Fabry-Perot two-mirror
cavity is given by

w2
1 ¼

�L

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2

g1ð1� g1g2Þ
s

(11)

and w2
2 ¼ w2

1g1=g2. The individual spot sizes for a folded
cavity will vary slightly around that number due to the
radius of curvature perturbation that needs to be introduced
at two locations to ensure mode discrimination. For the
symmetric case g1 ¼ g2, and using Eq. (9) we find

w2
1;2 ¼

�L

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

1� cos 2
�
�n
Nb

��
s

n ¼ ð1; 2; . . . ; NbÞ: (12)

Maximizing the beam waist w1;2 therefore leads us to pick

n ¼ 1 [or equivalently n ¼ Nb � 1, since �2 ¼ ��
1; see

Eq. (8)]. n ¼ 1 implies that we are stepping through a
neighboring spot on a mirror, not skipping any spots. We
still have the choice of picking either a positive or a
negative g-factor; see Fig. 3. Both lead to the same spot
sizes and thermal noise, but negative g-factor configura-
tions have been preferred in the second generation of
gravitational wave detectors since they lead to lower
angular optical spring frequencies [31].
The design spot sizes for Advanced LIGO are

w ¼ 53 mm and w ¼ 62 mm for the input and end test
mass respectively, corresponding to a design cavity
g-factor of gitmgetm ¼ 0:8303 (negative branch). This cor-
responds to an effective bounce number Nb ¼ 7:4 per
mirror [Eq. (9)]. For a traveling wave geometry this is
achievable with a mirror of about 1 m which is approaching
the maximum clear aperture of the LIGO beam tubes. The
spacing in this case is driven by clipping loss requirements
on the input and output coupling surfaces which are dis-
cussed later in this paper.
Standing wave geometries require that a significant

wedge be built on two areas on the optic where the termi-
nating bounces of the cavity hit. This means that the design
is no longer tied into meeting the stringent requirements
described above. Thus the g-factor is not fixed. Further it
allows the design to consider possible configurations with
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less than one full orbit. One interesting approach is to
choose an elliptically shaped beam orbit (e.g. the yaw
beam oscillations smaller than the pitch oscillations), and
terminate the orbit with wedges after roughly 1=2 orbit.
This configuration has multiple advantages:

(i) We can choose a g-factor that results in comparable
or bigger beam spots than current gravitational wave
interferometers.

(ii) We can pick the number of actual spots to match the
available mirror surface area.

(iii) By placing the wedged input and output coupler
near the minor half-axis of the beam orbit, we can
maximize the spot separation for those beams, thus
minimizing clipping losses at the wedged surfaces.

(iv) All other spots will be closer to one another, but
they are all supported by the same mirror radius of
curvature; thus no clipping loss will occur.

Figure 4 shows such an elliptical standing wave cavity with
4.5 beam spots (4 on the end test mass, 5 on the input test
mass). Its g-factor is identical to Advanced LIGO’s. It
guarantees at least 2:5w of beam clearance from mirror
edges or wedged area edges, keeping clipping losses down.
An example interferometer sensitivity that can be achieved
with this design is shown in Fig. 1.

V. ALIGNMENT CONTROL

The behavior of the described resonant delay line under
misalignment of a mirror is surprisingly simple. The
Gaussian beam propagating down the cavity has the
same q-parameter as the mode of a simple two-mirror
Fabry-Perot cavity. Here the q-parameter is defined as
1=q ¼ 1=R� i�=ð�w2Þ where R is the wave front radius
of curvature, and w is the spot size. Therefore the spot
motion under misalignment is identical to the simple
Fabry-Perot cavity case, and is given by

x1

x2

 !
¼ L

1� g1g2

�g2 1

�1 g1

 !
�1

�2

 !
: (13)

As a consequence traditional Pound-Drever-Hall wave
front sensing can be used for cavity or input beam
alignment control, just as in the simple Fabry-Perot cavity
case [32,33].

VI. SPOT SPACING LIMITATIONS

We discussed in the previous section how coating ther-
mal noise is limited if the maximum area of the mirror is
interrogated by light. Given that the correlation length of
coating thermal noise is very short this generally does not
set a significant constraint on the spacing of the spots.
However the combination of the need to locally alter the
mirrors on at least two locations and the need to effectively
outcouple the beam from the cavities does. In aLIGO the
mirror diameter is set by the requirement to limit diffrac-
tion losses per bounce. This means that the aLIGO mirrors
have a radius that is 2.7 times the spot radius of the
fundamental beam radius. To maintain the same losses
per bounce means the spot separation must be twice this
amount if the spots are evenly spaced. The elliptical pattern
described earlier relaxes this constraint somewhat because
the spot spacing near the terminal bounces is larger than
the intermediate bounces.
For the ring delay line described earlier it is simple to

determine an analytical relationship among the spot size,
number of bounces, desired separation and the mirror size.
The geometry used to describe this situation is illustrated
as Fig. 5. In this figure dspace is the desired separation

between the spots. Half this distance will be the clear
aperture around the spots. The angle � is given in radians
by � ¼ �

Nb
. Using trigonometry we find dspace=2 ¼

R sin�, and the required mirror diameter is simply

FIG. 4 (color online). Standing wave cavity with an elliptical beam orbit, five spots on the input test mass, and four spots on the end
test mass. Left: side view; right: frontal view with the elliptical beam orbits indicated in yellow. The g-factor was chosen to be equal to
Advanced LIGO (g ¼ 0:8303), corresponding to Nb ¼ 7:4 bounces per orbit, and a beam size of w ¼ 57:3 mm. The optics have a
radius of 40 cm, and a thickness of 15 cm, corresponding to a mass of 160 kg if made out of fused silica. This design provides a beam
clearance of about 2:5w, limiting clipping losses to about 1 ppm (lower on the end test mass). The coating Brownian thermal noise of this
configuration is 2.1 times below Advanced LIGO in amplitude. (The arm length is shrunk by a factor of 1000 for illustration purposes.)
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Dmirror ¼ 2ðRþ dspace=2Þ ¼ dspace

�
1þ 1

sin ð �Nb
Þ
�
: (14)

In practice this equation is a more severe limitation for
the traveling wave geometry than the free spectral range
(FSR) restriction described earlier. The clear aperture of
the LIGO vacuum system is 1 m which limits the number
of bounces to six if the same effective clear mirror area to
beam size as LIGO is maintained. This will enable a coat-
ing thermal noise of 2.45 in amplitude to be achieved. The
additional freedom that a standing wave geometry allows
means that a more compact spacing of spots can be
achieved by allowing the input/output bounces to be spread
further apart than the bounces near the center. The other
complication that results from significantly increasing the
diameter of the test mass is that the solid-body modes of
the test mass reduce in frequency. It will be necessary to
consider this as part of any future detector design because
this can limit the high frequency performance of the
detector.

VII. SCATTERED LIGHT CONTROL

Early prototypes of gravitational wave detectors utilized
multibounce delay lines as an alternative to Fabry-Perot
cavities. The low frequency performance limits of these
detectors were often attributed to scattered light [34]. Since
these early experiments there has been considerable
improvement on the achievable mirror surface quality
and a dramatic enhancement in seismic isolation available.
However it is prudent to do some analysis to determine
whether scattered light is likely to set significant additional
requirements on the control of the optics in a resonant
delay line cavity. It is also worth pointing out that in a
resonant delay line the net round trip length of the cavity
will be fixed which is not necessarily the case for a
Michelson or Sagnac interferometer with conventional
delay lines. Further given the stable mirror geometries
that are used it should be possible to resonate an auxiliary
laser between the center of the two mirrors in a single

bounce standing wave Fabry-Perot geometry similar to the
green laser that will be used in aLIGO [35,36]. This will
allow accurate control of the microscopic separation and
angular alignment of these cavities. During the next part of
this section we will evaluate the requirements on angular
stability of these mirrors to prevent scattered light from
becoming a performance limitation.
For scattered light to be an issue, light must first be

scattered from one site, be incident on the location of
another bounce and then be scattered back into the mode
exiting the mirror at the new location. The fraction of light
that makes this transition was evaluated by Flanagan and
Thorne [37] and for this case is given by

�I=I ¼ �

L

� �
2

BRDFmirrorð�exitÞBRDFmirrorð�recombÞ: (15)

Light that is reinjected in this manner does not neces-
sarily reduce the sensitivity of the instrument unless it
picks up additional time dependent phase shifts. One way
that this can occur is if there is angular motion of the test
masses. In this situation the effective displacement noise
that this creates is

S1=2x ¼
ffiffiffiffiffiffiffiffiffiffi
�I=I

p
�xS1=2� (16)

where �x is the difference in spacing between where the
mode hits the mirror correctly and the spot in which the

scattered light recombines and S1=2� is the angular ampli-

tude displacement spectra. It is constructive to compare
this equation with the coupling of angular noise to a
standard Fabry-Perot cavity in which the locations of
where the beams bounce off the mirrors are offset from
the center of the mirror by an amount�xdisp, which is given

by the formula

S1=2x ¼ �xdispS
1=2
� : (17)

It is expected that the miscentering tolerance for aLIGO
will be 50 	m compared with the maximum spot separa-
tion which in a resonant delay line could be 0.5 m.
However this noise term from scattering is considerably
attenuated by the coupling between the two paths. Using
the polished aLIGO mirrors as a guide, the bidirectional
reflectance distribution function (BRDF) can be as high as
3000, which when plugged into Eq. (15) gives a value of
5� 10�13 which makes this term smaller than the conven-
tional angular noise by a factor of 100.
It is well known that if reinjected scattered light takes a

path whose length is modulated by greater than the wave-
length of light then sidebands are imposed on the light that
can have a frequency separation from the carrier that is
considerably larger than the frequency of the original path
modulation. This is so-called up-converted noise (see [38]
for example). To ensure that this is not an issue the maxi-
mum rms angular fluctuations of the mirror must be limited

FIG. 5 (color online). The geometry used to calculate the
mirror size required to support a delay line with Nb bounces
per mirror.
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to less �=dmirror ¼ 1 	Rad which is considerably more
than anticipated for aLIGO when under active control.

VIII. GRAVITATIONALWAVE
ANTENNA FUNCTION

Folding a gravitational wave interferometer arm also
affects its transfer function for gravitational waves. For
light traveling down an arm (aligned with the x axis) and
back, the change in round trip time delay is given by

�T1ð!Þ ¼ Dð!; nxÞhxxð!Þ (18)

where hxxð!Þ is the stain component along the x arm (in
transverse traceless gauge), and nx the component along
the arm of the normal vector pointing at the source (i.e.
opposite to the gravitational wave k-vector). The transfer
function Dð!; nxÞ is given by [39]

Dð!;nxÞ ¼ 1

�2i!

�
1� ei!ð1�nxÞT

1�nx
� e2i!T 1� e�i!ð1þnxÞT

1þnx

�
:

(19)

Here T is the one-way light travel time in the arm (4 km=c
for Advanced LIGO). We now fold the beam Nr:t: times,
with Nr:t: ¼ Nb for traveling wave geometry and Nr:t: ¼
2Nb � 1 for standing wave geometry. Equation (18)
becomes

�TNr:t:
ð!Þ ¼ Dð!; nxÞFNr:t:

ð!Þhxxð!Þ (20)

with

FNr:t:
ð!Þ ¼ 1þ ei2!T þ � � � þ ei2ðNr:t:�1Þ!T

¼ ei2Nr:t:!T � 1

ei2!T � 1
: (21)

As expected we have F1ð!Þ ¼ 1 and FNr:t:
ð!Þ ! Nr:t: for

! ! 0. However, in contrast to a regular Fabry-Perot
cavity, the sensitivity to gravitational waves of a folded
cavity at its free spectral range !FSR ¼ �=ðNr:t:TÞ is
exactly zero. Since a gravitational wave interferometer
should have good sensitivity up to a few kilohertz, this
constrains the total number of reflections Nr:t: to less than
about ten for an arm length of 4 km (Advanced LIGO).

IX. CONCLUSION

We have presented an analysis of a new topology
for future gravitational wave detectors that reduces the
impact of coating thermal noise by a factor of up to 2.5
in amplitude. This new topology improves the averaging of
coating thermal noise across the surface of the test masses.
The proposed design makes use of lowest order Gaussian
beams which have been shown to be the most stable optical
mode against imperfections in mirror surfaces. The topol-
ogy can also be used in conjunction with improvements in

mirror coatings such as the recently developed crystalline
coatings, and thus has the potential to eliminate coating
thermal noise as a principal design constraint for gravita-
tional wave interferometer sensitivity. The challenges for
implementing this topology include the need for relatively
large test masses and the unusual polishing requirement to
achieve a different radius of curvature at certain spots.
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APPENDIX: G-FACTOR CONSTRAINT FOR
RESONANT DELAY LINE

Here we revisit the two-mirror resonant delay line with
spherical mirrors first discussed in Sec. IV. Our starting
point is Eq. (6), describing the two-mirror Fabry-Perot
cavity round trip ray transfer matrix M. In the main text
we have seen that for a resonant delay line withNb bounces
per mirror, the eigenvalues �i of M have to fulfill
Eq. (8). Using the cavity g-factors gitm ¼ 1� L=Ritm and
getm ¼ 1� L=Retm, we can express M as

M¼ 1 0
2
L ðgitm � 1Þ 1

 !
1 L

0 1

 !
1 0

2
L ðgetm � 1Þ 1

 !
1 L

0 1

 !

(A1)

or

M ¼ 2getm � 1 . . .

. . . 2gitm � 2þ ð2gitm � 1Þð2getm � 1Þ

 !
:

(A2)

Using �2 ¼ ��
1 [Eq. (8)] we can relate the real part of �1 to

the trace of M:

<ð�1Þ ¼ 1

2
ð�1 þ �2Þ ¼ 1

2
trðMÞ ¼ 2gitmgetm � 1: (A3)

Finally, since <ð�1Þ ¼ cos ð2�nNb
Þ [Eq. (8)], and using the

trigonometric identity

cos 2ð
Þ ¼ cos ð2
Þ þ 1

2
(A4)

we find the condition for a two-mirror resonant delay line
with spherical mirrors [Eq. (9)]

gitmgetm ¼<ð�1Þ þ 1

2
¼ cos 2

�n

Nb

� �
; n¼ ð1;2; . . . ;NbÞ:

(A5)
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