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We extend the adiabatic regularization method to spin-1=2 fields. The ansatz for the adiabatic expansion

for fermionic modes differs significantly from the WKB-type template that works for scalar modes. We

give explicit expressions for the first adiabatic orders and analyze particle creation in de Sitter spacetime.

As for scalar fields, the adiabatic method can be distinguished by its capability to overcome the UV

divergences of the particle number operator. We also test the consistency of the extended method by

working out the conformal and axial anomalies for a Dirac field in a Friedmann-Lemaı̂tre-Robertson-

Walker spacetime, in exact agreement with those obtained from other renormalization prescriptions.

We finally show its power by computing the renormalized stress-energy tensor for Dirac fermions in de

Sitter space.
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I. INTRODUCTION

Quantum field theory in curved spacetime offers a first
step to merge Einstein’s theory of general relativity and
quantum field theory in Minkowski space within a self-
consistent and successful framework [1,2]. The discovery
of particle creation in a time-dependent gravitational field
[3,4] has proved of paramount importance. It constitutes
the driving mechanism to explain the quantum radiance in
a gravitational collapse producing a black hole [5] and the
generation of cosmic primordial inhomogeneities, ob-
served now in the cosmic microwave background and the
large-scale structure of the Universe [6]. The gravitation-
ally created particles generate an energy density with new
ultraviolet (UV) divergences, as compared with the UV
divergences present in Minkowski space. This requires
more sophisticated methods of renormalization, adapted
to the time-dependent or curved background.

Adiabatic regularization was first introduced in Parker’s
pioneer work on particle creation in the expanding universe
[3] as a way to overcome the rapid oscillation of the
particle number operator and UV divergences during the
expansion. The method was later systematized and gener-
alized [7] to consistently deal with the UV divergences of
the stress-energy tensor of scalar fields. The adiabatic
method identifies the UV subtraction terms by first consid-
ering a slowly varying expansion factor aðtÞ. This naturally
leads to a Liouville or WKB-type asymptotic expansion for

the modes characterized by the comoving momentum ~k.
The subtraction terms identified this way are valid for
arbitrary smooth expansions. The method was originally
designed to deal with the particle number operator, and it is
a distinguishing feature of adiabatic renormalization.
When the method is applied to renormalize local expecta-
tion values, as the stress-energy tensor, it turns out to be
equivalent to the DeWitt-Schwinger point-splitting pre-
scription for scalar fields [8,9]. An advantage of adiabatic

regularization is that it is very efficient for numerical
calculations [10–12]. It is also potentially important to
scrutinize the power spectrum in inflationary cosmology
[13]. It also plays a crucial role in the understanding of the
low-energy regime in quantum cosmology [14].
The point-splitting prescription [15,16] can be naturally

extended to spin-1=2 fields [17], and one would expect an
analogous extension within the adiabatic subtraction
scheme. However, a systematic adiabatic expansion for
spin one-half modes, required to identify the subtraction
terms, has been elusive. In this paper we provide a basis for
such expansion and prove it by working out the axial vector
current and the conformal anomalies in a Friedmann-
Lemaı̂tre-Robertson-Walker (FLRW) universe, and also
analyzing particle creation and the renormalized stress-
energy tensor in de Sitter spacetime.
We have to remark that the existence of a well-defined

extension of adiabatic regularization for spin-1=2 fields
can be expected on physical grounds. As stressed before,
and first showed in the seminal work on particle creation
[3], the adiabatic scheme can be distinguished from other
renormalization methods because it is a unique method to
overcome the UV divergences that appear in the particle
number operator. One would expect that both the mean
particle number and its uncertainty would be well-defined
for fermions in a slowly expanding universe. Only a con-
sistent adiabatic method for spin-1=2 fields enforces this
physical requirement.

II. ADIABATIC REGULARIZATION FOR
SCALAR FIELDS

A scalar field � satisfying the wave equation
ðhþm2 þ �RÞ� ¼ 0 can be expanded [for simplicity
we assume a spatially flat FLRW universe ds2 ¼ dt2 �
a2ðtÞd~x2] in the form � ¼ P

~kðA~kf ~kð ~x; tÞ þ Ay
~k
f�~kð ~x; tÞÞ,

where the modes are f ~k ¼ ð2L3a3ðtÞÞ�1=2ei
~k ~xhkðtÞ
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(k ¼ j ~kj). For convenience, we have assumed periodic
boundary conditions in a cube of comoving length L.
Therefore, ki ¼ 2�ni=L with ni an integer. Later on we
shall take the continuous limit L ! 1. These modes are
forced to obey the normalization condition with respect to
the conserved Klein-Gordon product ðf ~k; f ~k0 Þ ¼ �~k; ~k0 . This

condition translates to a Wronskian-type condition for the

functions hkðtÞ: h�k _hk � _h�khk ¼ �2i (the dot means deriva-

tive with respect to proper time t). We also have that
ðf ~k; f

�
~k0
Þ ¼ 0. These conditions ensure the basic commuta-

tion relations for annihilation and creation operators.
Adiabatic regularization is based on a generalized
WKB-type asymptotic expansion of the modes according

to the ansatz [1] hkðtÞ ¼ 1ffiffiffiffiffiffiffiffi
WkðtÞ

p e�i
R

t
Wkðt0Þdt0 . Note that this

ansatz guarantees automatically the Wronskian condition.

The equation for hk reads €hk þ ð!2
k þ �Þhk ¼ 0, where

!kðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2=a2ðtÞ þm2

p
and � ¼ ð6�� 3=4Þ _a2=a2 þ

ð6�� 3=2Þ €a=a. It translates to the following equation for

the functionWkðtÞ:W2
k ¼ !2

k þ �þW�1=2
k

d2

dt2
W�1=2

k . One

then expands Wk in an adiabatic series, determined by the
number of time derivatives of the expansion factor aðtÞ:
WkðtÞ ¼ !ð0ÞðtÞ þ!ð2ÞðtÞ þ!ð4ÞðtÞ þ � � � , where the lead-
ing term !ð0ÞðtÞ � !ðtÞ � !kðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2=a2ðtÞ þm2

p
is the

usual redshifted frequency. The higher adiabatic terms are
obtained by iteration. The second order adiabatic contri-

bution, which depends on €a and _a2 is !ð2ÞðtÞ ¼
�
2! þ 1

2!
�1=2 d2

dt2
!�1=2. The iteration can be applied indef-

initely to get any !ðnÞ. For a slowly varying aðtÞ the above
series expansion allows one to define the particle number
as an adiabatic invariant [3,4]. Furthermore, the UV diver-
gences of the variance and the stress-energy tensor can be
removed by subtraction of the corresponding contributions,
mode by mode, to second and fourth adiabatic order,
respectively [7]. This procedure of removing the UV
divergences preserves covariance and leads to finite
expectation values for the stress-energy tensor that obey
covariant conservation. After this brief introduction on the
adiabatic method for scalar fields we present now our
proposal for extending it to spin-1=2 fields.

III. ADIABATIC EXPANSION FOR
SPIN-1=2 FIELDS

Let us consider the Dirac equation in a spatially flat
FLRW spacetime�

i�0@0 þ 3i

2

_a

a
�0 þ i

a
~� ~r�m

�
c ¼ 0; (1)

where �� are the Dirac matrices in Minkowski spacetime.
For our purposes it is convenient to work with the standard
Dirac-Pauli representation. After momentum expansion

c ¼ P
~kc ~kðtÞei ~k ~x it is convenient to write the Dirac field

in terms of two two-component spinors

c ~kðtÞ ¼
1ffiffiffiffiffiffiffiffi
L3a3

p hIkðtÞ��ð ~kÞ
1ffiffiffiffiffiffiffiffi
L3a3

p hIIk ðtÞ ~� ~k
k ��ð ~kÞ

0
B@

1
CA; (2)

where ~� are the usual Pauli matrices. ��ð ~kÞ is a constant

normalized two-component spinor �y
��� ¼ 1 such that

~� ~k
2k �� ¼ ���. � ¼ �1=2 represents the eigenvalue for

the helicity, or spin component along the ~k direction. hIk
and hIIk are scalar functions, obeying the coupled first order

equations

hIIk ¼ ia

k
ð@t þ imÞhIk; hIk ¼

ia

k
ð@t � imÞhIIk ; (3)

and the uncoupled second order equations ð@2t þ _a
a@tþ

im _a
aþm2þ k2

a2
ÞhIk¼0 and ð@2t þ _a

a@t�im _a
aþm2þ k2

a2
ÞhIk¼0.

The normalization condition for the four-spinor is

jhIkðtÞj2 þ jhIIk ðtÞj2 ¼ 1: (4)

This condition guaranties the standard anticommutator
relations for creation and annihilation operators defined

by the expansion c ¼ P
~k

P
�¼�1=2ðB~k;�u ~k;�ðt; ~xÞ þ

Dy
~k;�
v ~k;�ðt; ~xÞÞ, where u ~k;�ðt; ~xÞ is defined from an exact

solution to the above equations. The orthogonal modes
v~k;�ðt; ~xÞ are obtained by the charge conjugation operation

v~k;� ¼ Cu~k;� ¼ i�2u�~k;�. One could be tempted to use the

above second order equations to generate a WKB-type
expansion for hIk and hIIk . However, the WKB ansatz is

specifically designed to preserve the Klein-Gordon prod-
uct, and hence the associated Wronskian condition, but not
to preserve the Dirac product and the (normalization)
condition (4). Therefore, one should follow a different
route. (For a study of fermion pair production in
Minkowski space using the WKB ansatz see [18]).
The zeroth adiabatic order should naturally generalize

the standard solution in Minkowski space. Therefore, it
must be of the form

gIð0Þk ðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!ðtÞ þm

2!ðtÞ

s
e�i

R
t
!ðt0Þdt0 ;

gIIð0Þk ðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!ðtÞ �m

2!ðtÞ

s
e�i

R
t
!ðt0Þdt0 :

(5)

It is easy to see that the zeroth order obeys the normaliza-

tion condition jgIð0Þk ðtÞj2 þ jgIIð0Þk ðtÞj2 ¼ 1. The form of the

zeroth order and the field equations (3) suggests the
following alternative ansatz for the adiabatic expansion
(at order n):
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gIðnÞk ðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!þm

2!

s
e�i

R
tð!ðt0Þþ!ð1Þþ���þ!ðnÞÞdt0

� ð1þ Fð1Þ þ � � � þ FðnÞÞ;

gIIðnÞk ðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!�m

2!

r
e�i

R
tð!ðt0Þþ!ð1Þþ���þ!ðnÞÞdt0

� ð1þGð1Þ þ � � � þGðnÞÞ;

(6)

where !ðnÞ, FðnÞ, and GðnÞ are local functions of adiabatic
order n. Imposing Eqs. (3) and keeping terms of fixed
adiabatic order, one gets a system of equations at each
order. Moreover, the solution should also respect the nor-

malization condition jgIðnÞk ðtÞj2 þ jgIIðnÞk ðtÞj2 ¼ 1 (at the

given adiabatic order n), which we impose as a new
equation. For the adiabatic order one we obtain immedi-

ately that !ð1Þ ¼ 0. Moreover, the functions Fð1Þ, Gð1Þ
should have a vanishing real part and verify the single

relation Gð1Þ ¼ Fð1Þ þ i m _a
2!2a

. The solution can be parame-

trized as Fð1Þ ¼ �Ai m _a
!2a

, Gð1Þ ¼ Bi m _a
!2a

, where A, B are

arbitrary real constants obeying Aþ B ¼ 1=2. We can go
further and consider the system of equations at adiabatic
order two. We note that, although the solution at first order
is not univocally determined, local observables are actually
independent of the ambiguity in A� B. We find it useful
for simplifying expressions and for computational pur-
poses to fix the parameters as A ¼ B. This implies

Fð1Þð�mÞ ¼ Gð1ÞðmÞ, Fð2Þð�mÞ ¼ Gð2ÞðmÞ, and so forth.
The solutions are then [where R ¼ 6ð €a=aþ _a2=a2Þ]

!ð2Þ ¼ 5m4 _a2 � 3!2m2 _a2 � 2!2m2 €aa

8!5a2
;

Fð2Þ ¼ m2R

48!4
� 5m4 _a2

16!6a2
� m2 _a2

32!4a2
� mR

48!3
þ 5m3 _a2

16!5a2
;

Gð2Þ ¼ m2R

48!4
� 5m4 _a2

16!6a2
� m2 _a2

32!4a2
þ mR

48!3
� 5m3 _a2

16!5a2
:

(7)

We can continue the iteration in a systematic way, where

we find !ðoddÞ ¼ 0. The explicit solutions to third and
fourth adiabatic orders will be given elsewhere. The adia-

batic nth order fermionic modes defined by gIðnÞk and gIIðnÞk

allow us to define the subtraction terms to cancel the UV
divergences. A first divergence appears in the analysis of
the particle number of created particles during a generic
expansion of the Universe. A second worry concerns the
covariance of the subtraction scheme when it is typically
applied to the renormalization of the stress-energy tensor.
To show that our proposal is able to solve satisfactorily
these challenges, we will consider two physically relevant
questions: particle creation in de Sitter space and the
conformal anomaly in a FLRW spacetime.

IV. PARTICLE CREATION IN
DE SITTER SPACETIME

We focus now on the application of the adiabatic expan-
sion for the particle creation process in de Sitter spacetime
aðtÞ ¼ eHt. The exact modes defining the analogous state

of the Bunch-Davies vacuum are given by hIk ¼
iNe�Ht=2Hð1Þ

	 ðzÞ and hIIk ¼ Ne�Ht=2Hð1Þ
	�1ðzÞ, with z �

ke�Ht=H, N � 1
2

ffiffiffiffiffi
�k
H

q
e�m=2H, and 	 ¼ 1

2 � i mH . These func-

tions behave at very early times t ! �1 as the zeroth

order adiabatic ones gIð0Þk , gIIð0Þk . As for bosons, the quan-

tized field c can also be expanded in terms of the fermi-

onic n-order adiabatic modes gðnÞ~k;�ð ~x; tÞ [g
ðnÞc
~k;�

ðt; ~xÞ are the

corresponding ones obtained by the charge conjugation
operation C]

c ¼ X
~k;�

ðbðnÞ~k;�ðtÞg
ðnÞ
~k;�
ðt; ~xÞ þ dðnÞy~k;�

ðtÞgðnÞc~k;�
ðt; ~xÞÞ; (8)

where gðnÞ~k;� are obtained from (2) by replacing hI;IIk by

gI;IIðnÞk . The time-dependent operators bðnÞ~k;�ðtÞ [d
ðnÞ
~k;�
ðtÞ] are

related to the time-independent ones B~k;� (D~k;�) by a

Bogoliubov transformation. The corresponding
Bogoliubov coefficients, at a given adiabatic order n, can
be obtained from the functions hIkðtÞ and hIIk ðtÞ of the exact
modes by solving the system of equations (for simplicity we
restrict to� ¼ 1=2; similar equations apply for the opposite
helicity)

hIkðtÞ ¼ 
ðnÞ
k ðtÞgIðnÞk � �ðnÞ

k ðtÞgIIðnÞ�k ;

hIIk ðtÞ ¼ 
ðnÞ
k ðtÞgIIðnÞk þ �ðnÞ

k ðtÞgIðnÞ�k :

(9)

The average number of created fermionic particles with

momentum ~k, and with the given helicity (we omit the

helicity index), is hNðnÞ
~k
i ¼ hbðnÞy~k

ðtÞbðnÞ~k ðtÞi ¼ j�ðnÞ
k ðtÞj2. In

adiabatic regularization one should resort to the minimum
adiabatic order required to obtain a UV finite result. For the
average number density of total created particles
1

L3a3
P

~khNðnÞ
~k
ðtÞi the required order is zero, since j�ð0Þ

k ðtÞj �
Oðk�2Þ, as k ! 1. However, the zeroth order is not enough
to have a finite result for the sum of fluctuations. For a

spin-1=2 field the sum of uncertainties �NðnÞ
~k
ðtÞ �

ðhNðnÞ2
~k

i � hNðnÞ
~k
i2Þ1=2 over all momenta has a linear UV

divergence [�NðnÞ
~k
ðtÞ � j�ðnÞ

k j] when computed at the

zeroth adiabatic order. The minimal adiabatic order neces-

sary to cancel this UV divergence is 2, since j�ð2Þ
k ðtÞj �

Oðk�4Þ, while j�ð1Þ
k ðtÞj �Oðk�3Þ. The same falloff behav-

ior appears for a generic expansion factor aðtÞ. As stressed
in the Introduction, this shows the necessity of the adiabatic
regularization to properly define the particle number con-
cept, even when the expansion is very slow.
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V. CONFORMAL AND AXIALVECTOR
CURRENTANOMALIES

Concerning local observables in a generic FLRW space-
time, the second adiabatic order is required to renormalize
h �c c i and h �c�5c i, while the fourth order is the right one
to renormalize the stress-energy tensor hT�

	 i and hr�J
�
A i,

where J�A is the axial vector current. The renormalized

values h �c c ir and h �c�5c ir are obtained by subtracting
from the formal divergent expression the corresponding
second-order adiabatic terms (we take here the continuous
limit)

h �c c ir ¼ �2

ð2�Þ3a3
Z

d3kðjhIkj2 � jhIIk j2

� jgIð2Þk j2 þ jgIIð2Þk j2Þ;
h �c�5c ir ¼ �2

ð2�Þ3a3
Z

d3kðhI�k hIIk � hII�k hIk

� gIð2Þ�k gIIð2Þk þ gIIð2Þ�k gIð2Þk Þ;

where the functions hI;IIk characterize the quantum state.

By construction the above integrals are UV finite. Note in
passing that these expressions also allow for an efficient
numerical estimation when the modes for the quantum
state are difficult to manage analytically. As an application
of the method, and also as a test of the consistency and
power of the adiabatic expansion given in this paper, we
now calculate the axial vector current and the conformal
anomalies for the Dirac field. From the classical Dirac
equation one gets T

�
� ¼ m �c c and r�J

�
A ¼ 2im �c�5c .

Thus, formally we have hT�
� ir ¼ mh �c c i and hr�J

�
A ir ¼

2imh �c�5c i. However, here h �c c i and h �c�5c i should not
be their physical renormalized values (at second adiabatic
order), since the physical expectation values hT�

	ir and

hr�J
�
A ir are obtained by subtractions up to the fourth

adiabatic order. Therefore, we have to subtract in h �c c i
and h �c�5c i up to the fourth adiabatic order

hT�
� ir ¼ �2m

ð2�Þ3a3
Z

d3kðjhIkj2 � jhIIk j2

� jgIð4Þk j2 þ jgIIð4Þk j2Þ;

and an analogous expression for the divergence of the axial
vector current. To evaluate the anomalies we must take the
limit m ! 0 at the end of the calculation. Concerning the
axial current anomaly, the subtraction terms of fourth
adiabatic order cancel out while the third order terms, after
integration in momenta, are still proportional to the
mass. Therefore, in the massless limit hr�J

�
A ir ¼ 0, in

agreement with the fact that the axial current anomaly
obtained from other renormalization prescriptions
��	
�R�	

��R
��� vanishes for a FLRW spacetime. In

contrast, the fourth-order adiabatic subtraction terms in

the trace of the stress-energy tensor survive and, after
integration, turn out to be independent of m

hT�
� ir ¼ 1

240�2

�4 _a2 €aþ 9a _aa
:::þ3að €a2 þ aa

::::Þ
a3

: (10)

This result should be expressed as a linear combination
of the covariant scalars: the Gauss-Bonnet invariant G
[which for a FLRW spacetime is given by G ¼
�2ðR�	R

�	 � R2=3Þ], hR, and R2 (for a FLRW space-

time the conformal tensor vanishes identically). We get
hT�

�ir ¼ 1
2880�2 ð112 Gþ 6hRÞ, where the numerical coeffi-

cients for G and R2 coincide exactly with those obtained
from other renormalization prescriptions [2], in agreement
with the axioms of renormalization in curved spacetime
[19]. The obtained coefficient for hR also coincides with
the one predicted by other methods. The vanishing of the
term proportional to R2 in the trace anomaly can be shown
[20] to be a necessary condition for the absence of particle
creation in a FLRW spacetime in the massless limit, as it is
the case for spin-1=2 fields.

VI. RENORMALIZED STRESS-ENERGY TENSOR
IN DE SITTER SPACE

A virtue of the adiabatic method is its efficiency to
perform computations of renormalized quantities in
cosmological backgrounds. Other methods involve very
tedious calculations, which are even more complicated
for fermions. Using the method developed in this work,
and given the modes defining the vacuum, we can integrate
numerically in a straightforward way the renormalized
stress-energy tensor of a Dirac field. In the case of de
Sitter space, the adiabatic method is also very efficient to
perform the integration analytically. The result is

hT�	ir¼ 1

960�2
g�	

�
11H4þ130H2m2þ120m2ðH2þm2Þ

�
�
log

m

H
�Re

�
c

�
�1þi

m

H

����
; (11)

where c ðzÞ is the digamma function.

VII. CONCLUSIONS

In this work we have provided a satisfactory extension of
the adiabatic regularization scheme to spin-1=2 fields. Our
ansatz for the adiabatic expansion of the fermionic modes
differs significantly from the usual WKB-type template
used for scalar modes. We have tested our proposal by
the following: (i) analyzing particle creation in de Sitter
space, and (ii) working out the conformal anomaly. This
can be regarded as a nontrivial test of the robustness of our
proposal. As happens for scalar fields, the underlying
covariance of the subtraction procedure (based on the
covariant notion of adiabatic invariance) makes it a
self-consistent renormalization method to deal with spin
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one-half fields in cosmological backgrounds. We have also

showed the power of the method by computing the renor-

malized stress-energy tensor of a Dirac field in de Sitter

space. Therefore, it opens a new avenue for many applica-

tions of cosmological relevance.
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