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A variational method is discussed, extending the Gaussian effective potential to higher orders. The

single variational parameter is replaced by trial unknown two-point functions, with infinite variational

parameters to be optimized by the solution of a set of integral equations. These stationary conditions are

derived by the self-energy without having to write the effective potential, making use of a general relation

between self-energy and functional derivatives of the potential. This connection is proven to any order and

verified up to second order by an explicit calculation for the scalar theory. Among several variational

strategies, the methods of minimal sensitivity and of minimal variance are discussed in some detail. For

the scalar theory, at variance with other post-Gaussian approaches, the pole of the second-order propagator

is shown to satisfy the simple first-order gap equation that seems to be more robust than expected. By the

method of minimal variance, nontrivial results are found for gauge theories containing fermions, where

the first-order Gaussian approximation is known to be useless.
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I. INTRODUCTION

Variational methods are very useful in quantum mechan-
ics, and quite often their use becomes mandatory when the
interaction strength is too large. In quantum field theory,
the use of variational methods has always been questioned
because of the weight of high energy modes that prevents
any reasonable physical result unless the trial functional
has the exact high energy asymptotic behavior. Recently, a
new interest has emerged on variational methods [1–3]
because of the relevance of non-Abelian gauge theories
that are known to be asymptotically free. The high energy
asymptotic behavior of these theories is known exactly,
while the low energy physics can only be accessed by
numerical lattice simulations because of the large strength
of the interaction that does not allow the use of standard
perturbation theory. As a consequence, important problems
like quark confinement and the low energy phase diagram
of QCD still lack a consistent analytical description, and
the development of nonperturbative variational techniques
would be more than welcome in this important area of
quantum field theory.

Another problem with variational methods is calculabil-
ity: the energy is a functional of the quantum fields and,
while in principle any trial functional could be chosen, the
need of an analytically tractable theory makes the Gaussian
functional the only viable choice. Thus, we are left with the
Gaussian effective potential (GEP), which has been dis-
cussed by several authors [4–7] and, at variance with
perturbation theory, there is no obvious way to improve
the approximation order by order.

Besides being a truly variational method, the GEP may
also be regarded as a self-consistent theory since the proper
self-energy vanishes at first order, and the Gaussian free-
particle Green function is equal to the first-order function.

The GEP has many merits and has been successfully
applied to physical problems ranging from electroweak
symmetry breaking [8] and scalar theories [7,9–11] in
3þ 1 spacetime dimensions, to superconductivity in bulk
materials [12,13] and films [14], to non-Abelian gauge
theories [15], and quite recently to the Higgs-top sector
of the standard model [16–18].
Even if the GEP usually gives a fairly good representa-

tion of reality, an extension of the Gaussian approximation
has always been desirable. However, any attempt to
improve the GEP has not been so successful, and most
merits of the GEP seem to disappear at second order.
For instance, the post-Gaussian effective potential
(PGEP) discussed by Stancu and Stevenson [19] is not a
truly variational method (the exact effective potential can-
not be shown to be smaller than the PGEP), it is not self-
consistent, and it fails to reach a minimum for any finite
value of the variational parameters (in most cases the
vanishing of a second derivative is required).
In this paper, we point out that most of the shortcomings

of the PGEP could be just a consequence of using a fixed
shape for the two-point Gaussian correlator. We explore a
more general extension of the GEP, where the best
Gaussian two-point function is the solution of a nonlinear
integral equation, a generalized stationary condition that
replaces the simple first-order gap equation. At any order,
the generalized stationary condition can be derived by the
self-energy graphs, without having to write the effective
potential. Order by order, that is possible because of the
existence of a simple exact connection between the gap
equation and the self-energy that allows for a direct deri-
vation of the generalized gap equation by standard methods
of perturbation theory. The connection between self-
energy and gap equation generalizes the well-known prop-
erty of self-consistency of the first-order GEP, which in
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turn is a consequence of the equivalence between the gap
equation and the vanishing of the first-order self-energy.

For a scalar theory under general physical assumptions
and for different choices of variational strategies, we show
that the second-order two-point function is characterized
by a self-consistent mass which is formally given by the
same first-order Gaussian gap equation. Thus, the first-
order gap equation seems to be more robust than expected.

The formalism can be extended to more general theories
like gauge theories containing bosons and fermions and
might be used for the development of variational approaches
to strongly interacting sectors of the standard model. The
simple case of a Uð1Þ gauge theory with a single fermion is
discussed in somedetail and, at variancewithGEPandPGEP
that are known to be useless for fermions [19,20], the present
method provides an integral equation with nontrivial solu-
tions that can be evaluated by iterative numerical techniques.

In Sec. II, after a brief discussion on the viable varia-
tional strategies in field theory, an extension is presented
where the finite set of variational parameters is replaced by
a trial function that is equivalent to an infinite set of varia-
tional parameters. The method is illustrated by the simple
model of a self-interacting scalar theory.

In Sec. III, the proof is given of a general connection
between the functional derivative of the effective potential
and the self-energy. The connection is shown to be valid
order by order and plays a key role for determining the
variational stationary conditions without having to write
the effective potential. Up to second order, the relation is
verified in detail in the Appendix by a direct evaluation of
the effective potential.

In Sec. IV, the second-order extension of the GEP is
described in some detail for the scalar theory. The methods
of minimal sensitivity and of minimal variance are com-
pared and shown to provide nonlinear integral equations.
The analytical properties of the solution are studied, and
the pole of the second-order propagator is shown to satisfy
the same first-order gap equation of the GEP.

In Sec. V, the method is extended to the simple Uð1Þ
gauge theory with a single fermion, and the method of
minimal variance is shown to be suited for a second-order
variational approach to gauge theories. The stationary
conditions provide a linear equation for the propagator
with a nontrivial unique solution. A perturbative expansion
of the result is shown to give back the standard equations of
quantum electrodynamics.

In Sec. VI, the results of the paper are discussed with
some concluding remarks. Details on the derivation of the
effective potential up to second order are reported in the
Appendix.

II. GENERALIZATIONS OF THE GAUSSIAN
EFFECTIVE POTENTIAL

The post-Gaussian effective potential was discussed by
Stancu and Stevenson [19] for the scalar theory with and

without fermions [20]. One of the main merits of the
method is its use of the standard perturbative techniques
for evaluating the effective potential while retaining a
variational nature. In fact, the method consists in a pertur-
bative expansion around a trial zeroth-order two-point
function that is then optimized by the variation of a
parameter. Since the original Lagrangian does not depend
on the variational parameter, the principle of minimal
sensitivity [21] is enforced by requiring that the nth-order
effective potential should be stationary with respect to the
variation of the parameter. The resulting expansion turns
out to be convergent even when the original interaction did
not contain any small parameter. In the original PGEP, the
two-point function was taken as a free propagator with the
mass that played the role of the variational parameter.
The method can be generalized as follows: the zeroth-

order two-point function could be taken as a free unknown
trial function that is equivalent to deal with an infinite set of
variational parameters. The variational constraint becomes
an integral equation for the unknown trial two-point func-
tion, and the eventual solution would improve over the
PGEP. We have infinitely more variational parameters
while retaining the Gaussian shape of the functional that
allows for calculability. Of course, no general proof can be
given of the existence of a solution, and the problem has to
be studied case by case. Moreover, several different varia-
tional constraints and strategies can be proposed in order to
extend the method order by order, and the existence of a
solution depends on the chosen strategy.

A. Variational methods and strategies

Consider a quantum field theory with action S½��
depending on a set of quantum fields � � f�ng, and
introduce shifted fields hn ¼ �n � ’n where ’ is a set
of constant backgrounds. We can always split the action as

S½�� ¼ S0½h� þ SI½h�; (1)

where the interaction term is defined as

SI½h� ¼ S½’þ h� � S0½h�; (2)

and S0½h� is a trial functional that can be freely chosen. We
take the S0 quadratic in the fields h in order to get Gaussian
integrals that can be evaluated exactly. This functional can
be thought to be the free action of a field theory, and
we denote by H0 the Hamiltonian of that theory, while H
is the Hamiltonian of the full interacting theory described
by the action S. The effective action �½’� can be evaluated
by perturbation theory order by order as a sum of
Feynman diagrams according to the general path integral
representation

ei�½’� ¼
Z
1PI

Dhe
iS½’þh� ¼

Z
1PI

Dhe
iS0½h�eiSI½h� (3)

that is equivalent to the sum of all the one-particle-
irreducible (1PI) vacuum diagrams for the action
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functional S½’þ h�, where ’ acts like a source [22], and
SI plays the role of the interaction. In general, the action
terms S0 and SI have an implicit dependence on ’ that is
omitted for brevity. Denoting by hXi the quantum average

hXi ¼
R
1PIDhe

iS0½h�XR
Dhe

iS0½h� ; (4)

the effective action can be written as

i�½’� ¼ i�0½’� þ log heiSI i; (5)

where the zeroth-order contribution can be exactly eval-
uated since S0 is quadratic,

i�0½’� ¼ log
Z

Dhe
iS0½h�; (6)

and the remaining terms can be written by expansion of the
logarithm in moments of SI,

log heiSI i ¼ X1
n¼1

i�n½’�

¼ hiSIi þ 1

2!
h½iSI � hiSIi�2i

þ 1

3!
h½iSI � hiSIi�3i þ � � � ; (7)

which is equivalent to taking the sum of all connected 1PI
vacuum diagrams arising from the interaction SI, as it
emerges from a direct evaluation of the averages by
Wick’s theorem. In this paper, we use the convention that
�n, Vn, �n represent the single nth-order contribution,
while the sum of terms up to nth order are written as

�ðnÞ, VðnÞ, �ðnÞ, so that

i�ðNÞ ¼ XN
n¼0

i�n: (8)

The effective potential follows as Vð’Þ ¼ ��½’�=�
where � is a total spacetime volume.

On the other hand, the effective potential is known to be
the vacuum energy density E and can be expanded around
the ground state j0i of H0 in powers of the interaction
H �H0,

E ¼ E0 þ E1 þ E2 þ � � � ; (9)

where E0 is the exact ground-state energy of H0,

E0 ¼ h0jH0j0i; (10)

and E1 is the first-order correction

E1 ¼ h0jH �H0j0i: (11)

By a direct comparison of the expansions, we see that
Vn ¼ En, and the sum of the first two terms must give
the first-order approximation for the effective potential

Vð1Þ ¼ E0 þ E1 ¼ h0jHj0i; (12)

which is the expectation value of the full HamiltonianH in
the trial state j0i. Any variation of the parameters in S0 is
equivalent to a variation of H0 and its ground state j0i.
Thus, a stationary condition imposed on the first-order
effective potential is equivalent to the standard variational
method of quantum mechanics. The resulting optimized
first-order effective potential is the Gaussian effective
potential.
Extensions of the GEP are not trivial: the second-order

approximation for the effective potential gives

Vð2Þ ¼ h0jHj0i þ E2; (13)

and a variation of the free parameters in S0 is not equivalent
to a variation of the expectation value of H. Moreover, it is
well known that the second-order correction E2 is negative

for any quantum mechanical system, and Vð2Þ can be lower
than the exact vacuum energy. Thus, the simple search for a

minimum of Vð2Þ would not work. Since the exact action S
does not depend on the free parameters in S0, any extension
of the GEP requires a new prescription for determining the
free parameters. There are at least three methods that have
been suggested: a fixed variational basis [23], the minimal
sensitivity [21], and the minimal variance [24,25].

(i) The parameters in S0 might be fixed by the minimal
of the first-order effective potential that is a genuine
variational method. Then the higher order contribu-
tions could be evaluated by perturbation theory with
the parameters kept fixed, even if that would spoil
the convergence of the expansion. The ground state
j0i and the other eigenstates of H0 are then used as a
fixed basis set optimized by the first-order variational
method, as shown in Ref. [23].

(ii) Since the exact effective potential does not depend
on the variational parameters in S0, the minimal

sensitivity of VðnÞ as been proposed as a variational
criterion [21]. At each order, the parameters are
fixed by the stationary point of the total effective
potential (or its derivative when no solution occurs).
The stationary condition changes order by order,
and the parameters must be determined again at
any order. This procedure has been proven to im-
prove the convergence of the expansion [21].

(iii) More recently [24,25], the search for the minimal
variance has been shown to be a valuable varia-
tional criterion for determining the unknown
parameters. It is based on the physical idea that in
the exact eigenstates of an operatorO, the variance
must be zero because hOOi ¼ hOi2. For any
Hermitian operator likeH, the variance is a positive
quantity bounded from below, and the variational
parameters can be tuned by requiring that the vari-
ance is minimal.

In quantum mechanics, the last method is not very
useful because the accuracy of the standard variational
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approximation can be easily improved by a better trial
wave function with more parameters. In field theory, cal-
culability does not leave too much freedom in the choice
of the wave functional that must be Gaussian. When the
simple stationary condition fails, a second-order extension
can be achieved by the method of minimal variance, as
discussed in Ref. [24]. Actually, we can write the second-
order contribution to the effective potential in Eq. (7) as

V2 ¼ E2 ¼ � �2
I

2�
; (14)

where �I is the variance of the Euclidean action SEI ,

�2
I ¼ hðSEI Þi2 � hðSEI Þ2i: (15)

That follows immediately from Eq. (7) by Wick rotating
as the operator (iS) becomes the Euclidean action
ðiSÞ ! �SE, while the quantum action i� ! �V=�.
Equation (14) is in agreement with the general requirement
that E2 < 0. The variance would be zero if j0i were
an exact eigenstate of SI, while a minimal variance is
expected to optimize the convergence of the expansion.
The free parameters can be fixed by a stationary condition
for the second-order term of the effective potential V2.
Then the optimized variational basis can be used for the
evaluation of the higher order correction, as per the method
of Ref. [23]. At variance with that method, the second-
order correction is used instead of the first-order one, and
that would be useful whenever the simple first-order
method should fail, as in gauge theories.

B. Generalization to infinite parameters

The higher order extensions of the GEP can be general-
ized to the case of infinite variational parameters. The
method is illustrated in this section by the simple model
of a self-interacting scalar theory. The Lagrangian reads

L ¼ 1

2
@��@��� 1

2
m2

B�
2 � ��4: (16)

In the spirit of the background field method, let us intro-
duce a shifted field h ¼ �� ’ where ’ is a constant
background. The action functional S½�� can be written as

S½’þ h� ¼ 1

2

Z
hðxÞg�1

B ðx; yÞhðyÞd4xd4y

þ
Z �1

2
m2

Bh
2 � Vc½’þ h�

�
d4x; (17)

where Vc is the classical potential

Vc½�� ¼ 1

2
m2

B�
2 þ ��4; (18)

while g�1
B ðx; yÞ is the bare inverse propagator
g�1
B ðx; yÞ ¼ ð�@�@

� �m2
BÞ�4ðx� yÞ: (19)

Let us denote by gðx; yÞ a trial unknown two-point
function, and write the action functional as

S½’þ h� ¼ S0½h� þ SI½h�; (20)

where S0 plays the role of the zeroth-order action func-
tional

S0½h� ¼ 1

2

Z
hðxÞg�1ðx; yÞhðyÞd4xd4y; (21)

and SI is the interaction term

SI½h� ¼ 1

2

Z
hðxÞ½g�1

B ðx; yÞ � g�1ðx; yÞ�hðyÞd4xd4y

þ
Z �1

2
m2

Bh
2 � Vc½’þ h�

�
d4x: (22)

An implicit dependence on ’ is assumed in g, S0, and SI.
Of course, the trial function g�1 cancels in the total action
S½’þ h�, which is exact and cannot depend on it. Thus,
this formal decomposition holds for any arbitrary choice of
the trial function, provided that the integrals converge.
The effective action �½’� can be evaluated by perturba-

tion theory order by order as a sum of Feynman diagrams
according to the general path integral representation of
Eq. (3) that is equivalent to the sum of all 1PI vacuum
diagrams for the action functional S½’þ h�, where ’ acts
like a source. According to our decomposition of the action
functional, we must associate the trial propagator gðx; yÞ to
the free-particle lines of the diagrams, while the vertices
are read from the interaction terms in SI. The effective
action follows order by order as the sum of connected
diagrams according to Eqs. (6) and (7). The zeroth-order
contribution follows from Eq. (6),

V0ð’Þ ¼ � i

2

Z d4k

ð2�Þ4 log

�
i

2�
g�1ðkÞ

�
; (23)

where a Fourier transform g�1ðkÞ has been introduced for
the trial function g�1ðx; yÞ � g�1ðx� yÞ, while according
to Eq. (19), the bare propagator reads g�1

B ðkÞ ¼ k2 �m2
B.

Higher order terms follow by Eq. (7) and can be
described by standard Feynman diagrams in terms of con-
nected 1PI graphs. The vertices are extracted from the
interaction Eq. (22) that yields the interaction Lagrangian

Lint ¼ v0 þ v1hðxÞ þ v3h
3ðxÞ þ v4h

4ðxÞ
þ
Z

hðxÞv2ðx; yÞhðyÞd4y; (24)

where

v0 ¼ �Vcð’Þ; v1 ¼ �’m2
B � 4�’3;

v2 ¼ 1

2
ðg�1

M � g�1Þ; v3 ¼ �4�’;

v4 ¼ ��;

(25)

FABIO SIRINGO PHYSICAL REVIEW D 88, 056020 (2013)

056020-4



and the modified bare propagator g�1
M ðkÞ ¼ k2 �M2 is

defined in terms of the shifted mass

M2 ¼ m2
B þ 12�’2: (26)

Up to second order, the connected 1PI vacuum diagrams
are shown in Fig. 1 with their symmetry factors. The first-
order contribution is given by the sum of the tree, one-loop,
and two-loop graphs in the first row of Fig. 1,

i�1½’� ¼ i�v0 þ
Z

iv2ðx; yÞigðy; xÞd4xd4y

þ 3iv4

Z
igðx; xÞigðx; xÞd4x: (27)

Neglecting a constant term and dividing by a spacetime
volume �, the first-order contribution to the effective
potential reads

V1ð’Þ ¼ Vcð’Þ � i

2

Z d4k

ð2�Þ4 g
�1
M ðkÞgðkÞ

þ 3�

�Z d4k

ð2�Þ4 igðkÞ
�
2
: (28)

Adding the zeroth-order term of Eq. (23), the first-order
effective potential can be written as

Vð1Þð’Þ ¼ Vcð’Þ þ I1½g� þ 3�ðI0½g�Þ2

� i

2

Z d4k

ð2�Þ4 g
�1
M ðkÞgðkÞ; (29)

where the functionals In½g� have been defined as a general-
ization of the GEP and PGEP notation of Ref. [19]:

I0½g� ¼
Z d4k

ð2�Þ4 igðkÞ;

I1½g� ¼ � i

2

Z d4k

ð2�Þ4 log

�
i

2�
g�1ðkÞ

�
;

IðnÞ½g� ¼ n!i
Z
½igðx; yÞ�nd4xd4y:

(30)

All the divergent integrals are supposed to be regularized
by a cutoff or other regularization scheme.
While the technique is based on perturbation theory, the

approximation is valid even when there are no small
parameters, provided that the effective potential is opti-
mized by a variational criterion. In fact, the interaction is
defined in terms of the unknown trial function g, and its
variation has an effect on both S0 and SI. The optimal
choice of this pair should be the one that makes the effects
of the interaction SI smaller in the vacuum of S0. A sta-
tionary condition can be imposed by requiring that the
functional derivative is zero. For instance, the principle
of minimal sensitivity would require that, at a given order,
the trial function g satisfies the stationary condition

�VðnÞ

�g
¼ 0: (31)

In general, this is a nonlinear integral equation for the
unknown function g. Unfortunately, we have no general
proof of the existence of a solution, and the problem should
be studied order by order.
At first order, we require that

0 ¼ �Vð1Þ

�gðkÞ ¼
i

2
ðg�1ðkÞ � g�1

M ðkÞ þ 12�I0½g�Þ; (32)

and find the simple solution

g�1ðkÞ ¼ k2 �M2
1; (33)

where the mass M1 is the solution of the first-order gap
equation

M2
1 ¼ m2

B þ 12�’2 þ 12�I0½g�: (34)

By inserting the self-consistent solution of Eqs. (34) and
(33) in Eq. (29), we obtain the standard GEP [7,19]. Thus,
at first order, the present method is equivalent to the GEP.
The extra freedom on the shape of g does not add anything
to the first-order approximation, and the best g maintains
the form of a free-particle propagator. On the other hand,
the shape of the optimized propagator tells us that the
wave function renormalization is negligible in the self-
interacting scalar theory, as confirmed by several lattice
calculations. Moreover, we can show that the first-order
proper self-energy vanishes, so that the first-order propa-
gator is equal to the optimized function g that can be
regarded as a self-consistent solution at first order.
The graphs contributing to the self-energy are reported in
Fig. 2 up to second order (tadpole graphs are not included).

v0

v

v2 v4

3

v vv2 2

2

2

v4

4!

v v3 3

3!

v
44

4!

v v4 4

(4x3)(4x3)/2

FIG. 1. Connected vacuum 1PI graphs for the Lagrangian
Eq. (24), up to second order. The trial propagator g is reported
as a straight line, while the vertices are defined in Eq. (25). The
symmetry factors are displayed below the graphs.
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The proper first-order term is the sum of the tree and the
one-loop graphs in the first row,

�i�1 ¼ iðg�1
M � g�1Þ þ 12iv4

Z d4k

ð2�Þ4 igðkÞ; (35)

yielding

�1ðkÞ ¼ g�1ðkÞ � k2 þm2
B þ 12�’2 þ 12�I0½g�; (36)

which vanishes if the function g in Eq. (33) satisfies the
first-order gap equation (34). Actually, by inspection of
Eq. (32), we can see that

�Vð1Þ

�gðkÞ ¼
i

2
�1: (37)

This consistency relation is a special case of a more general
relation between self-energy and functional derivatives of
the effective potential. In the next sections, we will gen-
eralize the result to any order and to theories containing
fermions.

For a second-order extension of the method, the trial
function g could be determined by the method of minimal
sensitivity as the solution of the stationary condition

�Vð2Þ

�g
¼ �

�g
ðV0 þ V1 þ V2Þ ¼ 0; (38)

or by the method of minimal variance as the solution of the
stationary condition

�V2

�g
¼ 0: (39)

These are integral equations for the unknown function g,
and their solution is equivalent to the optimization of
infinite parameters. In both cases, we would need the func-
tional derivative of the second-order term V2. However, by
a generalization of Eq. (37), the higher order stationary
conditions can be derived through a simpler path that

makes use of the self-energy without having to write the
effective potential.

III. CONNECTION TO SELF-ENERGY

It is useful to develop a general method for the direct
evaluation of the functional derivatives that appear in most
of the variational approaches. We give proof of a general
relation between self-energy and functional derivatives of
the effective potential. For the sake of simplicity, we dis-
cuss the case of the self-interacting scalar theory, while the
extension to more complex theories containing Bose and
Fermi fields is quite straightforward. An extension to fer-
mions is discussed below in Sec. V.
At each order, we find that

�Vn

�gðkÞ ¼
i

2
ð�nðkÞ � �n�1ðkÞÞ; (40)

where Vn and �n are the nth-order contribution to the
effective potential and to the self-energy, respectively,
and no tadpole graph has been included in the self-energy
(as is usually the case at the minimum of V where
�V=�’ ¼ 0 and the tadpoles cancel exactly). The relation
can be taken to be valid even for n ¼ 1, 0, provided that we
define ��1 ¼ 0 and i�0 ¼ 2�V0=�g. As a corollary, we

find that the total nth-order effective potential VðnÞ satisfies

�VðnÞ

�gðkÞ ¼
i

2
�nðkÞ; (41)

and the vanishing of the functional derivative is equivalent
to the vanishing of the nth-order contribution to the self-
energy. In the special case of n ¼ 1, we recover Eq. (37)
which is equivalent to the vanishing of the total self-energy
and to the self-consistency of the optimized g for the GEP,
as discussed at the end of the previous section.
The proof follows Wick’s theorem and inspection of the

diagrams. First of all, let us recall a general relation
between the vacuum diagrams without any external line
and the self-energy two-point diagrams with two external
vertices where two external lines can be attached. All
diagrams contributing to the nth-order self-energy can be
drawn by taking n interaction terms, picking up a pair of
fields, and contracting all other fields according to Wick’s
theorem. There is a contribution for each chosen pair of
external fields. If we contract the external fields, we close
the two-point diagram by a line and obtain a vacuum nth-
order diagram without external lines and vertices, as shown
in Fig. 3. All vacuum diagrams can be drawn by picking up
a pair of fields in all the possible ways, writing all the
corresponding two-point diagrams, and then closing them
by a line. As a consequence of Wick’s theorem, this
procedure ensures that we find the correct symmetry fac-
tors. The argument can be reversed, and provided that we
inserted the correct symmetry factors, if we cut a line in
any possible way in all the nth-order vacuum diagrams, we

Σ =

+v

2

v2
+

4

v4

3x4

+

+

2v

4!
+ v

v4

4

v v3 3

(4x3)(4x3) 3(3!)

+
v v4 4

4(4!)

+

+ +
v4 v4

v v2 2

(2x2) (4x3)(4x3)
+ +

v4v4
v2v2

4! 4!

− i 

FIG. 2. Self-energy graphs for the Lagrangian Eq. (24), up to
second order. The trial propagator g is reported as a straight line,
while the vertices are defined in Eq. (25). The symmetry factors
are displayed below the graphs. We recognize two first-order
graphs in the first row, four 1PI graphs in the second row (proper
self-energy), and four reducible graphs in the last row. Tadpole
graphs are not included.
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obtain all the nth-order two-point diagrams contributing to
the self-energy. Actually, an overall 2 factor must be added
because of the permutation of the external fields in the two-
point function. Using Feynman rules in momentum space,
for any internal particle line, a factor igðkÞ is included and
integrated over k. The functional derivative �=�ðigÞ dele-
tes a factor ig and its corresponding integration; thus, it is
equivalent to the cut of an internal line in all the possible
ways, with the correct factor coming out from the deriva-
tive. Thus, denoting by �i�V n and �i�n the sum of all
the nth-order vacuum and two-point graphs, respectively,�

�V n

�gðkÞ
�
v2

¼ i

2
�nðkÞ: (42)

Here, by �=�g we mean the explicit partial derivative with
the vertex v2 kept fixed, while a total functional derivative
would operate on the vertex v2 also. In vacuum diagrams,
the nonlocal two-point vertex v2 is only present inside
loops that have the following general form:

Z d4k

ð2�Þ4 . . . igðkÞ � iv2ðkÞ � igðkÞ . . . ; (43)

and by insertion of the vertex definition Eq. (25), we see
that for each of them the total functional derivative
acquires the extra term

�

�gðpÞ
�

d4k

ð2�Þ4 . . . igðkÞ � iv2ðkÞ � igðkÞ . . .
�

¼
�
. . . igðpÞi @v2ðpÞ

@gðpÞ igðpÞ . . .
�
¼
�
. . .

�
� i

2

�
. . .

�
;

(44)

where the functional derivative only acts on the vertex. The
effect of the derivative is the opening of the loop where the
vertex was, yielding a two-point graph with a vertex less,

as shown in Fig. 3. At a given order, all the v2 insertions in
vacuum diagrams are in one-to-one correspondence with
all the possible pairs of external fields that can be picked up
for drawing two-point diagrams. Again, provided that the
correct symmetry factors were included, Wick’s theorem
ensures that the functional derivative of all v2 insertions
in V n yields the sum of all two-point diagrams of order
n� 1, with the correct factor that comes out from the
derivative. Thus, inserting the factor �i=2 coming out
from the derivative of the vertex in Eq. (44), and adding
the result of the partial derivative Eq. (42), the total func-
tional derivative is

�V n

�gðkÞ ¼
i

2
½�nðkÞ � �n�1ðkÞ�: (45)

Of course, here V n and �n contain all kinds of terms
including disconnected diagrams and tadpoles.
It is not difficult to understand that in Eq. (45), discon-

nected diagrams for �n are in correspondence with dis-
connected or reducible diagrams forV n, while self-energy
diagrams containing tadpoles can only generate reducible
vacuum diagrams. On the other hand, connected self-
energy diagrams without tadpoles always generate 1PI
connected vacuum diagrams when the two-point graph is
closed with a line or a v2 vertex, and 1PI connected
vacuum diagrams always generate connected self-energy
diagrams without tadpoles when a line or a v2 vertex is cut
by the functional derivative. When restricting to 1PI con-
nected vacuum diagrams, V n becomes the nth-order con-
tribution to the effective potential Vn, and then Eq. (40)
holds, provided that �n contains all connected self-energy
graphs without tadpoles.

IV. SECOND-ORDER EXTENSIONS OF GEP

The first-order stationary condition Eq. (32) has been
shown to be equivalent to the gap equation of the GEP
Eq. (34) yielding the simple free-particle propagator of
Eq. (33). As discussed in Sec. II, the second-order exten-
sion of the GEP is not trivial. Here, we study in more detail
the second-order stationary conditions that emerge by the
methods of minimal sensitivity Eq. (38) and minimal vari-
ance Eq. (39), for the self-interacting scalar theory. The
stationary conditions are derived by the self-energy accord-
ing to Eq. (40).

A. Stationary conditions

By the method of minimal sensitivity, the generalized
second-order stationary condition Eq. (38) reads

�Vð2Þ

�gðkÞ ¼
i

2
�2ðkÞ ¼ 0; (46)

where Eq. (41) has been used with n ¼ 2. Thus,
the second-order gap equation is equivalent to the vanish-
ing of the second-order contribution to the self-energy,

Σ n

δ
δ v2

δ
δ g

v2

Σ n−1

Σ n

Σ n−1

FIG. 3. Correspondence between vacuum and self-energy
graphs: in the upper row, vacuum 1PI connected graphs of order
n give connected self-energy graphs of order n (without tad-
poles) when operating with a partial functional derivative �=�g
according to Eq. (42); in the lower row, vacuum 1PI connected
graphs of order n give connected self-energy graphs of order
n� 1 (without tadpoles) when operating with a functional
derivative of the vertex v2.
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ignoring tadpoles. All the second-order self-energy graphs
are displayed in Fig. 2. Adding together the four 1PI graphs
in the second line, the proper second-order self-energy can
be written as

�?
2 ðkÞ ¼ �12v4I�1 þ v2

3J3ðkÞ þ v2
4J4ðkÞ; (47)

where I�1, J3ðkÞ, and J4ðkÞ are new functionals of g. The
functional I�1 does not depend on k and is defined as

I�1 ¼
Z d4k

ð2�Þ4 i½gðkÞ�
2�1ðkÞ: (48)

It generalizes the functional I0 by the inclusion of a self-
energy insertion in the loop, and arises from the sum of the
first pair of second-order graphs in Fig. 2. The functionals
JnðkÞ carry an explicit dependence on k and are defined as

JnðkÞ ¼ n � n!
Z

g

 
kþ Xn�2

j¼1

kj

!Yn�2

j¼1

�
igðkjÞ

d4kj

ð2�Þ4
�

¼ i�IðnÞ

�gðkÞ ; (49)

where the last equality follows by evaluating the integrals

IðnÞ in Eq. (30) in momentum space. Here, the functionals
J3 and J4 arise from the third and fourth 1PI graphs,
respectively, as displayed in Fig. 2. The four reducible
second-order graphs can be easily expressed in terms of
�1 yielding for the total second-order self-energy

�2ðkÞ ¼ �?
2 ðkÞ þ gðkÞ½�1ðkÞ�2: (50)

The condition of minimal sensitivity Eq. (46) then reads

�?
2 ðkÞ ¼ �gðkÞ½�1ðkÞ�2: (51)

The derivation of this second-order stationary condition
was made quite simple by the use of self-energy graphs
and their connection to the functional derivatives of the
effective potential. However, the same equation could be
derived by the more cumbersome calculation of the vac-
uum diagrams in Fig. 1 followed by the functional deriva-
tive of all terms. Since it is instructive to examine the
connection between the two methods, in the Appendix
the effective potential is evaluated up to second order,
and its functional derivative is compared with the self-
energy, term by term, showing a perfect agreement with
Eq. (46).

By the method of minimal variance, the generalized
second-order stationary condition Eq. (39) reads

�V2

�gðkÞ ¼
i

2
ð�2ðkÞ ��1ðkÞÞ ¼ 0; (52)

where Eq. (40) has been used with n ¼ 2. That is equiva-
lent to imposing�2 ¼ �1. In terms of proper self-energies,
the condition of minimal variance can be written as

�?
2 ðkÞ ¼ �gðkÞ½�1ðkÞ�½�1ðkÞ � g�1ðkÞ� (53)

and differs from the condition of minimal sensitivity
Eq. (51) for the term g�1 in the last factor.
Despite the simple shape of the resulting stationary

conditions Eqs. (51) and (53), these are nonlinear integral
equations for g, and we cannot even prove the existence of
a solution. It would be interesting to look for a numerical
solution, but that is out of the aim of the present paper.
In the PGEP of Ref. [19], the trial function g is forced to

be the same as for the first-order approximation, but with a
mass M2 that should satisfy a second-order gap equation
coming out from the condition of minimal sensitivity.
Actually, they find no solution for their single variational
parameter M2 (their second-order effective potential is
never stationary). That does not mean that the integral
equation (51) has no solution, since the trial function g
has infinite degrees of freedom in our generalized
approach. On the other hand, with the same constraint of
a free-particle g, with a single variational mass parameter,
the method of minimal variance has been shown to give a
solution [24]. In fact, the variance is bounded, and it is

more likely to have a minimum compared to Vð2Þ that could
even be unbounded according to Eq. (13). On the same
footing, that does not mean that the integral equation (53)
must have a solution, but it is a good physical argument for
its existence.

B. Analytical properties of solutions

Even without having derived the effective potential,
some interesting consequences of the stationary equations
can be studied. In fact, the present method allows for a
study of the existence and properties of the solution with-
out having to write down the effective potential.
Let us suppose that a function g does exist, satisfying

one of the stationary conditions Eqs. (51) or (53), and let us
look at the analytical properties of this function. We can
prove that the single-particle pole of the function gmust be
at k ¼ M1, where M1 is the solution of the first-order gap
equation (34). That does not mean that the pole does not
change, because the function g in Eq. (34) must be the
solution of the second-order stationary equation instead of
the simple first-order solution Eq. (33). In other words, the
second-order extension does not change the Gaussian gap
equation but changes the shape of the function g from its
first-order free-particle form. That would also explain why
no solution is found for the stationary condition in the
PGEP of Ref. [19] where a free-particle trial function is
used. The lack of any solution could be the sign of having
chosen a wrong trial function. On the other hand, the first-
order gap equation (34) seems to be more robust than
expected by the PGEP analysis.
The proof of the above statement comes from a more

careful inspection of Eqs. (51) and (53). Let us suppose that
a solution gðkÞ does exist, and that its single-particle pole is
at k ¼ m. In other words, we are assuming that k ¼ m
is the first singular point on the real axis, while other
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singularities or cuts may occur for k > m. We are going to
prove that m ¼ M1, as defined in Eq. (34).

If Eqs. (51) or (53) hold, and g has a pole in k ¼ m, then
the proper self-energy �?

2 ðkÞ must have a pole unless �1

vanishes. In this special point k ¼ m, the two stationary
conditions Eqs. (51) and (53) are equivalent because
g�1ðmÞ ¼ 0. In �?

2 ðkÞ, the dependence on k comes from
the functionals J3ðkÞ and J4ðkÞ. These are functionals
of g and cannot have a pole for k < 2m and k < 3m,
respectively. That is obvious in Euclidean space where
the pole g becomes imaginary and gives the long-range
behavior of the Fourier transform gðxÞ � exp ð�mxÞ. The
functional Jnþ1ðkÞ is the Fourier transform of ½gðxÞ�n �
exp ð�n �mxÞ and cannot have a pole for k < n �m. That is
a well-known property of graphs with multiparticle inter-
mediate states like the one-loop and two-loop sunrise
graphs that give the J3 and J4 terms. Then the function
�1ðkÞ must have a first-order zero in k ¼ m at least,
supposing it to be a generally analytical function of k. As
a by-product, �?

2 must have a zero in k ¼ m as well,
in order to satisfy Eqs. (51) or (53). Then, inserting
�1ðmÞ ¼ 0 and g�1ðmÞ ¼ 0 in Eq. (36), we obtain

m2 ¼ m2
B þ 12�’2 þ 12�I0½g�; (54)

which means that m satisfies the first-order gap equation,
i.e., m ¼ M1.

Denoting by GðnÞ the nth-order propagator, as obtained
by standard perturbation theory with the interactionLint of
Eq. (24), we see that Gð1Þ ¼ g at first order; i.e., the first-

order approximation is self-consistent since �1 vanishes
identically. Setting ’ at its physical value, at the minimum
of the effective potential where �V=�’ ¼ 0, all tadpole
graphs cancel exactly in the self-energy, and the second-
order propagator can be written in terms of proper self-
energy insertions as

G�1
ð2Þ ¼ g�1 � �1 ��?

2 ; (55)

and inserting Eq. (36) we obtain

G�1
ð2Þ ðkÞ ¼ k2 �M2

1 � �?
2 ðkÞ; (56)

which still has a pole in k ¼ M1 since �
?
2 ðM1Þ ¼ 0. Thus,

the pole is still self-consistent even if g is not, since
gðkÞ � Gð2ÞðkÞ in the second-order approximation, and a

non-vanishing wave function renormalization can be
extracted by the residue of the pole.

While the present results are suggestive, they are all
based on the hypothesis that without other constraints, at
least one of the stationary conditions Eqs. (51) or (53)
might have a solution. Moreover, we have not addressed
the issue of renormalization: most of the integrals are
divergent and, while a simple cut-off regularization would
be enough in the case of an effective theory, renormaliza-
tion of the bare parameters would be an interesting aspect

to be studied. Again, perturbative techniques can be used
as shown in Ref. [19], even if the result has a genuine
variational nature.

V. GAUGE INTERACTING FERMIONS

For fermions, variational methods like GEP and PGEP
are known to be useless [20], as the methods just reproduce
the known results of perturbation theory. Thus, gauge
theories with interacting fermions seem to be an interesting
test for the generalized higher order extension of the GEP.
The failure of the first-order GEP is a simple consequence
of the minimal interaction that in gauge theories does not
admit any first-order vacuum graph. It is mandatory to use
higher order approximations, and the method of minimal
variance seems to be suited to the case.
Quantum electrodynamics (QED) is the simplest Uð1Þ

theory of interacting fermions. Let us consider the basic
theory of a single massive fermion interacting through an
Abelian gauge field

L¼ ��ði6@þe 6A�mÞ��1

4
F��F���1

2
ð@�A�Þ2; (57)

where the last term is the gauge fixing term in the
Feynman gauge, and the electromagnetic tensor is
F�� ¼ @�A� � @�A�.

Introducing a shift a� for the gauge field A� ! A� þ
a�, the quantum effective action follows as the sum of
connected vacuum 1PI graphs that are summarized by the
path integral representation

ei�½a� ¼
Z
1PI

DAD ��;�e
iS½aþA�; (58)

where the action S can be split as S ¼ S0 þ SI. We define
the trial action S0 as

S0 ¼ 1

2

Z
A�ðxÞD�1

��ðx; yÞA�ðyÞd4xd4y

þ
Z

��ðxÞG�1ðx; yÞ�ðyÞd4xd4y; (59)

where D��ðx; yÞ and Gðx; yÞ are unknown trial matrix

functions. The interaction contains three terms

SI ¼ 1

2

Z
A�ðxÞ½��1

��ðx; yÞ �D�1
��ðx; yÞ�A�ðyÞd4xd4y

þ
Z

��ðxÞ½g�1
m ðx; yÞ �G�1ðx; yÞ��ðyÞd4xd4y

þ e
Z

��ðxÞ��A�ðxÞ�ðxÞd4x; (60)

where ���ðx; yÞ and gmðx; yÞ are free-particle propagators.
Their Fourier transform can be expressed as

��1
��ðkÞ ¼ �	��k

2; g�1
m ðkÞ ¼ 6k� m̂; (61)
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where 	�� is the metric tensor, and m̂ ¼ m� ea is

a modified mass matrix term. Assuming that the Uð1Þ
symmetry is not broken, in the physical vacuum a� ¼ 0
and the mass term is m̂ ¼ m. The three vertices that come
out from the interaction are reported in the first line
of Fig. 4.

The stationary conditions for the effective potential
V½a� ¼ ��½a�=� can be evaluated by a straightforward
extension of the connection to self-energy Eq. (40). Taking
into account the matrix structure of the equations, for
gauge fields the functional derivative yields

�Vn

�D��ðkÞ ¼
i

2
ð���

n ðkÞ ��
��
n�1ðkÞÞ: (62)

Here, the self-energy is replaced by the polarization func-
tion���, which is the sum of connected two-point graphs,
as shown in the third line of Fig. 4 where first- and second-
order graphs are reported. For fermions, we must add a
minus sign because self-energy graphs have a loop less
than the corresponding vacuum graphs (a loop is removed
by the functional derivative). Moreover, we must drop the 2
factor that was inserted because of the permutation sym-
metry of two-point graphs for real fields. Taking into
account the matrix structure, the connection to self-energy
reads

�Vn

�GabðkÞ ¼ �ið�ba
n ðkÞ ��ba

n�1ðkÞÞ; (63)

where we inserted explicit spinor indices in the trial func-
tion Gab and in the self-energy �ab. First- and second-
order self-energy graphs are shown in the second line of
Fig. 4. Making use of Eqs. (62) and (63), the stationary
conditions can be obtained without having to write the
effective potential.

It is instructive to see what happens at first order; the
variation of the trial functions G and D yields a set of two
stationary conditions:

�Vð1Þ

�D��ðkÞ ¼
i

2
�

��
1 ðkÞ ¼ 0;

�Vð1Þ

�GabðkÞ ¼ �i�ba
1 ðkÞ ¼ 0:

(64)

First-order self-energy and polarization are given by a
single tree graph each, as shown in Fig. 4. The stationary
conditions are equivalent to their vanishing

�i���
1 ðkÞ ¼ i½��1

�� �D�1
��� ¼ 0;

�i�ba
1 ðkÞ ¼ i½g�1

m �G�1� ¼ 0;
(65)

yielding the trivial result D ¼ � and G ¼ gm. Thus, the
GEP is equivalent to the free theory, and any meaningful
variational approximation requires the inclusion of second-
order terms at least.
The failure of the first-order approximation would sug-

gest that we look at the method of minimal variance, which
is a genuine second-order variational method. The proper
self-energy and polarization contain one second-order term
each, the one-loop graphs of Fig. 4,

�?
2 ðkÞ ¼ ie2

Z d4p

ð2�Þ4 �
�Gðkþ pÞ��D��ðpÞ;

�?��
2 ðkÞ ¼ �ie2

Z d4p

ð2�Þ4 TrfGðpþ kÞ��GðpÞ��g:
(66)

These would be the usual proper two-point functions of
QED if the functions D and G were replaced by the bare
propagators � and gm. The total second-order contribu-
tions to the two-point functions follow by the sum of all
second-order graphs in Fig. 4,

�2 ¼ ½g�1
m �G�1� � G � ½g�1

m �G�1� þ�?
2 ;

�2 ¼ ½��1 �D�1� �D � ½��1 �D�1� þ�?
2 ;

(67)

where matrix products have been introduced in the
notation. According to Eqs. (62) and (63), the stationary
conditions for minimal variance can be written as

�V2

�D��ðkÞ ¼
i

2
ð���

2 ðkÞ ��
��
1 ðkÞÞ ¼ 0;

�V2

�GabðkÞ ¼ �ið�ba
2 ðkÞ � �ba

1 ðkÞÞ ¼ 0:

(68)

By insertion of the explicit expressions for first-order
functions, as given by Eq. (65), and second-order functions
Eq. (67), the coupled equations can be recast as

GðkÞ ¼ gmðkÞ � gmðkÞ � �?
2 ðkÞ � gmðkÞ;

D��ðkÞ ¼ ���ðkÞ � ���ðkÞ ��?�

2 ðkÞ � �
�ðkÞ;

(69)

where the proper functions �?
2 , �

?
2 are given by Eq. (66).

While this result resembles the simple lowest order
approximation for the propagators in perturbation theory,
it differs from it in two important ways: the presence of a

++

+

SI =

=

= +Π− i

+

+

Σ− i 

FIG. 4. The three vertices in the interaction SI of Eq. (60) are
shown in the first line. First- and second-order graphs for the
self-energy and polarization function are shown in the second
and third lines, respectively. For each two-point function, we
recognize a first-order graph, a reducible second-order graph,
and a one-loop 1PI second-order graph.
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minus sign in front of the second-order term, and the
functional dependence on the unknown propagators D, G
in the proper functions in Eq. (66). Because of this depen-
dence, the stationary conditions are a set of coupled
integral equations, and their self-consistent solution is
equivalent to the sum of an infinite set of Feynman graphs.
In fact, despite the appearance, the stationary conditions
are not a second-order approximation of an expansion in
powers of the coupling e2, but they make sense even when
the coupling is large, as they derive from a variational
constraint on the variance.

It is instructive to have a look at the second-order

propagator Gð2Þ as obtained by standard perturbation the-
ory with optimized interaction SI and with free-particle
propagators G, D defined by Eq. (69). We assume that the
Uð1Þ symmetry is not broken and a ¼ 0 in the physical
vacuum. In terms of the proper self-energy,

Gð2ÞðkÞ ¼ ½G�1ðkÞ � �1ðkÞ ��?
2 ðkÞ��1; (70)

and by inserting the explicit expressions for the first-order
self-energy �1 ¼ G�1 � g�1

m and the bare propagator gm,
we find

½Gð2ÞðkÞ��1 ¼ 6k�m��?
2 ðkÞ; (71)

which looks like the standard one-loop result of QED but
differs for the functions G and D that must be inserted in
the one-loop �?

2 in Eq. (66) instead of the bare propagators
gm, �. If we expand the stationary conditions Eq. (69) in
powers of the coupling e2, take the lowest order approxi-
mation G � gm, D � �, and substitute back in the one-
loop proper self-energy �?

2 , then Eq. (71) becomes exactly
equal to the one-loop propagator of QED. Thus, the present
variational method agrees with the standard results of
perturbation theory when the equations are expanded in
powers of the coupling.

As a weaker approximation, the variational method can
be set by solving one only of the two stationary equations,
while keeping one of the trial functions at a fixed value, out
of the stationary point. For instance, we could keepD fixed
at its free-particle valueD ¼ � and search for the minimal
variance by a variation of the trial function G. That is
equivalent to looking for a solution to the first part of
Eq. (69), which becomes a linear integral equation for G.
A path like that leads to a Volterra integral equation [26]
that has a unique solution and can be solved by numerical
iterative techniques. While that is proof of the existence of
the solution, a full numerical study of the set of coupled
equation (69) would be interesting for its eventual exten-
sion to non-Abelian gauge theories with large couplings.
Of course, a regularization of diverging integrals and
renormalization of bare couplings would be required
before attempting any numerical study. That is not a major
problem [26] and can be addressed by a perturbative
technique with the optimized interaction SI that plays
the role of the perturbation, and a set of renormalization

constants that can be evaluated order by order, as shown for
the PGEP in Ref. [19]. Details of renormalization and a
deeper study of the stationary conditions Eq. (69) are out of
the aim of the present work and will be the content of
another paper [26].

VI. DISCUSSION AND CONCLUSION

Let us summarize the main findings of the paper. While
we are aware that many important aspects have not been
addressed, like renormalization, gauge invariance, numeri-
cal study of the stationary equations, etc., the content of
this paper is just a step towards a consistent development of
variational methods for a better understanding of nonper-
turbative sectors of the standard model. While lattice
simulations are the standard reference for nonperturbative
calculations, an alternative analytical approach would be
very valuable and welcome. Unfortunately, the GEP is not
suitable for gauge theories, and even its second-order
extension by the PGEP seems to be useless [20].
We have shown that a viable general extension of the

variational methods can be obtained by using a trial func-
tion instead of a fixed shape for the free propagator. The
stationary condition on the effective potential becomes a
set of integral equations for the unknown trial propagators
that is equivalent to optimize an infinite set of variational
parameters. Moreover, the stationary conditions are
derived by the self-energy, without having to find the full
effective potential. That simplifies the derivation and has
been proven to be possible at any order because of an exact
connection between self-energy and functional derivatives
of the effective potential.
Some important consequences of the variational equa-

tions have been proven for the scalar theory, where the pole
of the propagator is shown to be given by the simple first-
order gap equation that seems to be more robust than
expected by the PGEP analysis. The second-order exten-
sion does not change the Gaussian gap equation but
changes the shape of the trial function from its first-order
free-particle form. That would also explain why no solu-
tion is found for the stationary condition in the PGEP of
Ref. [19], where a free-particle trial function is used: the
lack of any solution could be the sign of having chosen a
wrong trial function.
Among the different variational strategies, the method of

minimal variance has been shown to be suitable for gauge
theories, where first-order approximations are useless. The
method has been tested on QED and nontrivial results have
been found.While the variational equations should hold for
any strong value of the coupling, we have shown that an
expansion in powers of e2 gives back the standard results of
QED. Of course, the aim is the extension to non-Abelian
gauge theories in the strong coupling limit. With some
constraint, the variational equations have been proven to
admit a unique solution [26] since the equations can be
recast in the form of Volterra integral equations and can be
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solved by iteration. Some further numerical work is
required for a deeper understanding of these findings,
and their eventual extension to important nonperturbative
sectors of the standard model.

APPENDIX: EXPLICIT EVALUATION OF
THE EFFECTIVE POTENTIAL

UP TO SECOND ORDER

For the scalar theory of Sec. II B, the connected vacuum
1PI graphs are displayed in Fig. 1 up to second order. The
sum of terms up to first order is given in Eq. (29). There are
five second-order graphs. The first graph in the second line
of Fig. 1 yields

i�a
2 ¼ �

4

Z d4p

ð2�Þ4 gðpÞ½g
�1
M ðpÞ � g�1ðpÞ�

� gðpÞ½g�1
M ðpÞ � g�1ðpÞ�; (A1)

and neglecting an additive constant term,

Va
2 ¼ i

2

�
1

2

Z d4p

ð2�Þ4 g
2ðpÞg�2

M ðpÞ �
Z d4p

ð2�Þ4 gðpÞg
�1
M ðpÞ

�
:

(A2)

The second graph in the second line of Fig. 1 is

i�b
2 ¼ 6v4�I0

Z d4p

ð2�Þ4 gðpÞ½g
�1
M ðpÞ � g�1ðpÞ�gðpÞ;

(A3)

and yields

Vb
2 ¼ i

2

�
12iv4I

2
0 þ 12v4I0

Z d4p

ð2�Þ4 g
2ðpÞg�1

M ðpÞ
�
: (A4)

The third graph in the second line of Fig. 1 is

i�c
2 ¼ 3iv2

3

Z
½gðx; yÞ�3d4xd4y; (A5)

and then

Vc
2 ¼ i

2
ðiv2

3ÞIð3Þ: (A6)

The first graph in the third line of Fig. 1 gives

i�d
2 ¼ �12v2

4

Z
½gðx; yÞ�4d4xd4y; (A7)

yielding

Vd
2 ¼ i

2
ðiv2

4ÞIð4Þ: (A8)

The last graph of Fig. 1 gives

i�e
2 ¼ ð6v4I0Þ2

Z
½gðx; yÞ�2d4xd4y; (A9)

and then

Ve
2 ¼ i

2
½ið6v4I0Þ2Ið2Þ�: (A10)

The second-order contribution to the effective potential is
the sum

V2 ¼ Va
2 þ Vb

2 þ Vc
2 þ Vd

2 þ Ve
2 : (A11)

It can be easily checked that for the special case g�1ðkÞ ¼
k2 �M2

2, the total second-order potential V2 becomes
equal to its expression in Ref. [19].
The first-order self-energy is the sum of the two graphs

in the first line of Fig. 2,

�1ðkÞ ¼ g�1ðkÞ � g�1
M ðkÞ � 12v4I0: (A12)

The second-order contribution to the self-energy is the sum
of the eight second-order graphs in Fig. 2. In the second
line of Fig. 2, we find four 1PI graphs: the first graph is

�b
2ðkÞ ¼ �12v4I0 þ 12iv4

Z d4p

ð2�Þ4 g
2ðpÞg�1

M ðpÞ; (A13)

the second graph is

�e
2ðkÞ ¼ �2ð6v4Þ2I0Ið2Þ; (A14)

the third graph gives

�c
2ðkÞ ¼ v2

3J3ðkÞ; (A15)

and the fourth graph gives

�d
2ðkÞ ¼ v2

4J4ðkÞ: (A16)

The four reducible graphs in the third line of Fig. 2 give the
following contributions: the first graph can be written as

�a
2ðkÞ ¼ ½g�1ðkÞ � g�1

M ðkÞ� þ ½gðkÞg�2
M ðkÞ � g�1

M ðkÞ�;
(A17)

the second graph is

�f
2ðkÞ ¼ 4ð6v4I0Þ2gðkÞ; (A18)

and the sum of the last two graphs can be written as

�g
2ðkÞ ¼ 4!v4I0gðkÞg�1

M ðkÞ � 4!v4I0: (A19)

The functional derivative �V2=�g follows term by term:

�2i
�Va

2

�gðkÞ ¼ gðkÞg�2
M ðkÞ � g�1

M ðkÞ
¼ �a

2ðkÞ ��1ðkÞ � 12v4I0; (A20)

�2i
�Vb

2

�gðkÞ ¼ �24v4I0 þ 12iv4

Z d4p

ð2�Þ4 g
2ðpÞg�1

M ðpÞ
þ 24v4I0gðkÞg�1

M ðkÞ
¼ �b

2ðkÞ þ�g
2ðkÞ þ 12v4I0; (A21)

and making use of Eq. (49),
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�2i
�Vc

2

�gðkÞ ¼ v2
3J3ðkÞ ¼ �c

2ðkÞ;

�2i
�Vd

2

�gðkÞ ¼ v2
4J4ðkÞ ¼ �d

2ðkÞ:
(A22)

Finally, the last term gives

�2i
�Ve

2

�gðkÞ ¼ �2ð6v4Þ2I0Ið2Þ þ 4ð6v4I0Þ2gðkÞ

¼ �e
2ðkÞ þ�f

2ðkÞ: (A23)

Putting together all these terms, the functional derivative of
V2 reads

� 2i
�V2

�gðkÞ ¼ �2ðkÞ � �1ðkÞ; (A24)

where the second-order self-energy term is

�2 ¼ �a
2 þ�b

2 þ�c
2 þ �d

2 þ�e
2 þ �f

2 þ �g
2 ; (A25)

in perfect agreement with Eqs. (40) and (46).
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