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We study the two-body decay of a mother particle into a massless daughter. We further assume that the

mother particle is unpolarized and has a generic boost distribution in the laboratory frame. In this case, we

show analytically that the laboratory frame energy distribution of the massless decay product has a peak,

whose location is identical to the (fixed) energy of that particle in the rest frame of the corresponding

mother particle. Given its simplicity and ‘‘invariance’’ under changes in the boost distribution of the

mother particle, our finding should be useful for the determination of masses of mother particles. In

particular, we anticipate that such a procedure will then not require a full reconstruction of this two-body

decay chain (or, for that matter, information about the rest of the event). With this eventual goal in mind,

we make a proposal for extracting the peak position by fitting the data to a well-motivated analytic

function describing the shape of such an energy distribution. This fitting function is then tested on the

theoretical prediction for top quark pair production and its decay, and it is found to be quite successful in

this regard. As a proof of principle of the usefulness of our observation, we apply it for measuring the mass

of the top quark at the LHC, using simulated data and including experimental effects.

DOI: 10.1103/PhysRevD.88.057701 PACS numbers: 13.85.Fb, 11.80.Cr

It is very well known that in the rest frame of a mother
particle undergoing a two-body decay, the energy of each
of the daughter particles is fixed in terms of mother and the
daughter particle masses. Turning this fact around, we can
determine the mass of the mother particle if we can mea-
sure these rest-frame energies of the daughter particles.

However, often the mother particle is produced in the
laboratory with a boost, that too with a magnitude and
direction which is (a priori) not known. Moreover, the
boost of mother particles produced at hadron colliders is
different in each event. Such a boost distribution depends
on the production mechanism of the particle and on the
structure functions of the hadrons in the initial state of
the collision and is thus a complicated function. In turn, the
fact that the mother has a different boost in each event
implies that when we consider the observed energy of the
two-body decay product in the laboratory frame, we get a
distribution in it. Thus it seems like the information that
was encoded in the rest frame energy is lost, and we are
prevented from extracting (at least at an easily tractable
level) the mass of the mother particle along the lines
described above.

We show that, remarkably, if one of the daughter parti-
cles from the two-body decay is massless and the mother is
unpolarized, then such is not the case. Specifically, in this
case, we demonstrate that the distribution of the daughter
particle’s energy in the laboratory frame has a peak pre-
cisely at its corresponding rest-frame energy.

This result is interesting per se. Furthermore, we expect
that it will lead to formulation of new methods for mass
measurements. Obviously, for this purpose, we need to be
able to determine the location of this peak accurately from
the observed energy distribution of the massless daughter.
To this end, we propose and motivate an analytic function

that can be used to fit the data on the energy distribution
and thus extract the peak position. We show that this
function is a suitable one using the top quark decay,
t ! W�b, as a test case; namely, it fits very well the theory
prediction for energy spectrum of the resulting b jets.
Simulating a realistic experimental situation, we then
show that we can extract the value of the top mass from
the position of the peak in the b-jet energy distribution
along with the well-measured mass of the W boson.
Let us consider the decay of a heavy particle B of mass

mB, i.e., B ! Aa, where a is a massless visible particle.
For the subsequent arguments, the properties of the
particle A (other than its mass denoted by mA) are irrele-
vant. In the rest frame of particle B, the energy of the
particle a is simply given by

E� ¼ m2
B �m2

A

2mB

: (1)

Here and henceforth the starred quantity denotes that it is
measured in the rest frame of particle B, i.e., the mother
particle. If the mother particle (originally at rest) is boosted
by a Lorentz factor � in going to the laboratory frame, then
the energy of particle a seen in the laboratory frame is

E ¼ E��ð1þ � cos��Þ; (2)

where �� defines the direction of emission of particle a in

the rest frame of B with respect to the boost direction ~� of
the mother B in the laboratory frame. Note that both cos ��
and � can vary event by event. Therefore we get a proba-
bility distribution for the observed energy, which is the
focus of our paper. Because of our assumption of the
mother being not polarized, the probability distribution
of cos�� is flat. This implies that, for a fixed �, the
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distribution of E is flat as well. More precisely, since
cos �� 2 ½�1; 1�, for any fixed � the shape of the distri-
bution of E is a simple ‘‘rectangle’’ spanning the range1

x � E

E� 2
��

��
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � 1

q �
;

�
�þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � 1

q ��
; (3)

where x defines the dimensionless energy variable of the
visible particle in the laboratory frame normalized by its
rest-frame energy. A few crucial observations are in order.
First, the lower (upper) bound of Eq. (3) is smaller (larger)
than 1 for an arbitrary �, which implies that every rectangle
contains E�. Remarkably, E� is the only value of the energy
to enjoy such a property as long as the distribution of
mother particle boost is nonvanishing in a small region
around � ¼ 1. Furthermore, the energy distribution being
flat for every �, there is no other value of the energy which
gets a larger contribution than E�. Thus, upon ‘‘stacking
up’’ the rectangles of different widths, corresponding to a
range of �’s, we see that the peak of the energy distribution
of the particle a is unambiguously located at E ¼ E�. In
fact, this argument goes through even for a massive daugh-
ter, provided we restrict boosts of the mother particle to
� < ð2��2 � 1Þ, where �� denotes the boost of the daugh-
ter in the rest frame of the mother. Secondly, such rectan-
gles are asymmetric with respect to the point E ¼ E�; i.e.,
the upper bound is farther from it than is the lower bound.
Thus, the energy distribution of the particle a has a longer
tail toward high energy with respect to such a peak.

More formally, the normalized differential decay width
in x for a fixed � is given by

1

�

d�

dx

��������fixed�
¼
�
�
x��þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2�1
p �

�
�
�xþ�þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2�1
p �

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2�1

p ;

(4)

where �ðxÞ is the usual Heaviside step function and the
two step functions here merely define the allowed range of
x. Next, consider a probability distribution of boosts of the
mother given by gð�Þ. A given energy of daughter in
laboratory frame (x) can actually result from a specific
range of values of the mother boost (�), as per Eq. (4).
So, we have to superpose these contributions weighted by
the boost distribution, giving

fðxÞ � 1

�

d�

dx
¼

Z 1
1
2ðxþ1

xÞ
d�

gð�Þ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � 1

p : (5)

The lower end in the integral here was derived from

the solution to the equation, x ¼ �� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � 1

p
, for �

where the positive (negative) signature is relevant for

x � 1 (x < 1). From Eq. (5) we can also compute the first
derivative of fðxÞ, that is,

f0ðxÞ ¼ sgnð1� xÞ
2x

g

�
1

2

�
xþ 1

x

��
: (6)

We assume that gð�Þ has no zeros in the range of �
strictly between 1 and the kinematical limit of the collider
at hand. In what follows we show that this is sufficient
to guarantee that there is a peak at E�. We consider the
two possibilities for gð1Þ. Namely, if it vanishes, then
f0ðx ¼ 1Þ / gð1Þ ¼ 0, and the distribution has its unique
extremum at E ¼ E�, following from our assumption on
gð�Þ. If gð1Þ � 0, then f0ðxÞ flips its sign at x ¼ 1 so that
the energy distribution has a cusp at E ¼ E�. Also, the
function fðxÞ is positive and vanishes for both x ! 0 and
x ! 1 since those two limits lead to a trivial definite
integral in Eq. (5). Combining all these features, we see
that the point E ¼ E� is necessarily the peak of the distri-
bution for both values of gð1Þ. This completes the formal
proof of the peak location for a generic boost distribution
of the mother particle.
As advertised at the beginning, our finding can be uti-

lized to measure a combination of mA and mB given by E�,
which means thatmB can be determined ifmA is known, or
vice versa. For this purpose, we are required to extract the
location of the peak accurately from data. Clearly, having a
theoretical prediction from first principles for the shape of
fðxÞ is very hard because the boost distribution gð�Þ is
inherently process dependent. Nevertheless, we know
some properties of fðxÞ which are listed below: (i) the
value of fðxÞ remains the same under x $ 1

x , (ii) f is

maximized at x ¼ 1, (iii) f vanishes as x approaches 0 or
1, (iv) f becomes a � function in some limit of its
parameters. The first property follows from the x depen-
dence of f arising only from the lower limit of the integral
in Eq. (5), and the second from Eq. (6) and the argument
thereafter. The third one is also manifest from Eq. (5) as
mentioned above. Finally, the last one reflects the fact that
when the mother particle is not boosted, we get a fixed
value of energy given in Eq. (1), i.e., a delta function.
Being aware of the constraints given above, we propose

the following ‘‘simple’’ function as an ansatz for fðxÞ:

fðxÞ ¼ K�1
1 ðpÞ exp

�
�p

2

�
xþ 1

x

��
; (7)

where p is a parameter which encodes the width of the
peak and the normalization factor K1ðpÞ is a modified
Bessel function of the second kind of order 1. One can
easily prove that the proposed ansatz can be reduced to a �
function for any sufficiently large p using the asymptotic
behavior of K1ðpÞ such that

K1ðpÞ 			!p!1 � e�p

ffiffiffiffi
p

p
�
1þO

�
1

p

��
: (8)1This result is quite well known and was used for a measure-

ment of the W mass at lepton colliders [1].
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Finally, we can show that the above ansatz does not have a
cusp (at E�) so that it is more suitable for the case of
gð1Þ ¼ 0 such as pair production of mothers.

In order to test the goodness of the ansatz given in
Eq. (7) we use it to fit a theoretical prediction for the
distribution of b-jet energy in top decay. The bottom quark
is not massless; it is nonetheless highly boosted in the rest
frame of top quark, namely, �� � 15. Based on our earlier
discussion of the massive case, our argument for the peak
in b-jet energy being at E� is invalidated for boosts of the
top quark which are so large (� * 500) as to have a
negligible probability. Hence, we expect the peak to be
very close to E�. Similarly, we expect that the first of the
functional properties of the energy spectrum Eq. (5) will be
only negligibly violated by the nonzero mass of the bottom
quark. This justifies the use of the ansatz Eq. (7) to fit the
b-jet energy spectrum.

Specifically, we study a sample of fully leptonic top
decays from the process, pp ! t�t ! b �b��eþ�e ���, at

the Large Hadron Collider (LHC) with 7 TeV center-of-
mass energy. To compute the theory prediction for the
given process we employ MADGRAPH5 1.4.2 [2] taking
mtop of 173 GeV and the patron distribution functions

(PDFs) CTEQ6L1 [3] with default choice of the renormal-
ization and factorization scales.

The result of the associated fit is exhibited in Fig. 1
which shows a very good agreement between the theory
prediction from MADGRAPH5 and the fitting function. To
quantify the goodness of the ansatz with an objective
measure we compute both the Kolmogorov-Smirnov
(KS) [4] and the �2 value. The latter is computed taking
bin counts for a luminosity of 5 fb�1 at LHC with

ffiffiffi
s

p ¼
7 TeV assuming that the error on each bin count is
Gaussian. The result is �2 ¼ 39:3 for 198 degrees of free-
dom while the KS test statistic is 0.012, which, rather than
being taken in any statistical sense, should be taken as an
indication that our ansatz gives a very good fit to the theory

curve. We have investigated the sensitivity of this result to
the choice of the PDFs by repeating the same fit for the
theory prediction obtained using the MRST2002NLO
PDFs set of Ref. [5]. We observe negligible differences
from the result obtained with CTEQ6L1.
So far, we have found that the ansatz in Eq. (7) is very

good at reproducing the theory prediction. In fact, this
success suggests that the ansatz may be used to measure
the combination of masses in Eq. (1) from experimental
data. In order to investigate this possibility, we go back to
the example of the top quark; namely, we would like to use
the fitting function in order to extract the peak of the
observed energy distribution of the b jet and measure the
top quark mass by plugging this value and the well-known
mass of the W boson into Eq. (1).
Before getting into details, wewould like to mention that

we do not necessarily aim at getting a result for the value of
mtop that is competitive with the current measurements.

Rather, we aim at finding what is the sensitivity of our
method for measuring top quark mass in a realistic setup.
In fact, for a fair comparison it should be remarked that the
current measurements of mtop rely on rather complicated

tools and often advocate templates for the distributions that
require a detailed knowledge of the underlying dynamics
of the top quark decay. On the contrary, our method is
extremely simple: it is based on pure kinematics and does
not rely at all on detailed knowledge of the above-
mentioned dynamics (as long as the top quark is produced
unpolarized). As such we can regard our study of the mass
measurement of the top as a proof of principle that our
method can be used to measure the mass of heavy particles,
in particular, new physics particles.
In lieu of actual experimental data we use a sample of

Monte Carlo (MC)-simulated collision events. Namely, we
further process the previous parton-level event sample to
include the effects of showering and hadronization as
described in PYTHIA 6.4 [6] with detector response simu-
lated by DELPHES 1.9 [7] and jets made with FASTJET [8,9]
using the anti-kT algorithm [10] with the parameter choice
R ¼ 0:4. Furthermore, we impose cuts on the final state
following the selections of Ref. [11] for the e� final state.
We consider an ensemble of 100 pseudoexperiments, each
of which is equivalent to 5 fb�1 of data from the LHC atffiffiffi
s

p ¼ 7 TeV. For each pseudoexperiment we perform a fit
with our ansatz Eq. (7). From the extracted value of the
peak of the distribution we get a measurement ofmtop. The

distribution over the 100 pseudoexperiments ofmtop and its

1� error are symmetric around the central values and do
not show special features. For a bin size of 4 GeV
the average best-fit mtop and the 1� error resulting from

the fit are

hmtopi ¼ 173:1� 2:5 GeV (9)

with a median of the reduced �2 of our fit equal to 1.1. We
have checked that the result of the fit is stable under
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FIG. 1 (color online). The orange dots are the theory predic-
tion for d�=dEb in the process pp ! t�t ! b �b��eþ�e ��� com-

puted with MADGRAPH5 at LHC with
ffiffiffi
s

p ¼ 7 TeV. The purple
line is the best fit of our ansatz Eq. (7).
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changes of the range of energies taken in the fit and
changes of the bin size. For illustration purpose we show
the outcome of one of the pseudoexperiments in Fig. 2.

The obtained value of mtop is rather good: the error is

small and the central value is compatible with the input
value within the 1� error. Furthermore, the obtained �2 is
good. All this tells that the usefulness of our function
Eq. (7) is not spoiled by the selection criteria for top quark
decay events nor by detector effects. Even though our
assessment of the power of the technique does not take
the background and the entire realm of detector effects into
consideration, we regard it as rather encouraging for the
determination of the masses of heavy particles at colliders
based only on the kinematics of the decay.

Note that our analysis does not include resolvable—and
thus necessarily hard—radiation from the bottom quark
in the above process. This extra radiation will turn the
decay into a genuine three-body one so that our formalism
will not apply to it. Therefore, if one wants to interpret
our result in Eq. (9) as a realistic mass measurement, then
the corrections from this process should be taken into
account. Nevertheless, we have estimated that the cross
section for it is smaller than the leading order one by one
order of magnitude or more. Also, it might be possible to
veto the extra radiation to further suppress such a
contribution.

In conclusion, we have shown that for the two-body
decay of an unpolarized boosted mother particle, the
energy spectrum of a massless daughter in the laboratory
frame encodes in a rather simple manner information about
the masses involved in the decay. We showed as well how
this can be used for mass measurements at hadronic col-
liders, which represents a remarkable twist in this para-
digm. Indeed, instead of using longitudinally or fully
Lorentz-invariant quantities for this purpose, we extracted
the mass of the top quark from a Lorentz-variant

observable, i.e., the energy of the b jet. The crucial point
is that even though the distribution of this quantity depends
on the possible boosts of the mother particle, the peak
position in it is ‘‘invariant.’’ Another merit of our method
is that it does not rely on any measurement of the other
particle of the two-body decay so that we can extract some
information about masses even if the latter is invisible: a
case that would not be tractable with, for example, mea-
surement of invariant mass only. It is also clear that our
method and the traditional techniques for mass measure-
ment are sensitive to different kind of detector effects, In
general, we thus expect that there will be a large degree of
complementarity of our method with more traditional ones.
Finally, we emphasize that the proposed technique,

despite being based on a fitting function, relies only on
the minimal assumptions of absence of polarization and the
presence of a nontrivial boost distribution of the mother
particle; i.e., it does not require any other prior knowledge
about the underlying physics model governing the decay of
the particle whose mass we want to measure. This suggests
that our method will be especially suitable for the mass
measurement of new particles which might be discovered
at the LHC, where we (a priori) would not know such
details.
We envisage a number of applications of our finding

here about the distributions of the energy of a daughter
particle from a two-body decay. In particular, in forthcom-
ing work we shall present results on the measurement
of the masses of specific new physics particles [12].
Meanwhile, there has already been a suggestion to use
the energy peak in distinguishing signal from background
in searching for superpartners of the top quark: see
Ref. [13]. And, an application of this result in distinguish-
ing decays of bottom partners into bottom quark accom-
panied by one vs two (massive) invisible particles (as in
dark matter models) is worked out in detail in Ref. [14].
This latter analysis can be generalized to the case of other
three- and two-body decays.
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FIG. 2 (color online). An instance of the result of the fit on the
energy distribution of the b jets in a pseudoexperiment. For the
fit we binned data in bins of 4 GeV. Only the blue (dark) data
points are used in the fit, which correspond to using only the part
of the spectrum from 30 to 150 GeV.
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