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Yukawa sector of multi-Higgs-doublet models in the presence of Abelian symmetries
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A general method for classifying the possible quark models of a multi-Higgs-doublet model, in the
presence of Abelian symmetries, is presented. All the possible sets of textures that can be present in a
given sector are shown, thus turning the determination of the flavor models into a combinatorial problem.
Several symmetry implementations are studied for two and three Higgs doublet models. Some models’
implementations are explored in great detail, with a particular emphasis on models known as Branco-
Grimus-Lavoura and nearest-neighbor-interaction. Several considerations on the flavor changing neutral

currents of multi-Higgs models are also given.
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L. INTRODUCTION

The Standard Model (SM) of strong and electroweak
interactions is very successful phenomenologically, and
the discovery of a Higgs-like particle [1] was the missing
piece in order to establish it as the best model available.
However, there is a general consensus that this should not
be the final theory because it does not explain basic issues
such as dark matter, neutrino masses, number of families,
and many others.

One possible extension of the SM is the addition of extra
copies of the Higgs field, just like in the fermionic sector.
The most common scenario is the two Higgs doublet model
(2HDM), which has been extensively studied in the litera-
ture; for a review see [2]. Models with three or more Higgs
bosons have also been considered, but the lack of informa-
tion on these extension is much larger. With the addition of
extra scalar doublets the number of parameters, in the
scalar and Yukawa sector, increases largely. In these N
Higgs doublet models (NHDM) it is very common to add
symmetries to help tackle the problem. For the 2HDM,
Ivanov [3] has shown that, no matter what combination of
flavor symmetries and/or generalized CP symmetries one
imposes on the scalar potential, one always ends up with
one of six distinct classes of potentials. Later, this issue
was studied further by Ferreira, Haber, and Silva [4]. The
recent studies of Ivanov and Vdovin [5] have extended
these analyses to the three Higgs doublet models (3HDM).
The study of Abelian symmetries in the NHDM scalar
sector was done by Ivanov, Keus, and Vdovin [6].
Despite the extensive general studies of symmetries in
the scalar potential of NHDM, the Yukawa sector has
been left partially apart. There are several particular flavor
models in literature with two, three, or more Higgs fields,
but there is a lack of a general approach as the one existing
for the scalar sector.

The study of the Yukawa sector in NHDM tends to be a
little involved since, besides the scalar fields, we have three
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types of fermions (Q;, ng, and pgr) repeated 3 times.
This enlarges significantly the number of choices for the
representations of a given group. Recently, a general study
of 3HDM in the presence of A4 and S, was done [7]. These
are two interesting non-Abelian groups since they lead to a
scalar potential highly symmetric, allowing the complete
determination of the global minimums [8]. While, the
study of non-Abelian symmetries in the Yukawa sector
depends strongly of the irreducible representations (irreps)
and the way we attribute them, for the Abelian case we
only have one-dimensional irreps. Using this feature,
Ferreira and Silva [9] have presented a general study
of Abelian symmetries in the Yukawa sector of the
2HDM. The aim of this work is to extend this study to
the NHDM case.

This article is organized as follows. In Sec. II we
introduce our notation and show how the action of
Abelian symmetries constrains the Yukawa textures. In
Sec. III we show the possible combinations of textures,
i.e. chains, that can be built in Abelian models, as well as
the possible Higgs fields transformations and associated
textures. In Sec. IV we explain how to make the connection
between the up-quark and down-quark sectors, allowing us
to build explicit models for the quark sector. In Sec. V we
extend our previous analyses to cases where the Abelian
group is a direct product of cyclic groups. In Sec. VI
explicit model implementations are studied in detail, in
particular, the well-known Branco-Grimus-Lavoura (BGL)
and nearest-neighbor-interaction (NNI) models. We draw
our conclusions in Sec. VII.

II. ABELIAN SYMMETRIES VERSUS
YUKAWA TEXTURES

The most general and renormalizable scalar potential
constructed with N copies of the SU(2); ® U(1)y doublet
®,(a=1,...,N)is

V=Y, (®I®,) + Zypo( @I D) (DI D,) (D

with

© 2013 American Physical Society


http://dx.doi.org/10.1103/PhysRevD.88.056015

H. SERODIO

Yab = Y;;a, Zabcd = chab = ZZadc’ (2)
due to Hermiticity of the Lagrangian. The model also
contains three flavors of left-handed quarks (Q;,), right-
handed down-type quarks (ng, ), and right-handed up-type
quarks (pg,), with the Greek letters denoting the fermion
flavors. The scalars and fermion fields are connected
through the Yukawa Lagrangian

= Ly = T)apQraPungs + (Aa)aBQ—La(i)apRB
+ H.c., 3)

with Ci)a = j7,®,. The matrices in flavor space are denoted
with bold. When the scalar fields acquire a vacuum expec-
tation value, i.e. (,) = v,, the quarks become massive.
Their mass matrix takes the form

M,=v;A, and M, =v,I,. (€))]
They are diagonalized through a left and right unitary
transformation

U™, Uy = diag(m,, m,, m,),

&)
UM, UL = diag(my, my, my,).

The quark mixing matrix is defined as Ve = UfTUZ.

The invariance of Eq. (1) under

(Da - (S}-I)abq)b’ (6)

defines a symmetry of the scalar potential. The S}, is the
generator of the symmetry group (there could be more than
one). This requirement of invariance will put constraints on
the Y,;, and Z,;,., couplings. If we want this symmetry to
leave the full Lagrangian invariant, then the fermionic
fields will also have to transform,

0L — 8.0, ng — Sghg, pr— Skpr (1)
and leave the Yukawa sector invariant. This requirement on
the Yukawa sector leads to the constraints

STF Sn S/ a = Fa
{ LYb R( H)h ﬁsz.ﬂbSR(SH)ba :‘ﬂa’

SIA,SHS) e = A,
®)

with A, ={T, A,}, while S;, Sz ={S% Sk}, and
Sy =1{Sy, Sy} are the symmetry generators for Q,
ng(pr), and @ (P}), respectively.

Abelian symmetries are characterized by the commuta-
tivity of all their group elements, leading to the existence
of only one-dimensional representations. This in turn
implies the existence of a basis where the generators
present in Eq. (7) are all diagonal, i.e.
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S, = diag(ei®, e'®2, '),
Si = diag(e'P, eP2, eiFs), )
Sy = diag(e'?, e, ..., eiv).

In this basis it becomes clear that the Higgs field trans-
formations define only trivial textures, i.e. the full matrix or
the null matrix. Therefore, these transformations will not
play any role in finding nontrivial textures, and the best
way to get rid of them is through the Hermitian combina-
tions H¢ = A, A} and H% = Al A,. These combi-
nations have another particularity: they split the left- and
right-handed space
SIHIS, =Hi,  SkHiSx=Hs  (10)

In order to find the possible textures of A ,, we shall solve
the equations above. We shall do this for the left-handed
space, having in mind that the right-handed space solution
can be found in an equivalent way.

The solution of the first relation in Eq. (10) falls into one
of three cases:

(1) S; has a full degeneracy,

(2) S; has two-fold degeneracy,

(3) S, is nondegenerate.

A. Case (1): S;, has a full degeneracy

In this case, the left-handed Hermitian combination has
to be of the form

(In

2
I
X X X
X X X
X X X

The X represents an entry that in general is nonzero. This
means that it could be zero in a particular model imple-
mentation, but the symmetry itself does not impose it. In
this case, looking to the combination matrix H . is not of
great advantage. However, having in mind how A , trans-
forms under the symmetry, see Eq. (8), we get for this case

eV A, Sy = A, (12)

with y =60, — a and @ = a; = a, = a;3. This, in turn,
implies the following textures for A ,:

X X X X X X
X X X |, X X P, and X P,
X X X X X X

(13)

for Sg full degenerate, two-fold degenerate, and nonde-
generate, respectively. The empty entries represent null
elements. The matrix 2 represents a permutation matrix.
There is no permutation on the left since it does not change
the textures. The set of 3 X 3 permutation matrices is
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[t ()

(14)

s

B. Case (2): S;, has two-fold degeneracy

Here, the left-handed Hermitian combination has to be
of the form

X X X X
He=P{| x X  x x P

(15)

As a default, the two-fold degeneracy was chosen to be in
the (1, 2) sector. The role of the permutation matrices is to
allow this degeneracy to be in one of the other two sectors,
ie. (1, 3) and (2, 3).

This two-fold degeneracy imposes a two-zero texture in
FH 4. However, it does not forbid the nonzero blocks to be
zero. If H ¢ were a completely general Hermitian matrix
with no correlations among entries, the first texture would
be the only one present. However, since JH ¢ is a combi-
nation of A ,, there can be correlations among entries, due
to the texture of “A,. Therefore, the second and third
textures in Eq. (15) become possible.

In order to find the textures for A , we shall work within
the two-fold degeneracy in the (1, 2) sector, since the
others are obtained through some permutation of rows
and columns. Since the entries on the A, are unrelated,
the only way to have zero entries in the Hermitian combi-
nation is to have zero entries in A ,. This fact can be easily
seen if one writes (A,);; = eia,;;, with y;; and a;;
arbitrary and unrelated. The left-handed Hermitian combi-
nation is given by (H¢);; = ei(yfk_yfk)a,»kajk. Therefore, a
zero in the (i, j) position implies

ei('}’ik_yjk)al.kajk =0. (16)

Since y; and 7y, are unrelated for i # j, the only way to
have the sum equal to zero is to have every element of the
sum equal to zero. Otherwise, the above condition would
imply a relation between a;; elements that is not imposed
by the Abelian symmetry. Therefore, phases of elements in
A, are irrelevant for defining a texture.

We start by noticing that the Hermitian combination
FH¢ is invariant under the transformation A, — AU,
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with U a general unitary matrix. However, as seen above,
phases of A, do not play any role in defining textures.
Therefore, this freedom on the right can be seen as a real
orthogonal transformation. Still, since this orthogonal free-
dom makes part of A, its orthogonality cannot depend on
relations between entries. The only orthogonal matrices
where this is fulfilled are the permutation matrices.
Therefore, respecting only textures, the unitary freedom
on the right is nothing more than the possibility of permut-
ing columns.

The relevant system of equations for the first texture in
Eq. (15) is given by
((ay) +ay)as
+(apn +anlaxn
X X

+(a3 +ax)a =0

X X -4, 5 ) .1
a3 taz taz #0
a}, +al,+al, #0

2 2 2
Laz, + a3, +az #0

We now determine the solutions of this system:

(i) Last line of A, with two zeros. There are three
possible implementations of this, which just
correspond to the freedom to multiply on the right
(permutation of columns). We then choose a;; =
asz, = 0, which in turn implies that a3 = a,3 =0
leading to

A,=| X X P. (18)
X

We still have the freedom to put a;; elements to zero
and still get the same H ¢ . However, one should note
that additional zeros are determined by the generator
Sk and therefore entire columns are set to zero.
Thus a;, = 0 is not allowed but a;, = a,, = 0 is,
leading to
X
A, =1 X P. (19)
X

Additional matrices can be found by column sup-
pression, but they will always lead to the zero block
diagonal case, which will be fully studied below.

(ii) Last line of A, with one zero. Again, there are
three possible implementations. We choose a3 = 0
and a;; = ay; = a;p = a, = 0, leading to

X
X |P. (20)
X X

A, =

By setting the first column to zero, we get
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A, = X | P, (21)
X
falling into the previous case.

Now we study the system when it has a zero block diagonal
form

((a) +ay)as
+(apn +an)an
o +(ars + a)as =0
aj3 T djz)azy =
Hi=|xx |={, ., 7 (22)
az, taz +taz=0
2 2 2
ay, taij, tap #0
2 2 2
@ +as +a3 #0
This implies that the last line equals zero, leading to
X X X X X X
A, = X X X X X B IS P.
(23)

Finally, the last texture in Eq. (15) gives the system

((ay, + ay))as

+(ayy + aplasy

+(Cl13 + a23)a33 = 0

Heo = — ] . (24

2 2 2
az, taz tap #0

2 2 2 _
aj, taptai=0

2 2 2 _
a5 T a3 + a3, =0

This forces the first two lines to be zero:

A, = , , P,

(25)

C. Case (3): S; nondegenerate

In this case, the left-handed Hermitian combination has
to be of the form

X
He =7 X N ) P,

(26)
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The first texture implies A , AT = diag, since phases play
no role. The only matrices that satisfy this relation are
monomial matrices, i.e. matrices with the textures of a
permutation matrix. To see this, we start with the equation

A, Al =q, (27)

with d a nonsingular diagonal matrix. We may rewrite the
above equation as

d12A,ATqa"1/2 =, (28)

with d="/2 A, an orthogonal matrix, with no relations
between entries, i.e. permutation matrices. Thus A, =
d'/2P is a monomial matrix.

The second case, with one zero entry in the diagonal
[with no loss of generality (3{¢),, = 0], gives the system

((a) + ay)az,
+(ap, + an)ay
+(a;3 +axlaz =0
{ anay +apaxn tapan =0 .
X a3 +a3, +ak #0
af, +af, +ai;=0

\a%l + a%z +a%3 #0

(29)

This automatically imposes, to the textures found in
case (2) with no zero block diagonal and the monomial
matrices, the first line null

A, = X X , X P. 30
X X

Finally, for the case with two zeros in the diagonal, we get
the same matrices as the ones found in the last texture
of case (2).

D. Textures and classes

The case where FH ¢ is zero always leads to A, zero
and can always be implemented in any of the three cases
presented above.

The same analysis could have been done with the
Hermitian combination J{ %, and the transpose textures
would be found. However, all matrices have their transpose
in this set of allowed textures. We then summarize the
set of all possible textures for A, allowed by Abelian
symmetries:
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X X X X X
PiA, =] X X X |,A,=] X X LAz =
X X X X
X X \ X X
Ag=| X X A =X X | A=
X X )
\ X
A= Ap = JAp =
X X ) X

and the null matrix is denoted by A,. In Table I, we present
the nine distinct classes that are possible. The null matrix,
i.e. Ay, can be implemented in any of these classes, and
therefore is not presented in the table. In order to simplify
the notation, we shall denote the nine classes as (i, j), with
i and j corresponding to the number of different phases for
the left and right generators, respectively. The left-handed
transformations are connected with the quark mixing and
are shared by both sectors. This implies that the three
classes (2,i) are in fact nine, three for each PL =
{1, Ps, Py3}. Since each sector has to share the same left
permutation matrix, we shall choose P; = [ without loss
of generality. The total number of models for such classes
will be 3 times the cases studied, with the appropriate left
permutations.

III. ABELTAN SYMMETRIES, CHAINS, AND
CHARGE VECTOR

In this section, the textures found previously will be
grouped into sets that can be simultaneously implemented
by a symmetry. In order to exemplify the problem we face,
one example is in order. From Table I, we see that the class
(2,2) allows for A; and Ag textures. However, these

X
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X X X X X
X |,Ay = X LAs=| X X x|,
X X
X
Ay = VA= x |, (31
X X X X
A= X X LA = X P,
X X X

textures overlap partially, and no symmetry can be found
that allows this.
Our aim is to find all possible texture combinations in
each class. For that we introduce two new concepts:
(1) Disjoint textures: two matrices have disjoint textures
if and only if they do not share any nonzero entry.
For example

X X X

(32)

(i1) Chain: the set of matrices with disjoint textures
belonging to the same class, which together build
a full matrix. For example

X X X

X (33)

X X X

The chains will be denoted as Cﬁ,i‘j), which means
the nth chain of the class (i, j). The null matrix can

TABLE 1. Different classes of textures, with e = X or 0.
Hy
X X X o o °
(x X ><> :PR<. . )fPR ( o )

H4 X X X . .

xX X X A {Aq. Ay} PR {A10}P

X X X

X X X

[ ] [ ]
?L<. ) )TL PLAs, A)}  PHA» Ay Ag Ag AL ARYPR PL{A, Ag, A} P

PH{Aq}

()

?,{Al 8] A12’ Al4}TR

PlA Az, AjstP
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be present in a chain by construction or added
a posteriori, in the last case the chain is denoted
as 0C'H)
In order to find the possible chains and the Abelian
groups that may implement them, we introduce the phase
transformation matrix

Bi—ar By—a; Bz a
Bi—ay By—ay Bz~ a
Bi—a3 Br—az Bz~
ky ky ks
ky —kpy ky—kpy ks —kpy |- (34)

kl - kL2 k2 - kLZ k3 - kLZ

@]\:

a

2@
n

This matrix represents the phases of each entry of A,
when acted by the left and right symmetry generators. The
first line of Eq. (34) is expressed in term of the continuous
phases «; and B;, while in the second line we have dis-
cretized it. For simplicity we shall work with the last line.
The group could take two forms: Z;,;; Z,~. The first case
tells us that the order of the group has to belong to £Z and
therefore the group is discrete. The second case just says
that the order of the group has to be equal or larger than k.
Therefore, the group could be a Z;, Z;,, or even a U(1).
In this discrete notation, the left and right generators are
given by

. k k k
SR = dlag(wnI, w7, wn3)-

(35)

. k k
SL = dlag(lx w}’l“) wl‘le ’

Without loss of generality, we have chosen the first entry of
S to have no phase. Since the class (3, i) contains textures
and all their left permutations, we need to redefine the
phases k;; and k;, when left permutations are applied in
Eq. (35). The redefinitions are

() PSPy kpy — =k ko = kpy — kpy

(i) Pi3SLPl5: ko — —kpos kg — kpy — ko
(i) PSP kpy — kpay kip — kg
(iv) 7)1235L7)1T233 kpy = kpo — kpi, kpp — —kpy

(V) PSPy kpy = —kpa, ko — ki — ko

Up to this point the number of Higgs fields and their
symmetry transformations have not been used. The reason
has to do with the fact that they are just a global phase
transformation for each Yukawa coupling. Therefore, they
have no impact on the determination of the possible tex-
tures for each individual matrix. The role of the Higgs
fields will be to select the textures from a given chain.
Different charges for the scalar fields will lead to disjoint
textures of the same chain. We then define charge vector as
the set of phases associated with the disjoint textures of a
given chain. These will be the charges under which the
Higgs fields will transform.
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The size of a chain is equal to the order of the smallest
Abelian group needed to build the chain. This is true since
if a texture has m distinct k’s, we may subtract to the
equivalent phase matrix (equivalent to multiplying the
texture by an exponential) the phase 27” k. This will trans-
form the texture to one of its disjoint matrices. We can
repeat this process for the m different k’s. This will lead to
a set of m + 1 disjoint matrices belonging to the same
class. This defines a chain. The order of the smallest
Abelian group that forms this chain has to be m + 1,
i.e. the number of distinct k’s plus the identity.

Next we present an example of how to construct the
possible chains for a given class, charge vector, as well as
the Abelian groups that can be used to implement them.

A. Building chains and associated charge vectors

We shall now present the general method for finding the
charge vectors. We use as an example the class (2, 2). This
class can be divided into two cases: with PLA, PK; without
PLA, PR,

In the first case, i.e. with a texture P-A, PR, the sym-
metry implementation is given by

|3R = PRdiag(1, 1, i) Pk, G36)
S, = Pldiag(l, 1, wi?)PL,
leading to the phase transformation matrix @ p. 4, pr
0 0 kyy
2w
—. Pl 0 0 ki, | PR (37)
n
—kp —kp 0

In this case we have two possibilities:
() kpp # —kpo
This implies k;, # n/2. The order of the group has
to be n = 3, leading to the chain

an:;: TL{AZ ® Ag ® All}TR. (38)
The associated charge vector is
(1, 0,2, ). (39)
(1) kpp = —kpo

This implies k;, = n/2. The order of the group has
to be n € 27, leading to the chain

Z2n: TL{A2 (52} A3}?R. (40)
TABLE II. Chains and associated charge vector for the
classes (1, i).
C(ll,l) A, )
i {46 ® A1} PF (1, ;")
(1,3) —ky —k
G A @A 1Py @ APis (1, wn 2, @)

056015-6



YUKAWA SECTOR OF MULTI-HIGGS-DOUBLET MODELS ..

PHYSICAL REVIEW D 88, 056015 (2013)

TABLE III. Chains and associated charge vector for the classes (2, i).
cy PL{As ® Ao} (1, wh=2)
c? PL{A, ® A3} PR (1, @8,), kpp =n
ci¥? PL{A, ® Ay ® A, } PR (1, 0,2, w2)
c@? PL{A, ® A; ® A} PR (1, wk2, w2ki2)
c? PLHA; © Ay ® Ay @ A} PR (L 0, i, w2 ™)
Yy PH{A, © AyPry & AP i3} (1, 031, @3,), ko =2n
C(ZZ‘S) PL{A; @ A Py ® AgP 13 ® A, Py} (1L, w;(tlﬂ)r ‘”zi(ﬁ:d)r w;(ﬁ:rﬁgl+l)’ kpp=n+1
Y PHA @ AP 13 ® A3 P13 © Ay} (1, 0,2, 0,72, @)
c? PL{A, ® Ay Py @ A, Py3 & Ay Pos) (L @i, 0™, @, ")
c? PHAL © AgPyy ® APy © A @ Ay P3) (1, 0,2, 0., 0k, w2 ™)
c? PHAs @ AgPr3 ® Ag P13 © Ay ® A Py3 ® A Py3} (1L ., 0, 03, 0y, w2 ™)

We have made the redefinition » — 2n. The asso-
ciated charge vector is

(17 wgn)) kLZ =n (41)

We now turn to the second case, i.e. without the
texture PLA,PR. The symmetry implementation
is given by

‘SR = PRdiag(1, 1, %) PR, @)

S, = PlLdiag(l, 1, wi?)PL,

leading to the phase transformation matrix ® pr,_pr

0 0 k3
27 "
—.P 0 0 k3 PR (43)
n
—kpy  —kpy ks — kg

In this case we have the following possibilities:
(1) k3 = —kpy
This implies k;, # n/2. The group order has to be
n = 3, leading to the chain

Z,=3: PHA; @ A3 © A} PR, (44)
with the associated charge vector
(1, @, @ ™). (45)

(11) k3 7& _kLZ
The group order has to be n = 4, leading to the
chain
Z,124: ’.pL{A7 (3] A8 @AU @Alz}TR. (46)

The associated charge vector is

—k k ki,—k
(1, 0,2, wp, @y 7).

(47)

The same procedure should be done for the nine classes.
Details on this construction are given in Appendix. B. The
Tables II and III summarize the set of chains and their
associated charge vector possible for the classes (1, i) and
(2, i), respectively. Table IV presents the chains for classes
(3, 1), while the associated charge vectors are presented in
Table XIII, relegated to Appendix D due to its size. Also, in
Appendix D the Table X presents the symmetry groups that
can be used to implement each chain.

IV. CONNECTING UP AND DOWN
YUKAWA SECTORS

Until now we have only studied textures and symmetries
of matrices. No information of how an actual model would
look like was given. In this section we shall clash the up
and down sector to see what are the kind of textures, and
minimal symmetries, that one can construct in a multi-
Higgs model. The relation between the two sectors comes
from the left-handed sector and the scalar fields. It is
obvious that, even though the number of textures and
chains is finite, the number of possible models with a large
number of Higgs fields becomes impossible to deal with.

The steps to construct the possible models from the
vectors charge are the following:

(1) Choose two chains, one for the down and another for

the up sector, belonging to any of the three classes
(i,1), (i, 2), and (i, 3). Each chain has its associated
charge vector. To each charge one defines a node.
Draw a column of nodes for each sector (without
lost of generality we choose the column of the down
sector to be on the left). Any A, texture that was not
presented in the minimal chain implementation is
denoted by a white node.
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TABLE IV. Chains for the classes (3, i).

e Ag ® Pr3Ag ® P34

c?? {1, PiaH{A 1 © Pip3Ais © PyyiAjs}

C(23'2) {1, P1a, Pi3i{A1s ® P3Ay4 © Pi3Ap © Pr3Ap}

Cgs,z) {PHAL © PiysAy @ Pi3Ay © PyAp}

i {PHALL ©A) © P3Aj @ PpAp @ PisAp)

C(su) A @ PpAy @ P3Ay @ Ap @ PyAp @ PAp

i A3 ® PiAp; @ Py A

C(23'3) {1, P1s, Py3j{A13 ® P3yjA1s @ Ai5Piy3 © Pip3AisPoo}

Cgs,s) {1, Py, PisH{A13 © P3p1Ais © A15sP13 © Pr3A1; © A P}

i {1, P13, PosH{A13 @ P3yjA1sP 13 © A Po3 © PysApy ® A Pi3 © P3Apy}

sy A3 @ APy @ PAp @ ApPi3 @ P3App @ P3Ap Py @ PiAp Py

C(ﬁs,s) {1, Py, Pi3sH{A15 © Pr3Ais © PipjAisP 13 © PiyaAisP1n © Pi3ApnPrs © Aot

i {1, Py, Pri3j{A1s ® A5 P23 @ Py A5 Py @ PiosAis Py @ Pr3Ap Pos)

e A5 @ PyjAjs @ PiyzAs @ AP @ PysApPi3 @ PAp Py

C(93'3) Ais ® PpAisPi3© PsAisPi @ PisApPi3 APy @ PsApy @ A

iy’ {1, Py, Pi3j{A1s ® A5 P23 @ A15P3y; @ Pr3An © Pi3ApnPos © P3ApPst

C(131'3) {P}{A15 ® Piy3A15 © P13A15P1p3 © Pi3Ap P13 © PraAp @ Ap Prs)

C%S) {PHA15 © A1sP31 © P3A15P1o3 @ A Po3 & Pi3Apy @ Pi3Ap Prst

b {PHAs © P3pjAisP13© Pi3ApPi3 @ PpyAp @ PisApn @ APy © AP @ Ag}

C(ﬁia) {1, Piy, Pi3, Pra}{A1s © PypiA1s © Pi3Ap P13 © Pi3Ap @ APz @ ApP3 @ PpsAp Pt
C(135'3) {1, Pia, P13, Prs}{A1s @ AisPi1o3 @ Ap P13 © PsApy © Pi3Apy @ Pi3ApnPos @ Pi3ApPost
iy {1, Pia, Pi3H{A15 ® Pp3Ays © P3ApPr3 © Pi3Ap @ PiaAp Py @ AP @ PApPrs @ Ao}
C%s) {L Py Pi3, Pra}{A1s @ Ap P @ A P13 @ PzApy @ PpApPi3 @ Pi3Apy @ PpsAnPoy @ Pi3ApPosh
iy A ® PyApPy @ APy @ APy @ PyzApy @ PyApPi3 @ PisApy @ P3Ap Py @ PyAp Py

Example:
Down/Up sector: [s o0 As
0021 _ {As, 49, A} — Toee Ay (48)
! (1 7wr5L2 ~w5) FO [elNe] AO

(2) Write on each node of the left column the associated
charges and on the right columns the conjugated

ones.
Example:
0ee(
kr2 oo —kpo (49)
k oo —k

(3) Connect the nodes of the two columns. Each non-
trivial connection gives a constraint on some of the
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symmetry phases. Constraints that impose two
nodes, for the same column, with the same charge
are not allowed.

Example (cases with no massless quark):

Q2 constraints:
n

kro = —krzmod(n) = k2 = %

constraints:

X k= —kr2

The symbol @ states that the order of the diagram
is nZ.
(4) Use the freedom of a global phase transformation to
change the position of the 0 phase. With no loss of
generality we can do it to the right column.
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Example: we get two more cases

0 ee kpo 0ee [
kro e () , kpo @ —kro+k | (51)
koo —k+krs koo0

(5) Repeat step (3).

Statement: Given a diagram, the minimal order of the
symmetry group is given by the number of nodes in the
largest column (nnlc). If in that column the white node is
not connected, the size of the group is reduced by one unit.
If the condition n/k € Z is imposed by one line, then the
group order will be the smaller number bigger/equal than
nnlc that is divisible by k.

A.Modelsup to N =3

In this section we shall present some model implemen-
tations for up to three Higgs doublets. We start with
models belonging to class (1, i). In Table V, we present
the combinations of textures that have three mixing
angles. In order for a model to be phenomenologically
viable, at least one of these combinations has to be
present in one sector.

The cases with N =1, 2, which has three mixing
angles, can be easily extracted from Table V. In order
to exemplify some properties we shall study in detail the

implementation of models with C(ll‘s) in both sectors
[step (1)]. We start by drawing the diagram and associ-
ated charges [step (2)]

0ee(

—kg o k3 (52)
_k;‘li oo L}

Since we have the same chain in both sectors we should
have on the right column the conjugated charges (or
antisymmetric phases). However, the phases coming
from the right-handed fields are different for the up and
down quarks. Therefore, the only phases that we truly
need to conjugate are the ones coming from the left-
handed fields and the ones associated to extra null
textures.

The next step is to join the nodes [step (3)]. However,
in order to guarantee that the model can explain the
six quark masses we need Table XIV, where the

TABLE V. Combinations with N = 3 which lead to three
mixing angles for classes (1, i).

Classes
A ®A)® A, ocith
Ag® Ay ® A ocit?
A @A Py @A ;P ety

PHYSICAL REVIEW D 88, 056015 (2013)

combinations of textures in a chain that gives
det(M, ) # 0 up to three Higgs fields is presented.
From Table XIV, we see that only models with three
Higgs bosons are allowed and, therefore, all nodes of
the diagrams must be connected. For the cases with the
zero in the first position we get

0ee(

_kg o0 k’g _ oo X (53)
—k(li [ kqf o—o

The first diagram implies k¥ = —k¢ and k% = —k¢, while
the second diagram implies k¥ = —k4 and k4 = —k9. All

these relations are true up to mod(n). Next we use the
freedom of a global phase transformation to change the
position of the zero on the right column [step (4)].
Subtracting k% on the right columns and following
step (3), we get

) ee —kg X
Heeo (51)

—]{;‘11 o0 k}f — k; o—eo

The first diagram implies k§ = k% and k¢ = kY — kY,
while the second diagram implies k¢ = k% and k§ = k% —
k%. We repeat the last steps, but now subtracting the phase
k'. We get the diagrams

R e

The first diagram implies k{ = k% and k4 = ki — k4,
while the second one implies k¢ = k% and k{=
k' — k. This completes the identification of the models
available for this case.

We shall use the notation Cg’j) ® Cﬁ,i’j/) to represent the
case where we have for the down-quark sector the chain

) ee —k%t
—kg oo ki — ki
—kif o0 0

C;:“') and for the up-quark sector the chain C{". Multiple
lines connecting the same nodes represent several Higgs
fields with the same charge. In order to keep in mind that
the down-quark sector is represented by the left column,
we represent the textures A; by I';. For the up-quark sector
we do the same, but replacing A; by A;. We should regard
I'; and A; as just matrices from Eq. (31). Their relation
with the Yukawa couplings I', and A, has to do with the
labeling given for the Higgs fields. For example, the
model with Fl = rlo, F2 = F10?23, and F3 = FIOTIB is
telling us that ®, couples with I'y, @, with I';jP,; and P
with FIO ?23.

056015-9
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Next we present the complete set of models for N = 3
for the classes (1, 1):

ocflyl) ® ocflyl)
[pee Ay S o= e (56a)
Mg 00 2Ag oo 2 2 X X
0051-,1) ® 0051-,2)
'y ee Ag e=s o=¢ oo oo oo
Tooe Ay _ o 0p o= o0p o
oo oo doo
SXXXAX
Xl
00D g 1)
'y e Ay
Lo o e AjgPas X % %
Lo oo AypPis o—e
Oc§172) ® 005112)
I'g o0 Ag =+ oo oo oo
Fip @0 Ajg — oo o= '@'
e ietetel SN
XX X
0012 g (1)
s oo A
Fip @@ AygPas X %
Lo o e AP o—e (57b)

kX

PHYSICAL REVIEW D 88, 056015 (2013)

L

&

We now turn to models belonging to classes (2,1i). The
corresponding diagrams are presented in Appendix C. Here
we shall construct explicitly one particular example. We
need Table VI, which is the equivalent of Table V for the
models of class (2, i).

We start by choosing the chain OCf’l for the down sector

051,3) ® 051,3)
I o Ajg
['1oPa2s ® © AjpPas
I'ioPis @ © AipPis

and the chain Ong’z) for the up sector. The diagram is

0ee(
kro e e —kpo
k oe —2kro (59)
o —k

At this point we must go to Table XIV and check what
combinations of one, two, and three textures we can make
with nonzero determinant. For class ()Cf’l we always need
to have A5 and Ag; therefore, we can only implement
models with at least two Higgs. For class 0C§’2 we always
need to have the texture A, conjugated with at least another
nonzero texture, i.e. A3 or Aj,. Knowing the cases with
nonzero masses we just need to find on Table VI which
combinations allow for three mixing angles. We see in its
first line that the presence of A5 and Ag guarantees that the
model has three mixing angles. Therefore, in the construc-
tion of these diagrams, we just need to take care of the
nonzero masses, since the three mixing angles are guaran-
teed in that case.
Drawing the first set of diagrams, we get

2. BEEE
Eoe —2kpo \ \ X \ (60)
AN

The order of the group has to be 3Z due to the line
connecting the second node on the left with the third one
on the right. The second nodes of each column cannot be
connected since it would imply k;, = n/2 and, therefore,
the first and third node of the right column equal. All
models can be implemented with a Z; except the last one.
This last model has the white node of the largest column
connected, which increases the order of the group by one
unit. However, since the order of the group has to be 37, the
minimal symmetry group is Zg. We continue by shifting the
zero on the right column one position down; we get

056015-10
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TABLE VI. Combinations with N = 3 which lead to three 0ee
mixing angles for classes (2, ).

krz @ —kro+ K °
Classes = 63
21 k oe —2kro+ K (63)
As ®@ Ay @ A ocl 0
o
A, ®A; © A oc2?
A, ® Ag ® A oC(22,2) Tl}ese two implementations only. allow models.with three
A ® A @A 022 Higgs bosons (or more), contrarily to the previous cases,
2 E A a0 é 2 where models with two Higgs bosons are allowed. We
A ®Ag® Ay ¢ summarize the possible model implementations:
A7 ® A3 (5] AO ()C(32,2)
A, @A @A, c3? 002 5o 29
A7 ©@Ag @Ay, CEZ‘Z) I's e 0 A; =0 oo oo oo
22
A7® A5 ® App Ci : Tg e Aj @ @ S @ X
A, @A @A, ciz? - AL = \ \ X \
0 (2‘3) 0 o e 12 [e] [e] o e
Ay ® APy © A Cis A
o o o o o
Ay @ APy @ Ay ocizd 0 (64)
23
APy @ APy @ A OC(I :
Ay ® Ay P55 0 AP o5 C(12'3) X X X .
Ay © A Py © AgPys i
Ay @ APy @ AP C(22,3) ot K
Ay @ APz ApPis C(z?és) °° °
APy ® AgP 3@ APy C(22‘3) We turn now to the last classes (3, i). The number chain
Ay ® AP 1ys ® AP @y cqmb'inations that we can build is arounfi a few hundred,
A @ AP @ A 2 with in most cases a large number of diagrams for each
4T TR ) combination. In what follows we shall only present the
AP ® AP 13 ® Ay 3 cases up to N = 2, the case with three Higgs bosons can be
Ay ®AgP 30 A, czy extracted from Tables XI, XII, and XIV. The table with the
3,5 . . . .
Ay ® Ay Psyy @ ApPs 2y cqmbmatmns Fhat allows t.hree mixing angles up to two
2.3) Higgs bosons is presented in Table VII.
A4 @ A3 @ APy ¢ In order to present some properties of models in classes
23) p prop ]
A0 ApP ;30 APy s (3,i) we shall, once more, study a particular case. We
AP @ ApPi3 @ Ay Py i choose the case with the chain CS? for the down sector
Ay © AgPy; @ Ay P c2? and Cgs,s) for the up sector. Before drawing the nodes and

associated charges we should notice that, contrarily to what
happens for other classes, the possible left permutations

0ee ko X X X X of chains belong to the same class and should be taken
(3.2)
37w

as different chains. Therefore, when choosing C e
kro @ e (
(61)
k oe *kLZ Oe Oe o—e ° . X . X
x TABLE VII. Combinations with N =2 which lead to three
o —k' +krs o o o mixing angles for classes (3, i).
In contrast with the previous case, the last diagram can be Classes
implemented with a Z,. The last two cases are {1, PiuHA 1 ® PpsAl C(ff)
{L Po}{A 1y ® PryyiAjal C(lu)
0 oo 2k {L Ppi{Pr13AL ® Piy Ay} C(13'2)
kro e e krs (62) {P13, Paz, Pios, Pioy HA 14 © Pro3Agy} C?'Z)
koe( - Az ® PyAg; C(13'3)
o —k' + 2kro o {1, Pio, Prs}{A15 @ P3pAjs} o5
{L, Py, Pys}A; © A5 Py} C(2?33)

and

056015-11
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TABLE VIII. Constraints imposed by each chain.
C?’Z) Constraint
1, Py, kpi = 2k
Pi3, Pias kL] = —kp,
’P23, ’P321 ki = 2k
C§3’3) Constraint
l kLZ = 2kL]
Py, kL2 = —kp
Py kpi = 2k

actually have to study the six cases ’PC(33’2) and for Cg3’3)

the three cases {1, P;,, ?23}C(33’3). The extended table for
the charge vectors of class (3, i), Table XIII, gives us the
information for each individual case. These charge vectors
have a correlation between k;; and k;,, which are shown
in Table VIIL

From the constraints in Table VIII, we see that the only
possible matchings are

(@) {1, PR} @ Py,

®) {3, Pin}CeY © P, Y,

©) { P, ?321}C(32’3) ® C?’”-
Any other case will imply that k; ; or k;, equal n/3, which
always leads to at least two equal charges in the charge
vector of each sector. Let us then start with the first case of
(a), ie. C*¥ ® P,;CY?). The diagrams with the 0 in the
first node are

0ee o o+ oo o0 oo oo
ks e kpo o oo
—2kpy o —kro x .
kipy ®® 2kpo oo o\e
o sy e . .

The last four diagrams imply massless quarks. The second
one does not have three mixing angles. Therefore only the
first diagram survives. Shifting the 0 to the node below
we get

XN
—kro @@ () °

AVAVAN

*QkLQ o0 72]{[‘2 ~ e e oo o0 o—o (66)
kLQ o0 kL2 e o0 oo o060 oo oo
° _3kL2 ° ° ° ° ° °

Only the first diagram has no massless quarks and three
mixing angles. Shifting the 0 one node down we get

PHYSICAL REVIEW D 88, 056015 (2013)

0 ee kro ° °
—kro o e 2kro \ 0\ .
—2k’L2 e () ~ e \ °

kra e e 3kro .

®

o —kro

Only the second diagram has no massless quarks. However,
from Table VII we see that it does not have three mixing
angles. Thus no diagrams survive in this case. We can
continue the same procedure but no new diagram is found.
Therefore we summarize our result as

C3D @ P,y 3
g o0 PogAyg —e
Pr23l'14 ® © Pi2lgs X
P13l11 @ @ PazAisPias
Posl'i2 e @ Pi3Agp oo oo

® Pa3AiaPis o o

From Table XIV we get that the class C(33‘3) can be imple-
mented in models with just the first texture. So in principle
we should have added a null texture and studied the
class 0C§’3) instead. However, a quick examination shows
us that no coupling with the null texture is possible.

The second case of (a), i.e. the down sector with the
chain ’.7’12C(32’3) ® Pys Cé”), is found in a similar way. The
final diagrams are

7’120;2,273) ® 772305,373)

Prol'1s o @ PasAjs o—e
Pozl'iy o @ P12A15 —e °
- (69)
P3a1l'11 @ @ PazAisPia3 oo o
P13 e @ 7)13A12 oo oo
o Py3A12Pr3 e o

The other cases are correlated with these two last results.
Actually we can easily check that multiplying the chain
C(33’2) ® fP23C(33’3) by P,; on the left we get the first chain
of (3), and by P,,; we get the second case of (2). The same
can be applied to the other three cases. We can

them summarize this as {1, Py3, Piaa} X C(33’2) ®
T23C(33’3) corresponds to Eq. (68) and {1, P,3, P a3} X
T12C(33'2) ® fP23C(33'3) corresponds to Eq. (69).
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The full set of diagrams for N = 2 are presented below. (1, P15, Pas) x 0(3,3) ® 0(3,3)
9 2 2

{1,P12} x C£3’2) ® C£3’2) '3 00 A3 o—o o—e
Ty o0 Ay o o Pso1l'1; @@ P3o1Ags _ Y 7
Proalis ®® ProsAry — ae X [C15P123 © © A15Pia3 . .
Py Ty © © PaorAqy x K oo (700) P123l'15P12 @ ® PrazA15P12 ee oo

{1 7P12} X 053’2) ® 053,3)

Ty o0 Ajg e oo oo
P123T14 °®° PiosAz ~ ee oo o
P3a1l'14 @ P31 Agg oo oo o (70D)
. . B g Cé3’3)
X\ Lises B
)( K K P321l15 Q P12A15P13
[15P123 ® ® P13A15P12
P123T'15P12 @ @ Pi3A1oP13
{1, Pa3, P1as} x 0953’2) ® 732309(,3’3) o AoPa3
g o0 PogAyg — o Po3Ais
Pr23l'14 @ © Pi2lAgs . o A
Pi3T11 o @ PosAisPras — x (71)
P32 e @ Pi3Aqs oo oo C§3’3) ®C§3"3)
o Pa3A12P13 o o I3 o0 Az
Ps21l'15 @ @ A1aPas
{1,7723,P123} X P120§2’3) ® P2SC:§3’3) [15P123 @ @ PazAgo
P12l'14 @ @ PazAgg —e PrsTyy o ® ApoPrs =
P31y @ PraAgs - —e d\e 72) [19P13 ® ® Pi3sAqs
P321l'11 e @ PozAi5P1a3 — e e @ o Pr3AroPas
Pi123l'12 @ @ Pi3Aq oo oo o PosAiyPrs
o Pa3A12P13 o o
D o Puli 6 G
e Pasl'i3 @ @ Ay
L .(3). Bus / \ P12l'15 @ @ AjoPo3
ProsThs ee Prashas \ / Po3l'15P123 @ @ PazAq
P321l'13 @ ® P3a1Aq3 (73) PissTis o ® ApPus
Pa3l'12P13 ® @ Pi3Ags
ofe o P13A12P23 e o o o
o Pa3A12Pi3 e o o o
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V. DIRECT PRODUCT OF ABELIAN GROUPS

Until now, all the results found are associated with
cyclic groups. However, the fundamental theorem of finite
Abelian groups states that any finite Abelian group G is
isomorphic to a direct product of cyclic groups of prime-
power order. This allows the group G to be written as a
direct product of cyclic groups in either of the following
ways:

(i) G=2Z, X---XZ, ,where each g; is a power of a

prime;

(i) G=Z, X+ XZ, , where r; divides r;;, for

I1=j=m-—1.
Any group satisfying (i) or (ii) is not isomorphic to a cyclic
group.

The main idea is to have the fields transforming under a
set of n diagonal generators, leading to the symmetry
equation

(l_[ S[LT)‘A0<1_[ S}Q)(SH)(M = ﬂa- (78)
i=1 i=1

Since the product of n generators can be reproduced by a
single generator where the entries are the product of the n
phases, the textures previously found for ‘A, are not
altered. However, this successive product of generators
can add new chains. In order to find these new chains we
shall introduce a, less common, matrix product:

Definition (Hadamard product): Let A and B be two
matrices with the same dimension m X n. The Hadamard
product A o B is given by

(Ao B)ij = (A)ij(B)ij- (79)

The Hadamard product is associative, distributive, and
commutative (unlike the usual matrix product).

We can now state the necessary and sufficient steps in
order to find the chains obtained by the product of cyclic
groups. The three steps are as follows:

(1) Find the chains for each individual cyclic group.

(2) Pick one texture from each of these chains and

multiply them using the Hadamard product. The
resulting matrix is one texture of the final chain.

(3) Repeat step (2) for all possible combinations.

In order to make the procedure clear, we shall present an
example. Let us suppose that we have Z, X Z,, where one
Z, generates the chain A5 ® Ay and the other the chain
P,3{As ® Ag}. The Hadamard products of these textures
gives

As o PyAs = P;3A,,
Ag 0 Pp3As = Ay,

As o Py3Ag = PpA,,

80
Ag o T23A9 = Ao. ( )

The final chain is then given by

PHYSICAL REVIEW D 88, 056015 (2013)
Ag ® Pp3Ag @ P34 ® A, (1)

which, in this case, can also be implemented from a Z,
corresponding to the chain OC?’I) . However, there are
solutions for model implementations that can be imple-
mented with the Z, X Z, solution and not with the Z,. In
order to understand this issue, it is convenient to write the
charge vector associated with the chain in Eq. (81), when it
is a result of the action of two generators. The charge

vector in this case is

(k2 1), (1, w), (1, 1), (@052, w?).  (82)

Contrarily to the cyclic groups, in this case each ele-
ment of the group is specified by two phases, one from
each cyclic group. The possible models constructed
from the chain °C'*V
bosons are

in both sectors and three Higgs

— X X
- N\ (83)

Doing the same procedure, but now using the charge
vector of Eq. (82), we get a single diagram

Ty oo Ay
Pasl'g e @ Po3Ag
Pislg o o Pi3Ag

Ip oo Ag

Ty o0 Ay —
Paslg e @ PazAg 2
Pislg o @ PisAg e’ (84)
T'g oo Ay oo

which is not one of the possible models implemented
with a Z,. Therefore, even if the chains found by direct
products are already present for the cyclic groups, the
model implementation may differ. We shall not pursue
the determination of all possible model implementations
for the chains that are shared by cyclic groups and
direct products of cyclic groups.

The cases we are most interested in are chains that can
only be implemented through a direct product of cyclic
groups. When the chains for the cyclic groups were found,
in Appendix B, there were some combinations of textures
not allowed. These cases are the ones we are interested in.
From a simple inspection, we find out that the cases not
allowed by cyclic symmetries are
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(1): Aj3 ® Pp3Ajs © Piy3AisPry @ Py A5 Pos,
(2): AL, P13, Psi{A13 © Pr3Ays ® Pip3Ai5Pn
® P3A;p Py @ PpsApPsl,
(3): {1, P1p, PrsH{A13 ® Py3Ass ® PyyAjsPi3
® P3Ap © Ap P,
4): {1, P1p, PisHA13 © P133Ai5P1y @ PiyjAisPis
® PyAp © AP} (85)

The chains (2) to (4) have dimension 5. Therefore, they
cannot be implemented through direct products, unless we
had null textures. The minimal order is &, so, if we are able
to build these chains, at least three null textures would have
to be present. There are only seven chains whose products
may end up with A3 or permutations. These chains are

C (]?’22) and C (1323% 45- The idea is to look now for products that
lead to at least two textures of

{PrAss, Pia3Ai5Pry, PipAis Pzl (86)

Since the chains from class (3, 3) do not have two of these
textures, they can never be used to obtain chains (1) to (4).
We are left with only two chains from class (2, 2). In order

to obtain a texture of the type A3, we must use C(12,22) o

TC(IZ’Z) P, with P = {P3, Py3}. Any of these cases leads
to chain (1). Therefore, (1) is the only chain that can be
exclusively implemented by direct products. The smallest
implementation is given by the Hadamard product C(lz‘z) °

Py C(12,2) P,3, leading to the Z, X Z, group. The chain has
the associated charge vector

(LD, (=1, =1), (=L 1), (1, =1)). (87)

VI. QUARK MODELS: GENERAL FEATURES
AND SOME EXAMPLES

In general, when analyzing the Yukawa sector of a
NHDM, the scalar fields are transformed nontrivially under
the horizontal symmetry. Since these fields can acquire
vacuum expectation values, it is very important to avoid
a (pseudo)Goldstone boson in the scalar potential. It is well
known that the breaking of a continuous symmetry will
lead to these massless particles. If only the scalar sector
presents this property, then loop corrections can induce a
mass to these scalars. Nevertheless, light scalars that
couple to SM fermions and gauge fields are not desirable
in a realistic model. Continuous symmetries in the scalar
potential can be present by explicit construction, or acci-
dentally. One shall focus on the second case.

Ivanov, Keus, and Vdovin [6] have developed a strategy
to identify all the discrete Abelian symmetries that can be
implemented in NHDM and do not lead to an accidental
continuous symmetry. The major result is the upper bound
on the order of the Abelian discrete group |G| = 2V71,
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with N the number of Higgs fields in the model. We shall
use this information when classifying models.

Until now, we have only used the following experimen-
tal facts: quarks have nonzero masses, and the Vcgum
mixing matrix mixes all the flavor sectors. However, phe-
nomena such as flavor changing neutral currents (FCNC),
which are very suppressed in nature and appear only at
loop level for both gauge and Higgs sectors in the SM, have
no natural suppression in the NHDM without additional
constraints. These FCNC are a consequence of the mis-
alignment between the Yukawa couplings and the mass
matrices. In the SM the mass matrix is proportional to the
Yukawa coupling. However, in models with more scalar
doublets this is no longer true and, in the mass eigenbasis,
there will appear fermion interactions mediated by scalars
that violate flavor. A simple way to obtain natural relations
is through the use of symmetries in the Lagrangian; when
they preclude FCNC it is said that the model has natural
flavor conservation (NFC). Glashow and Weinberg [10]
and Paschos [11] pointed out that sequential extensions
of the SM have a Glashow-Iliopoulos-Maiani-like mecha-
nism [12] suppressing all direct neutral currents effects.
From their work, NFC in NHDM can be formulated as the
situation where all Yukawa couplings are simultaneously
diagonalizable

UT, UL = diag and UYTA,U% = diag, V, (88)

with U}’ defined in Eq. (5). An alternative, and equivalent,
way of expressing these conditions is through the definition
of the sets

Iy = {Farg}: Trg = {TIT,} (89)

for the down sector and

A= {AHAZ}, Agg = {AZAb} (90)
for the up sector. Requiring that each set I';;, I'rr, Aj,
and Ay, are Abelian is equivalent to the statement of
NFC [13]. We shall use this second way of implementing
NFC to classify the models.

For simplicity, we shall use A yy to represent I'yy or
A yy. This set can be split into two parts

j"[xx = {5{31(}
A ={A, Al D
ﬂ?eflg = {J’Z[;fj[h}

~52\)()( = {g-[XX’ ﬂl?&}

and a # b. The usefulness of this separation has to do with
the fact that we already know a lot from the structure of
H % when Abelian symmetries are in action, due to
Table I. We shall now use the NFC condition and devia-
tions from it as a way to classify these Abelian models.
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A. Model with NFC in just one sector

We start this section by presenting the following
theorem:

Theorem (one sector NFC): There are only six classes of
models, within Abelian symmetries, that can implement
NFC in one sector and have no massless fermion. The
classes are as follows:

(i) A, ® (N — 1)A,,

(i) P{A; ® (N — DAy},

(iii) P {A; ® nA;, & (N — (n + 1))Aq},

(iv) P{nA;; ® (N — n)Ay}P',

(V) P{nA;s @ mP3A, P13 @ (N — (n + m))Ag}P,

(vi) P{nA,; ® mPy3A 1, Pr3 & kP34, P53

&N —(n+m+k)AgP.
Proof (see Appendix A).

From this theorem a very simple result on natural flavor
conserving models can be extracted:

Corollary: The only NFC model phenomenologically
viable is the one with (i) in both sectors.

Proof: In order for the model to be phenomenologically
viable it has to have three mixing angles in the unitary
matrix that mix the left rotation of both sectors. Since any
of the possible NFC implementations for a given sector,
i.e. (i) to (vi) , belongs to the classes (i, i) with the texture
of the chain equal to the texture of ¢ of that class; only
cases belonging to class (1, 1) lead to three mixing angles.
It follows immediately that the only allowed case is (i) in
both sectors.

These models correspond to some of the ones presented
in Eq. (56a). We can have direct models, where I'; is
connected with A, and I'y with A, or cross models, where
I'; is connected with A, and vice versa. For any number N
of Higgs fields the minimal symmetry group that can be
used to implement these models is Z,. Therefore we can
always implement NFC without the introduction of acci-
dental symmetries.

There are other ways of implementing NFC in
NHDM; however, these cannot be implemented through
a symmetry. One common example is the Yukawa align-
ment in 2HDM [14]. In this case NFC is achieved by
requiring that all the Yukawa couplings, for each sector
are proportional,

Fi = CiFj and Ai = CiAj’ V,/ (92)
As shown in [15], no symmetry implementation can be
used to implement this requirement. In [16], alignment was
seen as a low-energy effect of NFC models, while in [17]
its origin was related with flavor symmetries.

Another consequence of the above theorem follows:

Corollary: Without the null texture, i.e. Ay, there are at
most three phenomenological classes of models with NFC
in one sector: classes (iii), (v), and (vi).

Proof: Case (ii) is excluded since there is no matrix,
apart from A,, in the classes (2, i) that has a nonzero
determinant, and an A, texture alone cannot accommodate
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three mixing angles. In case (iii) it is possible to find
combinations of two matrices with determinants different
from zero and three angles. For case (iv) the texture has to
belong to classes (3, i). By construction, no matrix in these
classes can bring three mixing angles. For cases (v) and
(vi) we can find combinations of two or three textures,
respectively, from classes (3, i) that would allow phenome-
nological models.

This is an upper bound on these types of phenomenologi-
cal models because we did not prove that we could imple-
ment them. This can only be done with the help of the chains.
However, case (iii) is implemented in Eq. (C1d), case (v) in
Eq. (75), and case (vi) (which needs a minimum of three
Higgs bosons) can be implemented, for example, as

[y o0 Ags .
Po3llg @ @ P1oA15P 13 .
P13l'g ® @ P13A15P12 .
o P3Pz~ (93)
o ApPos
o Pl
o A .

Therefore, we can conclude that there are really three classes
of phenomenological models with NFC in one sector and no
null textures.

Definition (BGL models [18]): Models with NFC in just
one sector and FCNCs in the other sector depending only
on quark masses and Vg elements.

Alternative definition [19] (BGL model): Models
with NFC in one sector (up or down) and satisfying the
constraint

TIA; =0 (i#)). (94)

Let us assume, without loss of generality, that we have
NFC in the upper sector. Then Eq. (94) implies

(U;RFZFUdL)(VCKMdAj) =0. (95)

Since the second term Vgyd A F 0 we can write the first
one as BTV(T:KM, leading to (up to permutations)

B=Ay ford,; = (X, %,0)

Btdy,, =0« . (96
A B=4A; fordy = (0 0X%) 96)

where the texture of d A, with no zeros is not available for
models belonging to (iii), (v), or (vi). In these classes the
mixing coming from the NFC sector, the up sector in our
case, is block diagonal. We can then conclude that I'; has to
be a matrix of the set

P{As, Ag}. 97)

The texture As belongs to class (2,i), which implies
that only models of class (iii) can be implemented.
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These models are the BGL implementation in 2HDM [18];
see Eq. (Cld). The other two classes of models,
i.e. (v) and (vi), need at least three Higgs bosons in order
to have det(M,) # 0. This would imply that models of
class (v) would have two Higgs bosons coupling to the
same texture in the up sector but to different textures in the
down sector, such a case is not possible by construction.
We are left with models of class (vi), that as seen in
Eq. (93), can be constructed. This last case corresponds to
the 3HDM implementation of BGL presented in [20]. We
then summarize the possible BGL implementations, in mod-
els without the null texture and up to A; < I'; exchanges:
(i) BGL in 2HDM

(X X 0
A =P | X X 0|Pg
\0 0 0
/0 0 0
A, =P, 10 0 0 |Pg and
\0 0 X
(X XX (98)
=7\ x X X|,
\0 0 0/
[0 0 0)
r=210 0 o]
X X X
(i) BGL in 3HDM
/(X 0 0 00 0
Al—ooo), A,=[0 x 0}
\0 0 0 0 0 0
[0 0 O X X X
A;=]10 0 0), and Fl—(o 0 0]
\0 0 X 0 0 0
/0 0 0 0 0 0
I‘2—><><><,F3—000).
\0 0 0 X X X

99)

Models with more Higgs bosons, or three bosons for
Eq. (98), cannot be BGL since we will need to repeat
textures, and Eq. (94) will not be satisfied for the full set
of textures. Both of these BGL implementations lead to
accidental symmetries in the scalar sector. A possible way
out is the addition of extra Higgs doublets having no
coupling to quarks (inertlike).
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B. Nearest-neighbor interaction

The nearest-neighbor interaction assumes that the light
quarks acquire their masses through an interaction with
their nearest neighbors. The mass matrices take the form

0 X 0
M,,=|x 0 x (100)
0 X X

There have been many studies on NNI models within the
SM [21] and extensions [22-24]. In this section we shall
look for the minimal implementations of NNI within
NHDMs. By minimal we mean that all the N Higgs have
nontrivial Yukawa textures associated and different
charges under the Abelian group.

We start by splitting the texture of Eq. (100) into the
largest set of non-null textures. We get the following set of
textures:

{?231412?13, T13A12?23» AIZ?ZSJ ?23A12) A]Z}' (101)

The smallest chains where this set of textures are present
are the T321C%’3)’P123 and T12C§37’3)’P321, leading to the
diagrams

P321'15P123 © @ P3aA15Pia3 oo oo

Pi123l'15P12 ® ® P1a3A15P12 oo oo
[z 00 App
P13l'12P23 ® ® P13A12Pa3
[12Pa3 @ @ AjpPo3 (102)
Pa3l'12P13 ® ® PazA1aPi3
Pa3l'12 @ @ PagAgs —e
To e A oo oo
and
P12l'15P321 ® ® P12A15P321 oo
[z o0 Ay 5
['12P23 o o Aj2Pa3
Pi13l'12P13 o @ Pi13A12P13 offe
) (103)
P13l'12Pa3 © @ P13A15Po3
Pa3l'12P13 ® @ PazA12P13
Pasl'12 @ @ Pa3Agy o—e

Posl'12Pa3 @

PazA12Po3 e e

respectively. Diagrams where the order of the group was
larger than 8 where discarded. This allows us to state that
NNI textures in a five Higgs doublet model can only be
implemented with at least a Zg group.

We now turn to the case of four Higgs doublets. We
should join two of the five textures of the previous case, in
all possible combinations, and study each case. However,
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since each texture in a given chain belongs to the same
class, we can just look for combinations that belong to
class (3, 3), since we always have a texture of the type A;,.
For example, a possible union between to textures of
Eq. (101) is

Pp A Pi3UP3A Py = PypAsPi3 €3,3). (104)
However, the union
PpAnPi3UPHA
= T23Al 1 le (S ?23(2, 2) or (3, 2) (105)

does not belong to the same class as the other textures.
Doing this procedure for all combinations one finds five
distinct cases:

(D): {P321A15P 13, A1y Pos, PrsApp, A,
(2): {A15P 15, P13A12Po3, A1p Pos, PrsAgal,
(3): {Ps21A15, A2 Po3, Pr3A1nPrs, Aral,
4): {P1pAs, Py3A1Py3, PosApy, A Posh,
(5): {A15Po3, P13A1,Po3, PysAp Pys, Agak

(106)

The smallest chain that can implement case (2) is
C(131’3)’P12, for case (3) the smallest chains are Cf”‘”) Pi3
and ?321C(132’3)T]23, and for case (4) it is ?IZC%3). The
cases (1) and (5) are implemented with larger chains and,

therefore, will not be considered. Therefore, the diagram
for case (2) is

I'i5Pi2 @ o Ai5Pio

P3o1l'15P12 @ @ P31 Ay5Pio
P13l'15P13 @ @ PigAisPiz  _ efe
(107)
P13'12P23 @ @ Pi3A12Po3
Posl'io @ @ PogAgy
['12P23 @ o A1pPa3

In case (3), the chain Ps,, C(132’3)’P123 can only be imple-
mented with a group of order larger than the one of chain

Cf’s)’P 13- Therefore, for this case we have
[i3P1z o @ AyzPig oo oo
P321l'15 (®° P321A15
[12P23 e 0 A15Po3 —
Pa3l'12P13 ® @ PazA1aPi3 (108)
Fip o0 App —
©® ©

P13l'12P13 o @ PisA1oPis .

Finally, for case (4) we have
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Piol'is @ @ ProAjs

P12l'15P321 @ ® P1aA15P30;
P3211'15P123 ® @ P3a1A15P123
[12P23 © @ AjaPos (109)
Pa3l'12 @ @ PazAgy
P23l'12P13 ® @ Pa3A12P13 X

We now study the case of three Higgs doublets. Following
the usual procedure one gets seven cases

(1): {A13P1p, A Po3, PrsAp),
(2): {P321A15P13, A15Po3, A},
(3): {A15P1p, P3o1Ars, AP},
(4): {A15P1p, A15Po3, Pi3Ap Posh
(5): {P31A15, A5 P13, A},

(6): {P12A1s5, A15 P13, Pr3Ara},
(7): {P12A15, A15Po3, Pr3ApPr3l

(110)

In this case, the smallest chain is the one containing the
textures of case (2), i.e. C§’3 P,5. The diagram is

Fi3P13 @@ AzPig oo
P321'15P13 @ ® Psa1 A5 P13 8

['15P2; @ ¢ Ay5Pog (111)
P13l'12P13 ® ® P13A12P13 ofe

[y e Ay

We now study the case of two Higgs doublets, where one
gets a single case

{A13T12’A15T23}' (112)

The smallest chain to which this case belongs is

Pys C(23’3) Ps,;. The corresponding diagram is
['13P12 e o Ai3P10

P123l'15P13 @ @ PragA15P13  _ efe
L15P23 @ @ Ay5P a3

P13T'15P13 ® ® P13A15P13 2

In agreement with [23]. We shall now present the symme-
try implementation for this last case. For classes with one
texture P;A;3Pg, the symmetry generators are—see sec-
tion (9) of Appendix B—

{SL = P, diag(1, wy*, wy?)Pr
Sy = Phdiag(l, i+, wk?) Py

(113)

(114)

The charge vectors tell us that the order of the group is 4n
and k;, = 2k;; = 2n. Since we permute on the left by
P,5, we get the new identification k; ; =2k;, =2n, leading
to the generator
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S, = diag(l, 03", o). (115)

For the generator of the right sector, we just need to do the
permutation 1 — 2 — 3 — 1 in the diagonal elements,
leading to

Sp = diag(w?", 1, o, ). (116)

Until this point, all the information used was in the chain

T23C§3’3)’P321 and its associated charge vector. Now we
shall look at the corresponding diagram and extract the last
piece of information. The diagram is telling us that the
down sector does not connect the first texture with the first
texture of the up sector. Since all the charge vectors start
with the trivial phase, the fact that the first texture is
connected with the third one implies an overall phase
transformation in the right-handed up sector, in order to
put a trivial phase in the third entry. Therefore, the last step
is to transform the up-quark right-handed fields with an
additional w}, phase. The model symmetry implementa-
tion finally reads

S, = diag(1, wﬁﬁ, w},)
Si = diag(w?, 1, 0%,) and

. 117
84 = diag(w, wh, ol i

Sy = diag(1, w},).

with the associated Yukawa sector

(0 X 0 0 0 0
r=|x o o], r,={o o x|,

0 0 X 0 X 0

(0 0 0 0 X 0 (118)
A,=]0 0 x A,=|x 0 0|

\0 X 0 0 0 X

In this last example the order of the group had to belong to
47, which in the minimal case is 4 and the next-to-minimal
8. However, the next-to-minimal order is only 8 when
implemented within the chain P,; C(23’3) Ps,;. The textures

in Eq. (112) are also presented in the chain P,; C(33’3) P31,
which is one texture larger than the previous one, and
therefore, not included before when finding the minimal
symmetry group. With this chain we have

[i3P12 @ o AizPro

Pi123'15P13 @ ® Pra3A15P13 ofe

[15P23 @ @ AjsPo3 - (119)
P13l'12P13 ® ® P13A1aP13 oo
Po3l'12P23 ® @ PazA1aPo3 oo

which allows the NNI texture to be implemented within the
THDM not only with Zg4,, but also with Z,-5 [and in
particular U(1)]. We summarize in Table IX the minimal
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TABLE IX. Minimal symmetry implementation in NNI mod-
els and the existence of accidental symmetries.

NNI Minimal group Accidental symmetry
N=2 Zy Yes
N=3 Zs Yes
N=4 Zg No
N=5 Zg No

NNI implementation groups and the existence or absence
of accidental continuous symmetries.

There is a NNI extension, known as four-zero parallel
texture [24] and given by

]

0
M,, = | x (120)
0

X X X
X

X

Up to N = 2 this texture is an ansatz. The minimal number
of Higgs bosons needed to implement this texture through
a symmetry is N = 3. In this case we have three sets of
textures allowed:

(1): {A13P12, A15Po3, PsAjp Pas},
(2): {P321A15P 13, Ays, A5 Pos},
(3): {A15?123’ 7)3211415»1415}-

(121)

Case (1) is the one that can be implemented with the
smallest chain, which is TBC?‘S’) Ps,,. The diagram is
given by

['13P12 e o Ai3P1o
P1230'15P12 @ @ PiazA15P12 o

[15Pa3 @ @ Ay5Pag (122)
P13l'12P13 ® ® P13A12P13
Po3l'12P23 ® @ PazA1aPo3

Therefore, this model can be implemented with any
Abelian group of order n = 5. This model contains an
accidental global symmetry in the scalar sector.

C. The Zz X ZZ model

In Sec. V we found that the only chain that can be
implemented by direct products of cyclic groups is chain
(1) of Eq. (85). In this section we shall present the model
implementation in more detail. We start by noticing that
from the four textures available in the chain we need at
least three; otherwise we get at least one vanishing mixing
angle. The model implementations are given by
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I3 o0 Agg o oo
Posl'is e @ PazAgs o oo
P123'15P12 @ ® PiasAi5Pia o oo

P3211'15P13

P321A15P13 oo o

XXNZY N
NLX XN

(123)

!
!

!
!

We shall now specify the symmetry implementation of
theses models. The chain used was built from the

Hadamard product of C(lz,z) with T23C(12’2)?23. The left
generator for each chain is

diag(1,1, —1) and diag(l, —1,1), (124)

respectively. The generators of the right sector take the
same form as Eq. (124). Therefore, the final symmetry
generators are given by

S4 = 8% =8, =diag((1, 1), (1, =1), (=1, 1)). (125)

This set of generators allows us to build the first 4 diagrams
of Eq. (123); the other 12 diagrams are found through
global phase transformations in one right-handed sector.
The mass matrix M, ; can take one of the four textures

0 X X X 0 X
X 0 XLI0 X X
X X 0 X X X

X X 0 X X
x x x| |x x (126)
0 X X X 0

X o X

These models are free from accidental symmetries. Other
models could be constructed with Z, X Z,, for example,
connecting the chain used here with the one of Eq. (81).

VII. CONCLUSIONS

The presence of Abelian symmetries may restrict con-
siderably the Yukawa textures of NHDM. In this work a
general method for determining these textures and their
implementations was given. The method allows us to
determine all possible model implementations for a given
number of Higgs fields. We have mapped all possibilities
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and presented several specific examples for the case of
N =2 and N =3. It was shown that the number of
Higgs fields only dictates the possible model implementa-
tions it has no effect on the available textures. This means
that all the textures found could be implemented in the SM.
However, these would in general lead to unphysical mass
matrices. The presence of additional Higgs fields allow us
to choose several textures, phenomenologically forbidden
in the SM, and keep having no massless quark and three
mixing angles. Therefore, all possible textures in NHDM
were found, turning the construction of flavor models into a
straightforward combinatorial problem.

We have also found that, within Abelian symmetries and
without inertlike couplings, there are only three types of
models with NFC in one sector, where two out of these are
BGL-like. All these implementations introduce accidental
symmetries in the scalar potential.

The method presented is not only helpful in order to
give a systematic classification of possible NHDM with
Abelian symmetries, but it can also be used to find the
minimal symmetry implementations giving the mass tex-
tures. The example presented was the NNI case. We found
all the minimal implementations up to N = 5 starting from
the mass matrix textures; additional Higgs fields will
introduce inertlike couplings or textures repetition. We
found that only for N = 4 we are able to avoid accidental
symmetries in the scalar sector.

We have also looked at the possibility of having a direct
product of cyclic groups. We found that there was only one
single chain, not present in the case of a single cyclic
group: the chain generated by Z, X Z,. The model imple-
mentation of this case was also presented.

All the work done assumed that the Higgs fields had no
inert vacuum. These extra cases can be easily extracted
from results present in this work.
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APPENDIX A: PROOF OF THE THEOREM
FOR NFC IN ONE SECTOR

In order to guarantee that the set A yy is Abelian, we
can first look to the JH yy part. We do this by looking at
each class of Table I and see what combination of textures
we are allowed to have.

For class (1, 1), there is only one texture A; that has
the most general texture and, therefore, can only be
present one time, leading to J yy Abelian and A} =
@ [case (1)].

For classes (1, 2), (1, 3) [and similarly (2, 1), (3, 1)] we
always need more than one of its textures in order to have
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the determinant different from zero. The presence of more
than one of these textures will imply, due to the general
form of HH ¢ (or H %), the noncommutativity of H,, (or
H ).

For the class (2, 2), we can split the cases in either with
A, or without A,. In the first case only the textures A, and
A lead to H yy Abelian. However, since a chain is a set of
disjoint matrices, only A, survives AL = @ [case (ii)].
For the second case, i.e. without A,, the only combination
of textures that leads to a nonzero determinant is A;, A,,
and Ag. The presence of more than one A, texture would
leave JH yy non-Abelian. Therefore, the only nontrivial
texture that can be repeated is A, leading to H yy
Abelian and AL = @ [case (iii)].

For the class (2, 3) [or similarly (3, 2)], in order to have a
nonzero determinant we need at least an A, and an Ag
texture (with some appropriate permutation on the right).
Both of these textures have a 2 X 2 block form for the
combination J¢. Therefore, no Abelian set can be
constructed.

In the last class, i.e. (3, 3), H yy is trivially Abelian. We
then need to look at the set AL,

In order to tackle this case, we introduce the 3 X 3
matrices P;; (not the permutation matrices), where the
element (i, j) is one and all other are zero. These matrices
satisfy the following relation:

PijPy = Pydj. (AD)

Any of the textures in this class can be written as

A=aP;;+bPy +cP,, (i #k+mj+1#n).

(A2)

We may calculate the commutator [AA’T, A’AT] and evalu-
ate it to zero; we get

(aa’)2(1 - 5ii’)5jj' + (bb/)z(l — Su)du
+ (cc") (1 = 8,) 8, + (ab')*(1 — 8)8p
+ (ac'(1 = 8;,)8 + (ba)*(1 — 84)6;5
+ (be")2(1 = Sp) Sy + (ca')*(1 — 8,,1)8,;

+ (cb")*(1 = 8,,1)8,y = 0. (A3)
If a, b, cand @/, b’, ¢’ are different from zero, then Eq. (A3)
implies A’ with the same texture as A. This leads to
A = @ [case (iv)]. If one or two parameters of A’
were zero, it would imply a texture with some of the entries
that were nonzero to be zero. However, the nonzero final
entries would overlap with entries of A, which is not
possible in a chain.

If one parameter of each texture is zero, for example a
and d/, we get
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(bb/)2(1 - 6kk/)6”/ + (CC/)2(1 - (Smm/)Bnn/
+ (be")2(1 = Sp) S + (cb")*(1 = 8,0) 8,0 = 0.
(A4)
This leads to two cases: A and A’ with the same texture and
A’ with one overlapping element. In the first case the mass
matrix will have determinant zero, while in the second case
the determinant is nonzero. However, since the second case
has an overlapping element the parameter associated with
that texture must be zero, leaving A’ with just one parame-
ter and AL = @ [case (v)].
If two parameters of both matrices are zero, for example
a, b, a', and b', we get

(cc")*(1 = 8,) S = O. (AS)

The only solution that does not lead to determinant zero is
n # n' and another texture A” with @’/ = b" = 0 and n"" #
n # n', leading to Al = @ [case (vi)].

APPENDIX B: SYMMETRY IMPLEMENTATION,
CHAINS, AND VECTORS CHARGE

1. Class (1,1)

No symmetry is needed in order to impose the
texture A;.

2. Class (1,2)
The symmetry implementation
Sg = PRdiag(1, 1, ) PR, B1)
S, = diag(1, 1, 1),

leads to the phase transformation matrix @, pr

(00 K
Tlo 0 &k |PR
n

0 0 ks

(B2)

Therefore, the chain and its symmetry is
Zy=r: {Ag ® Ao} PR, (B3)

with the associated charge vector
(L 0, "). (B4)

The tilde is present to remind us that, up to a global
rephasing, this k appears only in the Sy generator.

3. Class (1, 3)
The symmetry implementation
Sg = Pldiag(wt, 02, 1)P (B5)
S, = diag(1, 1, 1)

leads to transformation matrix ©,, p
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(ki RO
Tk, &k 0] (B6)
n

ko k0

The chain and symmetry is
Zy=3:{A1g ® A1 Pp3 ® A}y P13} P, (B7)

with the associated charge vector

(1 @™, 0. (B8)

4. Class (2,1)

The symmetry implementation

Sp = diag(1,1,1)

(B9)
S, = Pldiag(l, 1, wk?)PL
leads to the phase transformation matrix @ p 4,
5 0o 0 0
el o o0 0 (B10)
n
kip ki kpo
Therefore, the chain and its symmetry is
Z,=2: PHAs @ Ao}, (BL1)
with the associated charge vector
(1, wy™). (B12)
5. Class (2,2)
a. With TLAQ PR
The symmetry implementation is given by
Sk = PRdiag(1, 1, w,=)PX,
{ R & wk ) (B13)
S, = Ptdiag(l, 1, w,**)PL,
leading to the phase transformation matrix ® pt, pr
0 0  kp»
2
—.PL 0 0 kg, |PR (B14)
n
ko —kpp 0

In this case we have two possibilities:
@) kpp # —kpp
This implies k;, # n/2. The order of the group has

to be n = 3, leading to the chain
Z,=3: PHA, © Ag® A} PR, (B15)

The associated charge vector is
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(1, w, "2, ).

(B16)

(i) kpp = —kpo
This implies k;, = n/2. The order of the group has

to be n € 27, leading to the chain
Zon: PHA, ® A} PR (B17)

We have made the redefinition n — 2n. The asso-
ciated charge vector is

1’ "
kLZ =n
b. Without P"A, PR
The symmetry implementation is given by
Sy = PRdiag(1, 1, wy’) PR
{ R g( wk ) (B19)
S, = Ptdiag(l, 1, w,*)Pr

leading to the phase transformation matrix ® p.4. pr

0 0 ks
27
—.Pr 0 0 ks PR (B20)
n
—kpy —kpp ks — kg

In this case we have the following possibilities:
(1) ks = —kp»
This implies k;, # n/2. The group order has to be
n = 3, leading to the chain

Z,=3: PH{A; ® A3 ® A} P, (B21)
with the associated charge vector
(1, 05, @), (B22)

(ll) k3 7& _kLZ
The group order has to be n = 4, leading to the
chain

Zn24: TL{A7 @ Ag @ All @ Alz}?R. (B23)
The associated charge vector is
{, a);k3, wﬁLZ, w/;lu—’%). (B24)

6. Class (2,3)
a. With at least one matrix of the form P-A,P
The symmetry implementation is given by
Sg = Pldiag(wh, k2, 1)P
{SL = Pldiag(1, 1, wk2)PL

leading to the phase transformation matrix @ pi,,p

(B25)
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ky kpa 0
27
—.P k| ki, 0 P.
n
ki =k, 0 —kpp

(B26)

We now have the following cases:
(i) Another two matrices from PLA,P
This leads to k] = _kLZ and kLZ = kl - kLZ' This
implies k;, = n/3. The order of the group has to be
n € 37, leading to the chain

Zsy: PHA, © APy @ AP 13} P. (B27)
The associated charge vector is
1’ 2n’ n
kLZ =2n

(ii) Another matrix from PrA,P
We get two cases:

(1) kpp = —kpo
This implies k;, = n/2. The order of the group has
to be n € 2Z with n = 4, leading to the chain

Zons1): PHA, @ AyPpy @ AgP 13 @ A P13} P,

(B29)
with the associated charge vector
1 —k —k +n+l
{(1’ wg(tﬂfl)’ “’2(n1+1)’ “’2(n1+1) ) . (B30)
kL2 =n+1

(2) kpo = ki — kg
This implies k; = 2k;, and k;, # n/2, n/3. The
order of the group has to be n = 4, leading to the
chain

Zy=s: PHA, @ AyP 13 @ AsP 3 @ AP (B31)
The associated charge vector is
(1, 0, 2, 0,72, W), (B32)

(3) ky
This implies k;, # n/2, n/3. The order of the group
has to be n = 4, leading to the chain

Zy=4: PHAL © Ay P3y ® A Pi3 @ AgPo3}P.
(B33)

= —kp»

The associated charge vector is

(I @, 03, @, "), (B34)
(iii) No additional matrices from A, P
The only possibility is with all the k’s different. It
implies k;, # n/2 and k; # —k;,. The order of
the group has to be n = 5, leading to the chain
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Z,=5: PHA  © AgPry @ AgP 3@ Ay

@A]z?w}?. (B35)
The associated charge vector is
(1, wn "2, 0,1, w2, w2 ™), (B36)
b. Without a matrix of the form PLA,P
and at least one form P"AgP
The symmetry implementation is given by
Sp = PTdiag(wy, wy?, 1)P
{ R glw wk ) (B37)
S, = Prdiag(l, 1, w,**)Pr
leading to the phase transformation matrix © p, p
k ky 0
21
—. Pt k ks 0o |7 (B38)
n
ky —kpp ko —kpy  —kpo

The only case possible is with all ks different. The order of
the group has to be n = 6, leading to the chain

Zy=6: PHAs @ AgPr; ® Ag P13 @A, © A, Py @A, P35} P.

(B39)
The associated charge vector is
(L 0r", 0,1, 0, @327, w2 ™). (B40)
7. Class (3,1)
The symmetry implementation is
Sp = widiag(l, 1,1
{ R g(k k) ’ (B41)
S, = diag(1, w,*!, w,;*?)
leading to the phase transformation matrix 04,
. kia ko kio
7-?/ kpp —kpy kpp —kpy ok — kg (B42)
0 0 0
Therefore, the chain and its symmetry is
Z,=3: Ag ® Pp3Ag ® P3A, (B43)
with the associated charge vector
(L @ ™%, @, 1), (B44)

8. Class (3,2)
a. With at least one matrix of the form P'A,, PR

The symmetry implementation in order to obtain A, PR
is given by
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{SR = PRdiag(wy, wi', wi?) PR B45)
S, = diag(1l, wi"', wi?) ’
leading to the phase transformation matrix @,  pr
o ki ki 9%
- 0 0 kL2 - kLl TR. (B46)
n
kpy =k kpy = ko 0

This allows for the following three cases:
(i) Another two matrices from PA , PR
This leads to kLZ = kLl - kLZ and kLl = kLZ - kLl'
This implies k;, = 2k;, and k;; = n/3. The order
of the group has to be n € 37, leading to the chain

Z3,: {A14 @ P13A14 @ Pyy Ay PR (B47)
and the associated charge vector
1’ 2n’ n
{ ( w3, w3n) (B48)
kLl = 2kL2 = 2]’1

(ii) Another matrix from PA,, PR
We get two cases:

(1) kpy — kpy = kpa — kpy
This implies 2k; | = 2k;,, or k;, = k;; + n/2. The
order of the group has to be n € 2Z with n = 4,
leading to the chain

Zons1): {A1s ® Py3Ayy @ Pi3A | @ Pi3A PR

(B49)
The associated charge vector is
n —k —kp +n+1
{(1’ wZ(-;L—l)’ a)2(nL-i£l)’ w2(nL-i]—l) ) (BSO)
kLZ = kLl +n+1

(2) kpy — kpy = kg
This implies k;; = 2k;, and k;, # n/2, n/3. The
order of the group has to be n = 4, leading to the
chain

Zy=4: {A14© Pi3A14 © P3Ay @ PpAp} PR

(B51)
The associated charge vector is
{ (L0, 0, o) B52)
kpy = 2kp,

(3) kpy = kpo — kpy
This implies k;, = 2k;; and k;; # n/2, n/3. The
order of the group has to be n = 4, leading to the
chain
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Zy=4:{A14 ® P3y1A1, © Pi3A, @ A} PR (B53)
The associated charge vector is
{(1, or ", w0, o) ' (B54)
kpa = 2kp,

(iii) No additional matrices from PA,, PR
The only possibility is with all the entries different.
The order of the group has to be n = 5, leading to
the chain
Zy=5:{Au @Ay © P3Ay © PpApy

® P ;A ,} PR (B55)

and the associated charge vector

kp,—k —k kpi—k —k,
(1’ W2 @ @ TN gy LZ)'

(B56)

b. Without a matrix of the form P'A,, PR
and at least one form P'A,, Pk

The implementation is given by

{SR = PRdiag(w'?, i, w')PR B57)

S, = diag(l, wi"', wf?)
leading to the phase transformation matrix @,  pr
kra kro ks
2 R
'y kpp —kpy kpp —kpy o ks — kg | PR
0 0 ks — ki

(B58)

The only case possible is with all k's different. The order of
the group has to be n = 6, leading to the chain

Zy=6: 1A11 ® Py3A| © P3A; © A

® PrAjp & Pi3A PR (B59)
and the associated charge vector
(1, wﬁm*kmy w;ku’ wﬁLZ_kBy wﬁu_ks’ w;ks)' (B60)

9. Class (3,3)
a. With one matrix belonging to P' A3 P

This can be implemented through the symmetry
generators

Sx = Plding(1, o, wl)P
{ ® iag(1, wy', wy™) (B61)

S, = diag(1, wit!, wk?)

leading to the phase transformation matrix @4 ,»
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0 kLl kL2
2
I _kLl 0 kLZ - kL] ? (B62)
n
_kLZ kLl - kL2 0

We now have the following possibilities:
(i) Another disjoint matrix from A3 P.
This imposes the additional condition k;; = k;, —
k;, = —kg,. Thisimplies k;; = n/3 (or k;, = n/3)
and, therefore, n € 3Z. The chain is given by

Z3,:{A;3© Pi3Ap3 ® PiyjAs}P (B63)
with the associated charge vector
[ (10 w2) 6
i_kLl = IkLZ =n

(ii) Three matrices from P'A ;5P

(1) kpy = kpy — kpy, kpy = —kpp
This implies k;, =n/2 and k;; = n/4. The
order of the group has to be n € 47, leading to

the chain
Ziy:{A13 @ Py jAis ® A5 Py & PisAjs P} P
(B65)
with the associated charge vector
1’ 3n’ n , 2n
{( w4n Wy, w4n) (B66)
kLZ == 2kL1 - 2}’1

(2) kpp — kpy = —kpa, kpy = —kp,
This implies k;; = n/2 and k;, = n/4. The order
of the group has to be n € 47, leading to the chain

Zyy: {A13 ® P1o3A 5 © AjsPry) @ Py A5 P3P

(B67)
with the associated charge vector
kLl = 2kL2 =2n

It can be obtained from case (1) when P; = P =
?12.

(3) kpy = —kpo, kpy — kpy = kpy — kpo
This implies k;; = n/4 (or k;, = n/4) and k;; =
—k;,. The order of the group has to be n € 47,
leading to the chain

Zyy: {A;; ® P13A ;5P ® PoAsPi & PpyAistP

(B69)
with the associated charge vector
ikLl = IkLZ =n
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It can be obtained from case (1) when P; = P =

,.7:)23 .

(iii) Two matrices from P'A,5P

(D

2

3

kpy = ki — kp

This implies k;, = 2k;; and k;; # n/2, n/4. The
order of the group has to be n = 5, leading to the
chain

Z,=5:{A13® Py A5 ® AP

O PAL,®ALP ;P (B71)
The associated charge vector is
{(1’ a);k“, wI:lLI, wVTZku’ wﬁku) ‘ (B72)
ki = 2kp;

kpo = kpy — kpa

This lmplles kLl = 2kL2 and kLZ * }’l/2, n/4 The
order of the group has to be n = 5, leading to the
chain

Zy=5:{A13® P3A15 ® A5 Py

® P3A4,Pp3 ® Py3A;, P3P (B73)
The associated charge vector is

1 ;kLZ 5L2’ ;2/%2 3kL2

{( con R on @0 T On) g

kpy = 2kps
It can be obtained from case (1) when P; = P =
TZS.
ki, = —kp

The order of the group has to be n = 5, leading to
the chain

Z,=5:1A130 PpA5P130 P3A 5P,

® APy ® Pp3A}P. (B75)
The associated charge vector is
(1, 0, ™, i, @, 2, Wy
(B76)
{kLz = —kp;

It can be obtained from case (1) when P, = P =

le.

(iv) One matrix from P'AsP

D

kpy = —kpy
This implies k;; = n/2. The order of the group has
to be n € 27, leading to the chain

Zynt2): 1A13 ® P31 A1sP 13 @ A Pyy @ PysAyy
O AP 30 P3AptP. (B77)

The associated charge vector is
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2

3

)

2 kpp+n+2  —kp+n+2  k —k
{(1’ a)g(n+2)’ w2fr21+2) , wz(anz) , w2€121+2)’ wz(anz))_
kL1=n+2
(B78)
ki = —kp»

This implies k;, = n/2. The order of the group has
to be n € 27, leading to the chain

Zyn+2): 1A13 ® P13A 5Py @ PpsApy
® APy ® Pp3Ajp P ® Pi3A 1 Pyt P.
(B79)

The associated charge vector is

i kp4n+2  —ky4n+2  kp —kp,
{(1’ Dont2y Po(n+2) » Pont2) Po(u+2y wz(n+2))
kL2 =n+ 2

(B80)

It can be obtained from case (1) when P, = P =
T23.

kpo — kpy = kpy — ki

This implies 2k;, = 2k; |, or k;, = k; | + n/2. The
order of the group has to be n € 27, leading to the
chain

Zyn+2): 1A ® PysA;s @ ApP3 @ PAp

® Pp3A1n P13 ® Pi3ApnPos}P. (B81)

The associated charge vector is

n+2 kpytnt2
{(1’ Wrnt2y Po(n+2) >

kL2=kL1+I’l+2

—k 2k —ky,
2n+2) Po(n+2y “’2(n+2))

(B82)

It can be obtained from case (1) when P, = P =
TIS.

Only matrices from P'A;, P

In this case we have six distinct k’s, which leads to
the chain

Z,=7:{A13 0 APy ® P3Ajp ® A Pi3 @ Pi3Ag,

® P3A1,Pr3 ©® Pp3Ap Pis}P. (B83)
The associated charge vector is
(1, plrthu, o btk 2tk
w, Prtha) g K k), (B84)

PHYSICAL REVIEW D 88, 056015 (2013)

b. No textures from P'A;P and at least
one from P'AsP

The symmetry implementation

{SR = TTdiag(wﬁ‘, ok wﬁ”)? (BS5)

S, = diag(l, w3, wy?)

which leads to the phase transformation matrix @4 p is

ky kpy kpa
2
—\| ki —kp 0 ki — ki | P, (B86)
n
ky —kpy  kpy = kg 0
We have the following possibilities:
(i) Four matrices from P’A 5P
In this case we may have the following:
(1) kpy = ky —kpy,  kpp —kpy = kpy — kpo,  kpp =
ky = kpo
This lmphes kl = 2kLl = ZkL2 and kLl =

k;» + n/2. The order of the group has to be n €
27, leading to the chain
Zrui2): {A1s ® Pp3Ajs @ Py AsP5
® P13A15P12 ® P13A1p P13 @ Ap}P.
(B87)
The symmetry automatically gives the A, in the
chain. The associated charge vector is

n+2 —kpptn+2 =k, —2kg, k
{(1’ Wo12p Dont2)  » Pon+2) Pon+2y ‘”2(n+2))

kLl =kL2 +n+2
(B88)

(2) kpy = ki — kg,
kpy — ko
This lmphes k] == kLl + kLZ and kLl == kLZ + I’l/2
(or 2k;; = 2k;,). The order of the group has to be
n € 27, leading to the chain

kipp =k —kpy, kpp—kp =

Zyinr2): 1A15 ® PrA1s ® PpA 5P ® PAsP,

(52} T13A12T13 @ Ao}T (B89)
The symmetry automatically gives the A, in the
chain. The associated charge vector is

—kpp 42 —kps k42 R )

+2
{(l’wg(n+2)’w2(n+2) P Oontay Do) Ponr2)
klekL2+n+2

(B90)

It is included in case (1) when P = P,,.

(3) ki = kpy — kpay kpy = ky — kpo, kpp = ki — kg
This implies k; = k;; + k;, and k;, = n/2. The
order of the group has to be n € 27, leading to
the chain
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“)

&)

(6)

Zyn+ay: P{A1s ® P3A ;5P @ PpAisPy;

® PpAsPi3 © PiAp © AgbP. (BI1)

The symmetry automatically gives the Ay in the
chain. The associated charge vector is

{(]’w%iz)""
kLZ =n+2

—kpitn+2 —kr
2(n+2) 2(n+2)’

kpitnt2 )
2(n+2) w2(n+2)

(B92)
It is included in case (1) when P; = P, and P =
—kpy = kpy — ko kpp =k —
This implies k; = —2k;;, k1o = —kz1, and k| =

*n/5. The order of the group has to be n € 57,
leading to the chain

Zs,: {A1s ® Aj5P1p3 & Py AP @ Pi3As Py

® P3A 1, Py} P. (B93)
The associated charge vector is
1 , , 4n’
{( an an an an) (B94)
ikLl = +kL2 = n
ky = kpy — kpos kpy = ky — kpy, ki — kpy = ky —
ki»
This lmplles kl = 2kLls kL2 = _kLls and kLl =

*n/5. The order of the group has to be n € 57,
leading to the chain

Zs,: {A1s ® PpA1sPi; @ A5 Pspy @ Pi3Ap

® P3y1A1sP 3} P. (B95)
The associated charge vector is
1’ 2n, 3n, 4n’
{( W5, W5y, Ws, an) (B96)
ikLl = +kL2 =n
It is included in case (4) when P; = P, and P =

Pias.

ky = kpy — kpo, kpy = kpp — kpy, kpp = ky — ki
This lmphes kl = 4kLl’ kLZ = 2kL17 and kLl =
n/5. The order of the group has to be n € 57,
leading to the chain

Zs,: {A1s ® PsA1pPrs @ PiozAis Py

® P3y1A1s ® PrA 5P 3} P. (B97)

The associated charge vector is
{(1’ w%z’ wgz’ wgz’ an) (B98)

kLZ = 2kL] = 2}’1
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It is included in case (4) when P; = P, and P =
P
ky = kpy — kpy, kpy = ky — kpy, kpo = kpy — kpo

This lmphes kl = 2kL17 kLl = 2kL27 and kLZ =
n/5. The order of the group has to be n € 57,
leading to the chain

Zs,: {A;s ® A3 P13 @ Py AsP; © PisAys

® Py A5 P o} P. (B99)

The associated charge vector is
{(1 w5l’l’ w?:’l’ wgz’ wﬁn) (BIOO)

kLl = 2kL2 =2n
It is included in case (4) when P; = P;and P =

T123-

Three matrices from P’A ;s P.

In this case we have the following possibilities:

kpy = kpo = kpis kpo = kpy — ko

This implies k;; = —k;, and k;; = £n/3. The

order of the group has to be n € 3Z with n = 6,
leading to the chain

Zanr1): 1A1s ® Pyp1A1s @ PisAs © A Py

® PyAp P @ PsAp P3P (BI0D)
The associated charge vector is
2( +1) 1 —k;+2(n+1) —k;+n+1
{(1’ 3(Z+1)""§'(;+1)’ 3(n1+1) " 3(n1+1r)l 3(n+1))‘
ikLl = +kL2 - (n + 1)
(B102)
kpy = ky — ko, ko = ky — kpy

This implies k, = k;;, + k;, and k;; # {2k;,, n/2},
kLZ * {_kLI’ ZkLl’ n/2} and 2kL1 * 2kL2' For n =
6 we have four possible charges for k;; and kj,;
however, there are five constraints between the £'s.
The order of the group has to be n = 7, leading to
the chain

Zy=7:{A15® PpA;sP 3@ P3A;sP @ PsApPs
®A12P23 @ ?231412 er}ip (B 103)

The associated charge vector is

kpo—k —k —k ki, —k kpi—k
(1 W) 127Ky LW, L2’ W l’wnLZ LlywnLl LZ’ wfn)

(B104)

ky —kpy = kpy — kpo, kpp — kpy = ky — kg

This lmphCS 3kLl = 3kL2 (Or kL2 = kLl * n/3)
The order of the group has to be n € 37 with n =
6, leading to the chain
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Zya1): {A1s ® A1sPio3 @ AsPs; & Pi3A @ Pi3A 1Py @ Pi3A P15t P. (B105)

The associated charge vector is

F2(n+1) F(n+1) —k; F(n+1) —k —k; F2(n+1)
{(1’ w3(n-f1) ’ wS(nn+1) ’ w3(nL-l11) " ’ 6()3(nL+£1)’ w3(nL-l11) ! ) . (B]O6)
kLZ = kLl + (l’l + 1)
4) kpy =ky — kg1, kpo = kpy — ko (1, oxt, 03, @, 1, @y 201, @y t)
This implies k; = 4k;, and k;; = 2k;,. The order o — o (B114)
of the group has to be n = 6, leading to the chain L2 L1
Zo: {A15s © PiozAys ® PAsPrr © PApPis It is obtained from case (4) with P, = Ps;,.
) ky = kpp — kp1, kpo = ki — ki
® Pp3Ap, @ A Pi3tP. (B107) This implies k, = —2k;, and k;, = —k;;. The
The associated charge vector is o}r1d§:r of the group has to be n = 6, leading to the
chain
(1, 00", 0,72, 0,12, w2, 0, 7)
{ku = 2%, . (B108) Zy=6: {A15s® P133A5P 1, & Py A5 Py,
® P13A1nPr3 ® APz & Py3Ap PistP.
(5) kpy = kpy = kpi, kpy = ky — kpo (BI15)
This implies k; = 4k;; and k;, = 2k;;. The order ) .
of the group has to be n = 6, leading to the chain The associated charge vector is
Z,=6{A15 ® P31A1s © Pi1p3A1sP1n @ P3ApPos {(1, i, 0n, 0w, 2 @) (B116)
® AP & Pp3Ap Pi3}P. (B109) ko = —kp
The associated charge vector is It is obtained from case (4) with P; = P53 and
_ _ _ _ P = Py,.
Ky Uy Ak ki 3k, 321
{(1’ Onty on T, @n T, on, @) . (B110) ) ki = kpy — kpos kpy = ky — kpy
kLl = 2kL2 This lmplles kl = 2kLl and kLZ = _kLl' The
order of the group has to be n = 6, leading to the

It is obtained from case (4) with P; = P = P,;.
(0) ky = kpy — kpys kpp = kpy — ki

This implies k; = —k;, and k;; = 2k;,. The order 7 dA e ® Py A Pia ® PioA < Pire ® PraA
of the group has to be n = 6, leading to the chain nzei s R T PR

chain

® PyA;, ® AP} P. (B117)

Z,26:A15 ® P31 AsP1, ® PisA1s @ Ap P

® P3A Py ® Py, Ps)P. (B111) The associated charge vector is
. . —kp =2kpy ke 2kp —3kp
The associated charge vector is {(1, o, L w, M, o, o, w7 ) (B118)
{(1’ wﬁLZ, wgku’ w;km’ w;2kL2’ wzkm) B112) kL2 = _kLl
ki = 2k, It is obtained from case (4) with P; = P,,; and
T = P13.

It is obtained from case (4) with P, = P,, and
? = ?23.

(1) ky = kpy — ko, kpy = kpa = kg
This implies k; = —k;; and k;, = 2k; ;. The order

(10) kpy = ky — kp1, ko — kpy = ky — ki
This implies k; = 2k;; and 2k;, = 3k;;. The or-
der of the group has to be n = 6, leading to the

of the group has to be n = 6, leading to the chain chain
Zy=¢: {A15s ® P oA 5P 03 & PyyA Py Zy=6: {A15 ® A5P3p1 © P3A15P 123 © Ay Pos

® Py A5 ® P3A, @ A PstP. (B113) ® P3Ap © P3ApPist?P (B119)
The associated charge vector is The associated charge vector is
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{(1’ Wy TR g TR g R g 2y
3kpy = 2k
(B120)

(1) ky — kpy = kpy — ko, kpy = ky — ki
This implies k; = 2k;, and 3k;, = 2k; ;. The or-
der of the group has to be n = 6, leading to the
chain

Zy=6: {A15 ® A5P 53 ® Pip3A15P 1, @ Py3A,
® P3A1n Py © Pi3Ap P3P, (BI21)

The associated charge vector is

(] kazikLl a)ikLZ a)kLlikLZ wikLl a)72kL2)
{ZkLl = 3kp» .
(B122)
It is obtained from (10) with P; = P = P,;.
(12) ky = kpy — kpo, kpo — kpy = ky — ko
This implies k; = k;; — k;, and 2k;; = 3k;,. The

order of the group has to be n = 6, leading to the
chain

Zy=6: {A15 ® PpA15P 103 © Pi3Ap, © A5 Py

® P3A Py ® P3Ap Pi3}P. (B123)
The associated charge vector is
{(1’ wﬁL’l_kLl’ a);kLZ, w’;lLl_kLZ’ w;kLl’ w’:lLZ)' (B124)
2kpy =3kps

It is obtained from (10) with P; = P,; and P =
le.

(13) ky = kpo — kg1, ky — kpy = kpy — ki
This implies k; = k;, — k;; and 3k, = 2k;,. The
order of the group has to be n = 6, leading to the
chain

Zy=6:{A15© P33 A5 P ® Pi3A1, Pos
®A ;5P ®P3AL0ALP 3P (B125)

The associated charge vector is

{(1, wﬁu*ku’ w;ku’ w’;u*ku, w;ku’ wﬁu)
3kLl == 2kL2
(B126)

It is obtained from (10) with P = P,.

(14) ky = kpy — kpo, kpp = ki — kg
This implies k; = 2k;, and k;; = 3k;,. The order
of the group has to be n = 6, leading to the chain
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Zy=6: {A15 ® PpA15P 103 ® P13A15P
® PprA1n P13 © Pp3Ay © P3A 1 Pos)P.

(B127)
The associated charge vector is
{ (1, w 1) W, o ® ) (B128)
kpy = 3kp,

It is obtained from (10) with P; = P35 P = Py5.
(15) ky = kpy — kp1, kpo = ky — kpy

This implies k; = 2k;; and k;, = 3k; ;. The order

of the group has to be n = 6, leading to the chain

Zy=6: {A15 ® P33 A15P1, @ Py A5 Po3
®ALP30A P30 P3ALP. (B129)

The associated charge vector is

—2k —k k 2k —3k
1, 1) Ll, w Ll, w Ll’ w Ll’ W L1
{( " " mo ) . (B130)

ki, = 3kp;

It is obtained from (10) with ?L = ?]3 P = ?321 .
(iii) Two matrices from P'A;, P.
In this case we have the following possibilities
(1) kpy = ky — kg,
This lmphes kl = 2kLl’ kLl # l’l/2, kL2 * {_kLl’
2kL1! 3kLl’ kLl + n/2, n/2} and 3kLl * 2kL2' The
order of the group has to be n = 7; however, for
n =7 we get five possibilities for k;, given a k.
But these are the different forbidden k; ,; therefore,
n = 7 is not possible, leading to n = 8. The chain is
given by

Z,=5: {A15 ® P31 A5P3 ® P3Ap P53 @ PpAp
® P3Ap ®A, Py @ ApP; © A} P.

(B131)
The associated charge vector is
(L @, 0,7, 0 7, 0,2, @,
w2, o). (B132)

(2) kpp =ky =k, =k
This lmplles k] = 2kL27 kL2 * n/2, kLl * {_kLZ!
2kL2’ 3kL2’ kLZ + n/2, n/2}, and 3kL2 * 2kLl' The
order of the group is n = 8. The chain is given by

Zy=5: {A15 ® P133A 5P, ® P3ApP5
© A1, Py & P3A1,Pr3 & Pp3Ay,

® PP ® Ag)P. (B133)

The associated charge vector is
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(1 w;ku w;2kL2 wﬁszkLl w;ku wﬁu*km
wkn 72k k), (B134)
It is obtained from (1) with P; = Pp = Ps;.
(3) ky = kpy — kpy
This lmplles kLl # {ZkLz, n/2}, kLZ Ea {_kL]’

Q’kLlr 3kL1r kLl + n/2, n/2}, and 3kL1 # 2kL2' The
order of the group is n = 8, leading to the chain

Zy=5: {A1s ® P3jA15P, @ P3Ap Py
® P3A;, ©® ApPi3 & AP
® PyApPps ® AgtP. (B135)

The associated charge vector is

kpv—kpy =k —kpyo kppo kpa—kp
(1, Wn ,Wp 7, Wy T, Wy, Wy ,

wn R Wk, (B136)

It is obtained from (1) with P; = P53 and Py =
Pos.

(4) ky = kpy =k
This implies &k, # {2k;1, n/2}, ki # {—kpo,
2k; o, 3kpo, k1o + 1n/2,n/2}, and 3k;, # 2k; ;. The
order of the group is n = 8, leading to the chain

Z,=1A15 ® PpA 5P ® P3A,
® P3A1,Py; ® PrApPys
(2] ?23A12 o A12?13 @ Ao}ip (B137)

The associated charge vector is

kpp—kpy —kpp —kpp kppokpi—kpo
(1, Wn Wy 7, Wy T, Wi, Wy s

wkr Tk k), (B138)

It is obtained from (1) with P, = P;,; and
?R = T13.

(5) kpy = kpy — kpy
This lmphes kLZ = 2kL19 kLl # I’Z/2, l’l/3 and kl +
{kLl’ _kLl’ 2kLl’ 3kLl’ 4kLl}' The order of the group
has to be n = 7, leading to the chain

Zy=7: {A1s ® PyA15 ©® P3Ap P
® P3A;, ©® APy & A Pys
® PyiAp P P. (B139)

The associated charge vector is
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{(1 w;ku w;kl (1),;21{“ wﬁu wﬁku*kl w/nqul)

ko =2k, '
(B140)

kpp = ki — ki

This implies k; | = 2k, k;» # n/2,n/3, and k; #

{kyn, —kio, 2k; 5, 3k10, 4k;5}. The order of the group

has to be n = 7, leading to the chain

Zy=7: {A1s ® Pi3A15 ® P3A ;P

® P3A1,Py; ® PyA,

The associated charge vector is

{(1, 002 00" 0, 2, 0, TR g
ki =2kps

(B142)
It is obtained from (5) with P; = Py = P,;.
ky —kpy = kpy — ki
This lmplles kl = 2kL1 - kLZ’ kLl *
{kpo, 2kpo, ko + n/2}, 3kpy # 2kpo, 3kp # 2k,
The order of the group has to be n = 7, leading to
the chain
Zy=7:{A1s® A;sP13 @ A P13 & PpAy,

® P3A;, ® P3A Py & P3Ap P3P

(B143)
The associated charge vector is
(1, ke hun 2h—k) h—k <k
W, ", ), (B144)

kpy — kpy = ky — kpp

This lmphes kl = 2kL2 - kLl’ kL2 * {kLl! 2kL1!
kLl + I’l/Z}, 3kL1 + 2kL2’ 3kL2 + 2kL1' The order
of the group has to be n = 7, leading to the chain

Z,=7:1A15 ® A5 P35 & Pp3Ap Pos
© APy ® P3A 1, Py

The associated charge vector is

kpi—k 2(kr1—k kio—k —k
(1’ a)nLl L2’ wn( Ll LZ)’ wan Ll’ Wy, L1

s

w, ke, @k, (B146)

It is obtained from (7) with Pp = P53

ko = kpy = kpy — kpo

This implies 2k;; = 2k;, (or k;, = k| + n/2).
The order of the group has to be n € 27 with n >
7, leading to the chain
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Zriin): {A1s ® Pp3Ais ® P3A1,P130 Pi3A, @ PyAp Py @ AP  PpsApPrs @ AP (B147)

The associated charge vector is
341 ky —kp 3+ —kp kpi—ki+3+n k—ky ok
(1, @340y Po(34p) @ w Wr31p) Wr34n) “’2(3+n)) (B148)

{ 2G4n) 0 PoGtny
kL2 = kLl + 3 +n

(iv) One matrix form P'AsP
In this case we only have one possibility and the constraints 2k;; # 2k;,, ki1 # 2kpo, k1o # 2k, and ky; #
{i(kLl - kLZ)’ 2kL1,2’ kLl + kLz, 2kL1 - kLZ’ 2kL2 - kLl}’ leading to the chain

Zy=5: {A1s @ APy @ AP @ PpsAjp @ PysA1y P13 @ Pi3A, @ PisApPoy @ PrsAp PP (B149)

The associated charge vector is

kia—k, kia—k kpi—k, kpi—ky  —k —k k
(1’ D B A A s L wnl). (BISO)

¢. Only matrices from P'A,, P

The symmetry generators are given by
Sg = Pldiag(w}!, 0y, wi2)P

- (B151)
S, = diag(1, wy*', wy*)
leading to the phase transformation matrix ©, p
ki ky kia
27
o ki —kpy ky —kpy kpp = kpy | P (B152)
ki = ki ky = ko 0

There is only one chain possible when k's are all different. We get

Zy=9: PRA;, @ PyyAyPrs @ Ap Py ® A3 P13 @ P3Apy @ PysAppPi3 © PisApy ® P3A Py & Pi3A Pos)P.
(B153)

T'he associated charge vector is
kpy—k kpa—k kpa—k kpy =k kpy —k —k —k —k
(L wnt' ™, @04, 0, ot 2, ottt Y, wn B, w2 wp ). (B154)

APPENDIX C: MODELS BELONGING TO CLASSES (2, i)

Explicit representation of the available models for classes 2, i.
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APPENDIX D: TABLES
In this appendix Tables X, XI, XII, XIII, and XIV, useful in different stages of the paper, are presented.

TABLE X. Symmetry groups that implement a given chain.

C(l3’1):Zn23
C(13’2):Z3n
C(23’2) Zon+1)
C(3i'¢2)32n24
C?’z):ans
Cg3’2):Zn26
C(l3’3):Z3n
C(23’3):Z4n
Cg3’3):2n25
CELS’S):ZZ(nJrZ)
C(53’3):Zn27
C(63’3)322(n+2)
C(73'3)525n
&Y Zsen
Cg3’3):Z”27
i Zae)
C(l";’S):Zn%
C(I%S):ans
C(133’3):Z,,28
Cﬁs)5zn27
C%S):Zn27
Y Zo43)
C(13;’3):Z,129
C(13§3):Z”29

TABLE XI. Combinations with N = 3 which lead to three mixing angles for classes (3, 1)

(part I).

Classes
Ay ® Pr3Ay ® Pi3A, ci?v
Ay @ Pi3A, @ A OC%Z)
Ay ® Py A @ Ay ocP?
Pio3A1s © PiyjAy © Ag ocP?
Ay ® PiAyy @ PypAy cP?
Ay ® Pp3A @ Pi3Ay, C(23,2)
Ay ® Pp3Ayy @ Pi3Ap, C(23,2)
Ay ® Pi3Ay @ P3Ap C(Z?L;Z)
PrAi @ Pi3Ay © PAp C(23'2)
Ay ® PipA @ PaAg C?'Z)
Ay ® PiAyy @ PyAp C(33'2)
Ay ® Pi3Ay @ PpAp C(;f)
Pi3A1s © Pi3Ay @ PpApy c?
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TABLE XI. (Continued)

Classes
A @A © PpAy c?
Ay @A © PAp c?
Ay ® Pi3Ay @ PyApy c?
A3 ® Pi3A;3 @A ociy
A3 ® PyjA;; @ Ag 0C(lm)
Pi3Az © P3yAj3 © Ag ocp?
A3 ® PipAp; @ PyAps i
A3 ® Py Ars @ Ay OC(z?és)
A ®A;5P13 @A Oc(z?)
A3 ® Py A5 ® AjsP i3 C(z?'f)
A3 ® P jArs @ PiysAis Py, C(23'3)
A3 ®A;5P123 0 Pi3Ais Py C(23,3)
P31Ais © AisPy3 © Pi3Ais Py, C(23,3)
A3 ® PypA1s @ P3Ap C(33'3)
A3 ® PiAis @ A Pr3 P
A3 ®A;5P13 0 P3Ap P
A ® AP @A 3 P
P31Ais © AisP1ys © Pi3Ap, g
P31Ais © AsPrs @ A Pis i
A3 ® Py AsPi3 © A Pos CE;S'S)
Az ® PyiAisPi3 © PrApy Cf's)
A30 PypiAsP 30 AP Cf‘s)
A3 ® P3pA15P13 © PaAp C513,3)
A3 ®@ApPy3 @ ARP;3 Cf’ss)
A3 © APy @ PAy, Cfés)
A3 PpAp @ ApPs Cfg)
A3 PpAp @ PAp CE&?‘SS)
A3 ® APy @ P3A ;P &
A3 ® APy @ Py3Ap P &
Az ® PyAp; @ Pi3Ap P C?'s)
Az ® PyAp; @ PpAp P C(53'3)
A3 ®ApP;30 P3A; Py &
A3 ®@ AP0 PyApPis &
A3 ® Pi3Ap @ P3Ap Py &
A3 ® Pi3Ap @ PyApPis &
A5 ® PpAis © PyyiAisPrs e
A5 ® Pp3As @ Piy3Ais Py e
A5 ® Py jAisPi3 © PiAis Py, >
Pr3A15 ® Py AsPi3 © PipAisPy C(63'3)

056015-43



H. SERODIO PHYSICAL REVIEW D 88, 056015 (2013)
TABLE XII. Combinations with N = 3 which lead to three mixing angles for classes (3, i)

(part II).

Classes
Pr3A15 ® Py 1AisPi3 @ P3ApPs C(63'3)
PrAis ® PipAisPn ® PizApP; C(63'3)
Ais®A;5P123 @ Py AsPry C(73'3)
Ais ®A15P123 @ PipAisPoy C(73'3)
Ais®A;5P123 @ P3A 1 Pos C(7?'130),15
A5 ® Py jAsPrp © PiAisPy, Py
A5 ® Py jAsPp © Pi3Ap Py C(73'3)
A5 ® Pi3AisPp © Pi3Ap Py C(73'3)
Ai5P1y; ® P3y)A5P1p @ PinAis Py, C(73'3)
Ai5P123 ® P3y)AisP1y @ Pi3ApPos C(73'3)
Ai5P123 ® Pi3AisPrp @ Pi3ApPos Cgs,s)
P321A15P1r ® Pin3AisPry @ Pi3ApPos C(73'3)
Ais® PiAis @ A Py3 Cé?ﬂ)
Als ® Py A5 @ PyyAp Prs Cgii)
A5 ® Py A5 © P3ApPrs Cﬁfﬂ)
Ais® PipAis @ ApP3 Cgﬂ)
A5 ® Pip3A1s @ Py3Ap Pis Cgs,s)
A5 ® PipAis © P3ApPrs Cg'l%),ls
P31Ais @ PiAis @ ApPy3 C;3,3)
P31A1s © PiAjs © PApPrs Cg;”)
P321A1s © PiAis © Pi3ApPrs cg?
Ais ® PpAisPi3 ® P3Ais Py, cg?
Ais ® PpAisPi3 @ P3Ap P e
A5 ® PpAisPi3 @ PpAp e
Ais ® P3A ;5P © PAp P C(93'3)
Ais® P3A ;5P @ Ap Py C(93'3)
PoA15P13® Pi3AisP @ AP C(93'3)
A5 ® P3A 5P, @ PpAp e
Ais®A;5P13 0 P3Ap C(13(5,31)5
Ais ®A;5P3; @ P3Ap C(13(5,31)2
Ais ®A15P3; & P3A;n P i
Ais ®A15P3; @ P3A;pPrs C(13(5,3|)2
AisPi3 ® AsPy © Pi3Ap, i
AisPio3 @ Ai5Pyy @ P3APos C(l%S)
AisPio3 @ Ai5Pyy © P3ApPos C(13(53)
A5 ® PipAis @ P3A;s P C(13[3)
A5 ® PipA1s @ P3A;pPrs C(131'3)
Ais® PipAis ® A Pr3 iy
A5 ® P13A15P1ys © PpApy iy
Ais ® P3A ;5P @ A Pis iy
Pi3Ais © Pi3AisPiys © Pi3ApPos iy
Pi3Ais © Pi3A15Prys © Pp3Apy i
P123A15 @ P3AisPi3 @ A Pos C(131'3)
Ais®A;sPy; @ Pi3AisPins 3y
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TABLE XII. (Continued)
Classes

Ais ® Pi3A ;5P @ Ap P C(33)
A5 ® Pi3A15P1s © PaAp C(33)
Ai5Py © Pi3AisPiys @ ApPoy C(1323)
Ai5P3 © Pi3AisPips © Pi3Ap, C(I%S)
Ai5P31 © Pi3AisPips © Pi3ApPos C(%s)
A5 ® PipA15P13 @ PpApy C(133'3)
A5 ® Py AsP13 ® PaAp C(133'3)
A5 ® PypA1sP13 @ AP C(13§3)
A5 ® Py AisP3 @ A Prs C(133'3)

TABLE XIII.

Charge vector for the classes (3, i).

C(|3,1)
C(13,2>
P X
C(23,2)
P X
Pi3X
C(3 2)
P X
Pi3X
Py X
Py X
Py X
C(3 ,2)
P X
Pi3X
Py X
PiaX

Py X
C?‘Z)

C(l3,3)
C(23,3)
Pi3X
Py X
C(33,3)
P X
Py X
Cf‘S)
Pi3X
Py X
C(53,3)
C(63,3)

kL] —kp ko
(1’ w )

(1 w"&n’ w%n)

(l w?n’ w?n)

kLl = szz =2n
kL2 = 2kL] =2n

(L w5l wz(fﬁrll)’ 2(]:LL+11+)H+1) kpp =kp tn+1
(L @i @5y lchﬂ?)ﬂ) kpp=n+1
(1 w5y @250 @) kp=n+1
(L 0y 2, 0,2, wp?) kui = 2k;
(1 wﬁlz’ w%klz’ w;kl_z) kLl — 2kL2
(1’ wﬁ[‘z 2k’_2 _k[_Z) kLl — _kL2
(1, wnku a)nZkLl ﬁu) ki = 2k,
(1 kal] 3kL|’ (l)n kLl) kL2 — _kLl
(1’ ﬁLl’ w%kLI, w;kLl) kL2 — 2kL]
(1, kaszLl 7kL] kLlikLZ, w;kLZ)
(1’ w]:lL", w];lL], a)n kL" kLlikLZ)
(1) Wy, kl_l’ wkl_z ku’ f;[l, ﬁl‘z)
(1, wﬁ’_l_kl‘z) a);k’ wf;[z kll ;kl‘l)
(1, w;kLZ ku kpa wﬁu’ wﬁu)
(1, w"L i wﬁu w;ku’ ﬁLZ_kL])
(1, wﬁu kLZ’ w, —kp» w*k ku_ku_k’ w;(kL2+k))
(1, an’ w3, Thkpy = Fkpp=n

2n

(1 w4n’ w4n’ Wiy

kL2 = 2kLl =2n

(1, “’4312’ @}, w3n) kpi = 3k, = 3n
(1, win, w4, o3, kpy = 2kpp =2n
(1 w;kn wﬁll, W 2/(11) %kl_l) kL2 — 2kL1
(1 (l)kll, _kLI %kl‘l) w;Zkll) kL2 — _kLl
(1, o, —kip wﬁu’ w;zku’ wﬁkLZ) ki = 2k,
(1, “’g(:iz)’ w?ﬁii%” 2(§L+22+)n+2 “’I%H) ;(ﬁﬁz)) kpy=n+2
({1, “’2 n+2)’ z(ﬁsz)n+2 l;ffzi;) 2 “’z(anz)’ “’z(n+z)) kpy =kpp+n+2
Uﬂ%ﬁw ) O Ohiiay @ata) kip=n+2
(1’ kL2+kLl (kL2+kLl) 2kL1+kL2 *(Zku*ku) ;ku’ ﬁu)
(1, @5 n%—Z) z(fff;)ﬁz wz(ﬁfz)’ w2(121]:-2)’ wlﬁ(n+z)) kpy =kp+n+2

056015-45



H. SERODIO

PHYSICAL REVIEW D 88, 056015 (2013)

TABLE XIII. (Continued)

P, X n+2 ki k“+n+2 2kyy i

?12 (1, w353%5) w%(niz); 2+2) > Pon+2y w2(n+2)) kip=n+2
X n+2 2tn 12

C(?:*) (L @550 @y(nin) + @oniay @oriay “’2<n+2)) kpy=n+2
, on 4n _

?7 (1, wsn’ w5, W5, an) *hpp = ¥k =n
X 4n —

12 (1, an’ w3, s, ©5,) *kpy = +2kp =2n
Pi3x (1 03, 03}, 03, @%,) Thpy = +2kpp =2n
Cg3,3) (1 w2(n+l) wn+1 —k;+2(n+1) w—k +n+1 ky _

o snt1) @3t 1y O 30,4 1) Tkpp = Fkpy=n+1
d (1’ wan_ n (1); w7, 1~k K
’ n ’ n ’ a)l’l)

33) F2(n+1 * —kp + — ¥

C( F2(n+1) F(n+1) kL|+(n+l) ki —kp F2(n+1)
(1, @30,41) » D3(4+1) > » D311y D3(41) ) ki =kp = (n+1)
PlZ (1 F2(n+1) +(n+1 kL|+(n+l) wk 1 ku+ (n+1))
D3(4+1) » D3(n+1) 3(n+1y 3(n+1) k== +1)
?12 (1 w+2(n+1) F(n+1) ka2+2(n+l) ka2+(n+1 *kLa
o s W3,41) 3(n+1)’ 3(n+1) 30,5 1) kpy=*m+1)
C ) a, km —4kpy  kpy  —3kp,
on s wn P, @y, @, ) ki = 2k,
k,2 wlz ka3
?12 (1 L , Wp LZ; 1_2) kLl = 2kL2
k,2 4k —k, | 3k
7)13>< (1 Wp 2 wp P, oy ,2) kLl = _kLZ
P, X kpi =4k ko =3kp
?23 (1 w, . , @y 4/]; a;{n ’ a;r]z t ) kpy = 2kpy
) _
123>< (1 n oy, wp ", oy L]) kL2 = _kLl
k 2k 4, —
P3yi X (1, wi™, “, ont, @y @ ki, =2k
C(3'3) kpi— kLZ 12—k —k 2k - -

12 (1r Wy , Mow, ", oy Ll) 3k, = 2k;,
P, X ( ki —kpo —2k

12 Lo, " @Rt w, ) kp = —2k

’ L1 — L2

k k —k —k k 2(kp 1 —k
?13X (1 w L], wan L]) a)n L]’ a)nLZ, a)n( L1 LZ)) 3kL1 — kL2
?23>< (1 w _kLl Ll_kLZ _kL] 2kLZ) 3k p— Zk
L2 — L1
k k —

P123X (1 02, ki~ wﬁ[l wi(kzz k[l)) 3k, = kpy
P31 X (1, w2 g, ) ki, = —2k

5 L2 — T 4Rl
C(33) (1, w—ku w—Zku’ wﬁu w;kLZ w7k ko= 2ke, wk')

, Wy , Wp , Wy
k 2k -
P, X (1, 0, ¥ @y L1 kLZ) wﬁLZ’ a)flL2+kLl’ wﬁ/)
k k 2k —k, k - -
?ISX (]’ whkr R g2k Ll)’ @ k2w kLl’ wﬁLZ 2kLl’ wﬁ’)
Py X (1 w;kLZ w;ﬂ‘Lz wf,“ ;ku wku*km k™ 2k wk’)
, , , ,» Wn n , Wy
ki —hia |20k~ k k-
T123X (1 w L1 LZ L1 wnLl wn L2 wnLl 2kL2, wﬁ’)
k 2k - —k k

j)(:;zg)x (1 ok @i o L gk ﬁLl+kL2’ Ll)ﬁ/)

2 —k k -

C14 (1, wn Ll, wn 1 wnu w%ku kl) wﬁu kl) kLZ — 2kLl
193 —k —2ky1—k —kp1—
Py X (1, 0", 0, "', 0y n T o Fu kl) ki ki1
193 —k —2k; 1 —k —kp1—
?13>< (1: Wy, w, ', oy , 0, T wy kl) ko = 2kp,
Py X (1, w;kLZ’ w;kl kL2 w,zzk” ky wﬁLZ_kl) ko= 2k
L1 — L2
C(33) (1, wku*ku i(ku*ku) wnu*kl_z w*kl_z Wk kaz*ZkLl)
’ ’ n n » n
k 2k —k kpi—
P, X (1, 0%, w2v, @,k ok kro (I)ﬁl_ly w£L1+kL2)
—2k k k — -
?]3>< (1, w” Ll, wn L], wnLl, wnLZ, w]'(lLZ kLl’ w]'(le 2kLl)
kpi—kpy 20k — - - - -
?22 (1 wnLl LZ, wn(kLl kLZ), wﬁLZ kLl’ wn kLl, wn kLZ’ kal 2kL2)
33 k - - -
C( 1 wn-H 1 kpy+3+n kri kpy k|+3+" kpi—k ¥
” ( ';H)’ “;( (n+3) “;( (153 k‘”z<n+3y 2ntd) o Ponrz) Poi3) kpp =kpy +3+n
n+ 1 L1 n L1 —kpi—ki+3+n —kp—k

12X (1, a)2(n+3)’ 2n+3)7 Po(n+3)  P2(u+3) Pon+3) » Wo(nt3) w2(n+3)) ki, =3+n
Pl} (1 " kl kL ka2+n+3 —kpo— —kLz—k|+n+3 k'

3) 2(n+3) k2(f;3)’ k2(n_+k3)’ Ig(wg) ’ kz(nH) ’ ‘:2(n+3) 2(n+3)) kpp=3+n
cl (1, ok ko he=h - ghi=hz g ku=ki gy ki w;k"l, w/;ll)

9% kpy—kp—k —k, —kp1—k ki —k k
?12 (1 w k w . L1 . ]’ a)n LZ’ a)n L1 l’ wnLl LZ Ll k])
—_ - - k —_ —_
TI3>< (1 w Ll’ wn L2 1’ a)”Ll’ wﬁL] kLZ kl’ wﬁLZ’ a) kLl’ )
—k, kpi—k ki —k kpy— -
TZ'% (]; a)nLl Lzy (I)nLl ], wan “; (l)nL2 kly (O ku’ wn Lz, wn])

(33) ki —k kir—k kio—k ki —k kp—k - -

C (1’ wn 2’ wnLZ 2’ wnLZ 1’ wnLl LZ, wnL] l’ wn kLZ, wn kz’ wfl])
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Classes N=1 N=2 N=3
c\tv all all all
clio all all
cly all
clen all all
b ) all all
C&'Z) 1) (1,2):(1,3) all
2 (1,2):(1,3) all
ciz? (1,4) (1,2,3)5(1,2,4):(1, 3.4)
c?“) (1,2):(1,3):(2,3) all
cley (1,3):(2,3) (1,2,3):(1,2,4),(1, 3,4);(2,3,4)
2y (1,2):(1,3) (1,2,3);(1,2,4):(1,3,4):(2,3,4)
2 (1,2):2.4) (1,2.3):(1,2,4):(1.34):(2.3.4)
cey (1,3) (1,2,3):(1,2,5):(2,3,4):(1,3,4):(1:3:5)
iy (1,2,6):(1,3,5):(2.3,4)
cio all
b (1,2):(1,3):(2,3) all
b (1,3):(2,3) (1,2,3):(1,2,4),(1, 3,4):(2,3,4)
B (1,2):(1,3) (1,2,3);(1,2,4),(1, 3,4):(2,3,4)
c?“) (1,3) (1,2,3);(1,2,5);(1,3,4):(1,3,5):(2,3,4)
C?l“) (1,2,6):(1,3,5);(2,3,4)
Ci: (1);2):3) (1,2)5(1,3);(2,3) all
5 (1,2);(1,3);(1,4) . . .
(1) Ay (1,2,3);(1,2,4);(1, 3,4):(2,3,4)
3y ) (1,2):(1,3);(1,4) (1,2,3)5(1,2,4):(1,2,5):(1,3,4):(1,3,5):(1,4,5):(2,3,4):(2,3,5);(2,4.5)
M (1,5):(2,5);(3:4) (3,4,5)
Cf‘s) (@) (1,2);(1,3);(1,4) (1,2,3);(1,2,4);(1,2,5)5(1,2,6);(1,3,4);(1,3,5);(1,3,6);(1,4,5);(1,4,6)
(1,5):(1,6) (1,5,6):(2,3,6);(2,4.5)
c?d ) (1,2):(1,3):(1,4) (1,2,3);(1,2,4):(1,2,5):(1,2,6):(1,2,7):(1,3,4):(1,3,5):(1,3,6):(1,3,7)
(1,5);(1,6);(1,7) (1,4,5);(1,4,6);(1,4,7);(1,5,6);(1,5,7);(1,6,7);(2,5,7);(3,4,6)
c®d (1,3):(1,4);(1,5) (1,2,3)5(1,2,4):(1,2,5):(1,3,4):(1,3,5):(1,4,5):(2,3,4):(2,3,5);(2,4.5)
(2,5)
c?d (1,3):(1,4):(2,3) (1,2,3)5(1,2,4):(1,2,5):(1,3,4):(1,3,5):(1,4,5):(2,3,4):(2,3,5);(2,4.5)
(2,4) (3,4,5)
c$d (1,6):(2,4):(3,5) (1,2,4)5(1,2,5);(1,2,6):(1,3,4):(1,3,5):(1,3,6):(1,4,6):(1,5,6);(2,3,4)
(2,3,5):(2,4,5):(2,4,6):(3,4,5):(3,5,6)
ey (1,4):(2,6):(3,5) (1,2,3);(1,2,4);(1,2,6):(1,3,4):(1,3,5):(1,4,5);(1,4,6):(1,5,6);(2,3.,4)
(2,3,5):(2,3,6):(2,4,5):(2,4,6):(3,4,5):(3,5,6);(4,5,6)
cd (1,6):(2,4):(3,5) (1,2,4)5(1,2,6);(1,3,4):(1,3,5):(1,3,6):(1,4,6):(1,5,6):(2,3,4):(2,3,5)
(2,3,6):(2.,4,5):(2,4,6):(3,4,5):(3,5,6)
ci?y (1,3):(1,4):(2,3) (1,2,3):(1,2,6):(1,3,4):(1,3,5):(1,4,6):(1,5,6);(2,3,4):(2,3,5):(2,3,6)
(2,4,6):(3,4,5)
i3y (1,3):(1,6);(2,3) (1,2,3):(1,2,5);(1,2,6):(1,3,4):(1,3,5):(1,4,6):(1,5,6):(2,3,4):(2,3.5)
(2,3,6);(2.,4,6):(3,4.,5)
cd (1,2):(1,3) (1,2,3):(1,2,4):(1,2,5):(1,2,6):(1,2,7):(1,3,4);(1,3,5):(1,3,6):(1,3,7)
(1,5,7):(2,4,7):(2,5,6);(3,4,6)
i3y (1,3):(2,6) (1,2,3):(1,2,6);(1,2,7):(1,3,4):(1,3,5):(1,3,6):(1,3,7):(1,4,6):(2,3.5)
(2,3,6):(2.4,6):(2,5,6):(2,6,7):(4,5,7)
Py (1,7):(2,5) (1,2,5):(1,2,6):(1,2,7):(1,3,5):(1,3,7):(1,4,7);(1,5,7):(1,6,7):(2,3.,5)
(2,4,5):(2,4,7):(2,5,6):(2,5,7):(3.,4,6)
3y (1,3):(2,3) (1,2,3):(1,3,4):(1,3,5):(1,3,6):(1,3,7):(1,4,6):(1,5,7):(2,3,4):(2,3.5)
(2,3,6):(2,3,7):(2,4,7):(2,5,6)
cd (1,8) (1,2,8):(1,3,6):(1,3,8):(1,4,8):(1,5,7):(1,5,8);(1,6,8):(1,7,8):(2,4.8)
(2,5,6):(3,4,7)
i’ (1,2,9):(1,6,8):(2,4,7):(3,5,9):(3,6,7):(4,5.8)
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