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The SUð2ÞA �Uð2ÞV-symmetric chiral linear sigma model in the presence of the axial anomaly is

studied in the local-potential approximation of the functional renormalization group. The renormalization

group flow is investigated in a truncation which reproduces recent results for the Uð2ÞA �
Uð2ÞV -symmetric model in the limit of vanishing axial anomaly strength. We search for the conjectured

Oð4Þ fixed point in the presence of the Uð1ÞA anomaly and analyze its stability properties.
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I. INTRODUCTION

Pisarski and Wilczek [1] investigated the most general
renormalizable Lagrangian which is invariant under the
chiral UðNfÞL �UðNfÞR symmetry of quantum chromo-

dynamics (QCD), where Nf denotes the number of quark

flavors. Choosing the ½ �Nf;Nf� þ ½Nf; �Nf� representation
of SUðNfÞL � SUðNfÞR [2], in Euclidean space this

Lagrangian reads

L� ¼ 1

2
Trð@��yÞð@��Þ þ 1

2
m2

� Tr�y�

þ �2

3
g1ðTr�y�Þ2 þ �2

3
g2 Trð�y�Þ2; (1)

where� is a complex-valuedNf � Nf matrix. The anoma-

lous breaking of the Uð1ÞA symmetry contained in
UðNfÞL �UðNfÞR is due to instantons [3] (see also

Ref. [4]) and is commonly referred to as Uð1ÞA anomaly.
The authors of Ref. [1] conjectured that, for Nf ¼ 2, the

chiral phase transition of QCD can be of second order in
the presence of the Uð1ÞA anomaly. In this case, it would
fall into the Oð4Þ universality class. In the following, we
shall refer to this statement as Oð4Þ conjecture.

The term commonly introduced into Eq. (1) in order to
explicitly break the Uð1ÞA symmetry is

det�y þ det�: (2)

In Appendix Awe show that, for Nf ¼ 2, the most general

form of the anomaly including terms up to naive scaling
dimension four is [5]

LA ¼ cðdet�y þ det�Þ þ yðdet�y þ det�ÞTr�y�

þ z½ðdet�yÞ2 þ ðdet�Þ2�: (3)

These terms must be added to Eq. (1),

L ¼ L� þLA; (4)

if one wants to study the impact of the Uð1ÞA anomaly on
the chiral phase transition. For Nf ¼ 2 and including

terms up to naive scaling dimension four, the Lagrangian
(4) is the most general Lagrangian invariant under

SUð2ÞA �Uð2ÞV and respecting parity symmetry. We
note that the terms �y; z are always induced by the renor-
malization group (RG) flow if c � 0. Therefore, in the
following we shall use the notion ‘‘in the presence of the
anomaly,’’ whenever c � 0. Note also that

ðdet�y þ det�Þ2
¼ �Trð�y�Þ2 þ ðTr�y�Þ2 þ ½ðdet�yÞ2 þ ðdet�Þ2�;

(5)

so that the square of the term (2) is not linearly independent
from the other invariants contained in Eq. (3). Finally note
that

iðdet�y � det�Þ (6)

is not invariant under CP transformations [1].
In this work, we consider the case Nf ¼ 2. Denoting

� ¼ ð�þ i�Þt0 þ ~t � ð ~aþ i ~�Þ; (7)

with t0 ¼ 1ffiffi
2

p 1 0
0 1

� �
, t1 ¼ 1ffiffi

2
p 0 1

1 0

� �
, t2 ¼ 1ffiffi

2
p 0 �i

i 0

� �
,

t3 ¼ 1ffiffi
2

p 1 0
0 �1

� �
, we rewrite the Lagrangian (4) into the

form [6]

L ¼ 1

2
ð@��@��þ @� ~� � @� ~�þ @��@��

þ @� ~a � @� ~aÞ þU; (8)

U¼1

2
�2ð�2þ ~�2þ�2þ ~a2Þþ�1

4!
ð�2þ ~�2þ�2þ ~a2Þ2

þ�2½ð�2þ ~�2Þð�2þ ~a2Þ�ð��� ~� � ~aÞ2�
þcð�2��2þ ~�2� ~a2Þþyð�2þ ~�2þ�2þ ~a2Þ
�ð�2��2þ ~�2� ~a2Þþz

1

2
ð�2þ ~a2��2� ~�2

�2 ~a � ~�þ2��Þð�2þ ~a2��2� ~�2þ2 ~a � ~��2��Þ;
(9)
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where �1 � 4! �
2

3 ðg1 þ 1
2g2Þ, �2 � 2 �2

3 g2, �
2 � m2

�. For

c ¼ 0, y ¼ 0, and z ¼ 0 Eq. (8) reduces to the Uð2ÞL �
Uð2ÞR-symmetric Lagrangian (1).

The RG flow for the Lagrangian (1) was analyzed for
different values of Nf. The results from the � expansion

[5,7] prove that for Nf ¼ 2 the Oð8Þ-symmetric infrared

(IR) fixed point is unstable, which is confirmed from func-
tional renormalization group (FRG) studies [6] as well as
from lattice calculations [8]. The absenceof an IR stablefixed
point is a sufficient criterion for the phase transition to be of
first order. In the presence of the anomaly (c � 0), however,
to our knowledge the RG flow for the Lagrangian (8) has not
yet been calculated explicitly, neither in the � expansion nor
in the FRG framework. The FRG study presented in
Refs. [9,10] neglects the fields � and ~a from the beginning.
Other RG results in the presence of the anomaly can be found
in the literature only for caseswhere the anomaly term acts as
a coupling of order higher than two (see for example
Refs. [11–14]). Also, studying how c approaches 1 has not
yet been investigated explicitly on the level of RG flow
equations. In this work we want to fill these gaps by appro-
priately extending the study presented in Ref. [6].

For the remainder of this introductory section, we would
like to make a couple of remarks. The first one concerns the
universality hypothesis. The RG approach towards critical
phenomena defines (universality) classes of microscopi-
cally very different models, which lie in the basin of
attraction of a certain IR stable fixed point and hence share
the same critical exponents. Each universality class can be
uniquely defined by the universal eigenvalues of the stabil-
ity matrix associated with the IR stable fixed point (we
neglect cases where the critical exponents depend on the
couplings, as in Baxter’s famous two-dimensional eight-
vertex model [15]). Also the fixed-point potential is char-
acteristic for a given universality class and determines the
symmetry of the fixed point.

Consider a certain symmetry group G0 and the most
general G0-invariant Landau-Wilson potential for a certain
representation �ðG0Þ. For the sake of simplicity let us
assume that the Landau-Wilson potential has a single IR
stable fixed point FP0 in coupling space, and thus falls into
the universality class of FP0.

Let us now add another coupling term to the potential,
which breaks G0 to a subgroup G of G0. One obtains a
different model which is only invariant under this subgroup
G � G0. The presence of an additional coupling term
could induce another IR stable fixed point FP associated
with G. The existence of the fixed point FP0 need not be
compromised, but it does not need to be IR stable anymore.
However, if FP0 remains IR stable, and if FP does not
exist, and if no separatrix exists in the RG flow, the new
G-invariant model necessarily falls into the same univer-
sality class as the previous G0-invariant model.

In the literature there exist different versions of the
universality hypothesis with slightly varying scope and

content [15–17]. We state the universality hypothesis as
follows: twoLagrangians for two different order parameters
lie in the same universality class, if (i) the spatial dimension
is the same for both systems, (ii) the order parameters have
the same number of components, (iii) the symmetries of the
Lagrangians are isomorphic, and (iv) there are no long-
range interactions in both Lagrangians. [Usually, long-
range interactions yield mean-field values for the critical
exponents and one does not have nontrivial universal be-
havior. In the presence of ‘‘middle-range’’ interactions
critical exponents can be different for two Lagrangians
fulfilling the criteria (i)–(iii).] Whereas conditions (i), (ii),
and (iv) are necessary conditions, criterion (iii) is sufficient
but not necessary since, according to the above discussion,
the fixed point for the full symmetry group G0 can remain
IR stable even in the presence of terms which break the
symmetry to G � G0, and therefore the two Lagrangians
are both in the universality class associated with FP0. It is
an open question how to turn (iii) into a necessary condition,
and if further conditions are necessary in order to exclude
exceptions [17].
On the other hand, there exists a plethora of (more or less

reliable) criteria which can serve to rule out the existence
of an IR stable fixed point (see, for example, Refs. [18–21]
and references therein). The best-known ones were already
given by Landau and Lifshitz [19,22], namely the case
where the representation �ðGÞ of the group associated
with the G-invariant Landau-Wilson potential is not irre-
ducible (such that there is a linear invariant), or the case
where the third power of the representation, �3ðGÞ,
contains the trivial representation (such that there is a
third-order invariant which drives the transition first order).
Furthermore, unless one is interested in multicritical

behavior (for a related work, see Ref. [23]), it is commonly
assumed [24] that in case of two quadratic invariants, one
can restrict the discussion of critical behavior near second-
order phase transitions to simpler models, one for each of
the competing order parameters (the quadratic invariants).
This is because in general the couplings associated to the
two quadratic invariants vanish at different critical tem-
peratures, each corresponding to a different phase transi-
tion. One may naively think that it should therefore be
possible to ignore one of the order parameters, when dis-
cussing the phase transition for the other one. However, the
second invariant introduces another relevant direction in
coupling space which may render an IR stable fixed point
corresponding to a second-order phase transition associ-
ated with one of the order parameters unstable.
Our second remark concerns the role of baryon number

conservation in the chiral phase transition. The Uð1ÞA
anomaly explicitly breaks the Uð1ÞA symmetry contained
in G � UðNfÞV �UðNfÞA ’ Uð1ÞV �Uð1ÞA � ½SUðNfÞ=
ZðNfÞ�L � ½SUðNfÞ=ZðNfÞ�R down to ZðNfÞA, where ’
symbolizes group isomorphy. The group Uð1ÞV is associ-
ated with baryon number conservation and should not be
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broken (spontaneously) during the phase transition. Thus
one usually argues that one can neglect it when studying
the chiral phase transition, leaving ½SUðNfÞL�SUðNfÞR�=
ZðNfÞV !SUðNfÞV=ZðNfÞV for the symmetry breaking

pattern relevant for the chiral phase transition in the pres-
ence of the anomaly [5]. The spontaneous breaking of a
discrete symmetry does not yield Goldstone modes, such
that it is sufficient to consider the breaking of the continu-
ous group G0 � SUðNfÞL � SUðNfÞR in the chiral phase

transition in the presence of the anomaly. We nevertheless
consider an effective theory for the order parameter invari-
ant under Uð1ÞV �G0 in the search for the IR fixed
point associated to spontaneous breaking of SUðNfÞL �
SUðNfÞR.

Our final remark concerns the Oð4Þ conjecture. Aside
from criterion (iv) which we do not discuss here, we
conclude that if the chiral phase transition of two-flavor
QCD in the presence of the anomaly is of second order,
then the Lagrangian (8) should fall into the same universal-
ity class as QCD. The Lagrangian (4) however has 8
degrees of freedom, whereas the Oð4Þ model has only
four, which at first glance would mean that criterion
(ii) of the universality hypothesis is not fulfilled. It is
therefore a priori not clear that the IR stable fixed point
for the Lagrangian (4) is an Oð4Þ fixed point. It might as
well correspond to another universality class, characterized
by SUð2ÞA �Uð2ÞV critical exponents. To justify the Oð4Þ
conjecture, first note that the choice of the representation
depends on the physical degrees of freedom one intends to
study. In the presence of the anomaly, one can make use of
the isomorphism

SUð2Þ � SUð2Þ=Zð2Þ ’ SOð4Þ; (10)

which means that SUð2Þ � SUð2Þ is locally isomorphic to
Oð4Þ. Accordingly, SUð2Þ � SUð2Þ has an Oð4Þ represen-
tation. For Nf ¼ 2, the representation of the Lagrangian

(8), or (4), respectively, is reducible. It consists of the
sum of two equivalent Oð4Þ representations [2,5,25],
�1 ¼ �t0 þ i~t � ~� and �2 ¼ i�t0 þ ~t � ~a, which are both
irreducible, but not faithful, representations of SUð2Þ �
SUð2Þ. Therefore, the symmetry of QCD allows for an
Oð4Þ representation, if only the sigma and pion are light
particles. At mean-field level this can be confirmed. The
analysis in Refs. [26,27] shows that if we identify ~� with
the Goldstone modes (the pions), the fields � and ~a are
massive at the critical point, whereas the field � is as light
as the pions (and can be interpreted as the chiral partner of
the pion). Since at the critical point only the modes with
smallest mass are relevant (i.e., which count as components
of the order parameter), we conclude that, if the mean-field
approximation were justified, the IR fixed point would
indeed be the stable Wilson-Fisher fixed point of the
Oð4Þ model.

Of course, the mean-field approximation neglects quan-
tum fluctuations (such as instantons), which might change

the universality class or might lead to the instability of the
fixed point. For this reason we study the FRG flow for the
Lagrangian (8) in this paper. One could argue that for very
large anomaly strength, c ! �1, �- and ~a-loop diagrams
should be suppressed according to theAppelquist-Carazzone
decoupling theorem [28] due to the very high tree-level mass
for the corresponding fields. Since the � expansion deals only
with loop diagrams, one can indeed expect to find the Oð4Þ
fixed point [29]. However, this argument says nothing about
(a) the stability of the Oð4Þ fixed point and (b) the cases of
small and intermediate anomaly strength.
Let us note that in consistency with Refs. [1,6] we work

with the dimensionally reduced theory, which is justified
because the diverging correlation length at a second-order
phase transition leads to dimensional reduction [30]. Again
in agreement with the aforementioned references, we re-
strict ourselves to the case T * Tc where the system is
driven towards the critical point from the side of the
restored phase. This allows us to assume vanishing vacuum
expectation values for all fields.
As a final remark, we want to point the reader to several

FRG studies related to our work in a larger context, the list of
which is, however, incomplete. Here we want to mention the
recent work on applying the FRGmethod to QCD [31–35], a
strategy how to combine first-principle QCD flows with
effective models [36], and some investigations of effective
models for QCD [37,38].
This paper is organized as follows. At the beginning of

Sec. II we explain the method we use. In Secs. IIA and IIB,
respectively, we consider two equivalent parametrizations of
the potential. This not only serves as a check of our results,
but also illustrates our general remarks given in Appendix C
on how to obtain the correct flow equations when working
with a parametrization in terms of the original field compo-
nents instead of invariants. We derive the flow equations and
analyze the stability properties of the fixed points. In
Sec. II C we explain why the Oð4Þ fixed point becomes
stable in the special case of infinite anomaly strength. Our
arguments are supported by a discussion of the analogous
situation in a simpler model in Sec. III. Section IV concludes
this work with a summary of our results.

II. LINEAR SIGMA MODEL FROM FRG

In this section we investigate the FRG flow of the
Lagrangian (8) in different parametrizations proceeding
in analogy to Ref. [6]. We reproduce the result of
Ref. [6] in the limit c; y; z ! 0.
We use the FRG equation in the local-potential approxi-

mation:

@Uk

@k
¼ Kdk

dþ1
X
i

1

E2
i

; E2
i � k2 þM2

i ;

Kd � 2�d=2

d�ðd=2Þð2�Þd ; (11)
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where Lk ¼ 1
2 Trð@��yÞð@��Þ þUk, with Lk¼� ¼ L

being the bare Lagrangian, and d is the spatial dimension.
In the following, all our numerical results are for d ¼ 3.
M2

i denote the eigenvalues of the mass matrix

Mij � @2Uk

@�i@�j

; i; j ¼ 1; . . . ; 8; (12)

where the fields �i are given by �, ~�, �, and ~a.
With the invariants

’ � �2 þ ~�2 þ �2 þ ~a2;

� ¼ ð�2 þ ~�2Þð�2 þ ~a2Þ � ð��� ~� � ~aÞ2;
	 � �2 � �2 þ ~�2 � ~a2;

(13)

and the abbreviation


 � 	2 � ’2

2
þ 2�

¼ 1

2
ð�2 þ ~a2 � �2 � ~�2 � 2 ~a � ~�þ 2��Þ

� ð�2 þ ~a2 � �2 � ~�2 þ 2 ~a � ~�� 2��Þ;
the bare potential (9) reads

Uð’; �; 	Þ ¼ 1

2
�2’þ 1

4!
�1’

2 þ �2�þ c	þ y	’þ z
:

(14)

Using relation (5) and a different notation,

’1 ¼ �2 þ ~�2; ’2 ¼ �2 þ ~a2; �¼ ð��� ~� � ~aÞ2;
(15)

we obtain

Uð’1; ’2; �Þ ¼ m2
1’1 þm2

2’2 þ l1’
2
1 þ l2’

2
2

þ l12’1’2 þ l3�; (16)

where we introduced new couplings,

m2
1 ¼

1

2
�2 þ c; m2

2 ¼
1

2
�2 � c; (17)

l1 ¼ yþ �1

4!
þ z

2
; l2 ¼ �yþ �1

4!
þ z

2
;

l12 ¼ �1

12
þ �2 � z; l3 ¼ �ð�2 þ 2zÞ:

(18)

Note that the number of linearly independent invariants is
the same in expressions (14) and (16), respectively. When
calculating the mass eigenvalues Mi, we have to simplify
the computation by setting the values of several fields to

zero after having performed the second derivatives in
Eq. (12). Keeping all fields nonzero, we obtain compli-
cated expressions for the eigenvalues because an 8� 8
matrix has to be diagonalized. One can circumvent the
diagonalization using the relation

X
i

1

k2 þM2
i

¼ TrM�1; Mij � Mij þ k2�ij: (19)

However, it still would take a symbolic computation pro-
gram a long time to expand the rhs of the FRG equation
(11) in powers of the fields. Fortunately, the �-expansion
results from Ref. [1] can be reproduced by keeping nonzero
values only for � and one of the components of ~a, say a1
[6]. Note that this is not possible if we choose another field
than a component of ~a, since then � ¼ 0 and we do not
obtain a flow equation for �2. We further comment on the
validity of this procedure from a more general perspective
in Appendix C.

A. Parametrization in terms of invariants

In this section we use the parametrization (16) for the
potential. It is nontrivial to rewrite all fields �i in terms of
the above invariants. Since we have three invariants, the
rewriting can be performed unambiguously only if we keep
at least three fields nonzero. Keeping �,�, and a1 nonzero,
we obtain the unambiguous mapping

� ¼ ffiffiffiffiffiffi
’1

p
; a1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
’1’2 � �

’1

s
; � ¼

ffiffiffiffiffiffi
�

’1

s
: (20)

We also repeated our analysis using �1 instead of � and
found identical results.
We express the mass eigenvaluesMi in terms of ’1, ’2,

and � and expand the rhs of Eq. (11) in powers of these
invariants. Then, inserting Eq. (16) on the lhs, we read off
flow equations for the couplings by comparing coefficients.
In order to calculate critical exponents we rescale quanti-
ties to obtain flow equations for dimensionless parameters.
With

m2
i;k ¼ k2 �m2

i;k; li;k ¼ k4�d �li;k; (21)

we obtain

k
@ �m2

1

@k
¼ �2 �m2

1 �
1

3�2

�
12�l1
��21

þ
�l3 þ 4�l12

��22

�
; (22)

k
@ �m2

2

@k
¼ �2 �m2

2 �
1

3�2

��l3 þ 4�l12
��21

þ 12�l2
��22

�
; (23)

k
@�l12
@k

¼ ��l12 þ 2½4ð�l1 ��32 þ �l2 ��
3
1Þð�l3 þ 6�l12Þ þ ð�l23 þ 4�l212Þð ��1 þ ��2Þ ��1 ��2�

3�2 ��31 ��
3
2

; (24)
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k
@�l1
@k

¼ ��l1 þ 2

3�2

�
48�l21
��31

þ
�l23 þ 2�l3 �l12 þ 4�l212

��32

�
; (25)

k
@�l2
@k

¼ ��l2 þ 2

3�2

�
48�l22
��32

þ
�l23 þ 2�l3 �l12 þ 4�l212

��31

�
; (26)

k
@�l3
@k

¼��l3þ4�l3½4�l1 ��32þ4�l2 ��
3
1þð3�l3þ4�l12Þð ��1þ ��2Þ ��1 ��2�
3�2 ��31 ��

3
2

;

(27)

where we omitted the index k and used the abbreviation

��i ¼ 1þ 2 �m2
i : (28)

In order to find the fixed points we have to set the left-hand
sides to zero and solve the resulting system of equations.
Since the equations are nonlinear, this has to be done
numerically, using starting values for which a standard
root-finding algorithm converges towards a solution. We
applied an algorithm with randomized starting values in a
reasonably large domain of parameter space, each of the
starting values lying in the interval ½�104; 104�. We found
the nontrivial solutions given in Table I where they are
listed together with the corresponding eigenvalues of the
stability matrix. Using 106 different starting values, we

checked that these are the only solutions for given starting
values in the above domain of parameter space.
The method how to calculate the eigenvalues of the

stability matrix is described in Appendix B. From com-
parison with the corresponding eigenvalues for the OðNÞ
models in the same approximation scheme (local-potential
approximation, fourth-order truncation in the fields), see
Appendix C, we can unambiguously identify those fixed
points in Table I with OðNÞ critical exponents. Let us start
our discussion with the fixed points FP6 and FP7. From
the vanishing of the couplings in the upper part of Table I
we see that for each of these fixed points the fixed-point
potential is that of an Oð4Þ model. Fixed point FP6 is that
for the Oð4Þ representation �1 ¼ �t0 þ i~t � ~�, while FP7

that for �2 ¼ i�t0 þ ~t � ~a. From the eigenvalues of the
stability matrix in the lower part of Table I one observes
that both fixed points have more than one negative eigen-
value, which means that they are unstable. Comparison of
the second and third eigenvalue with the last two columns
in Table II of Appendix C also tells us that they have one
relevant Oð4Þ scaling direction.
For fixed point FP5, the two masses �m2

i and the two

coupling constants �li are identical, while �l12 ¼ 0. This
means that the fixed-point potential is that of two indepen-
dent, identical Oð4Þmodels. From the lower part of Table I
we see that this fixed point is a multicritical fixed point

TABLE I. Fixed points in the presence of nonzero anomaly strength, in d ¼ 3 dimension, in the FRG analysis in the local-potential
approximation, with couplings up to quartic order. The bar denotes rescaled quantities.

FP �m2
1 �m2

2
�l1 �l2 �l12 �l3

FP1 �3:80278 �0:197224 �355:58 0.273944 29.6088 0

FP2 �0:197224 �3:80278 0.273944 �355:58 29.6088 0

FP3 �1:34694 �0:333929 �17:0334 0.128417 5.64724 �5:93079
FP4 �0:333929 �1:34694 0.128417 �17:0334 5.64724 �5:93079
FP5 �0:0555556 �0:0555556 0.216617 0.216617 0 0

FP6 �0:0555556 0 0.216617 0 0 0

FP7 0 �0:0555556 0 0.216617 0 0

FP8 �0:0555556 �0:0555556 0.108308 0.108308 0.216617 0.433234

FP9 �0:0675676 �0:0675676 0.149643 0.149643 0.299286 0

FP10 0.609013 �1:18037 �34:5716 7.9826 �9:98504 129.304

FP11 �1:18037 0.609013 7.9826 �34:5716 �9:98504 129.304

FP Stability-matrix eigenvalues

FP1 f9:64793;�5:66667;�0:585909þ 4:07239 i;�0:585909� 4:07239 i; 3:83241;�1:30852g
FP2 f9:64793;�5:66667;�0:585909þ 4:07239 i;�0:585909� 4:07239 i; 3:83241;�1:30852g
FP3 f29:6235; 14:0524þ 4:23653 i; 14:0524� 4:23653 i; 0:917927þ 9:64911 i; 0:917927� 9:64911 i;�1:17232g
FP4 f29:6235; 14:0524þ 4:23653 i; 14:0524� 4:23653 i; 0:917927þ 9:64911 i; 0:917927� 9:64911 i;�1:17232g
FP5 f�1:77069;�1:77069; 1:27069; 1:27069;�0:666667; 0g
FP6 f�2:;�1:77069; 1:27069;�1:;�0:833333;�0:5g
FP7 f�2:;�1:77069; 1:27069;�1:;�0:833333;�0:5g
FP8 f�2:;�1:77069; 1:27069;�0:666667; 0; 0g
FP9 f�1:98804;�1:71971; 1:34471; 0:613041;�0:25;�0:25g
FP10 f�28:9145;�16:865;�10:9156;�3:11604þ 5:87462 i;�3:11604� 5:87462 i;�1:28288g
FP11 f�28:9145;�16:865;�10:9156;�3:11604þ 5:87462 i;�3:11604� 5:87462 i;�1:28288g
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with two relevant Oð4Þ scaling directions. The third nega-
tive eigenvalue of the stability matrix renders this an
unstable fixed point. Fixed point FP8 is another unstable
multicritical fixed point with a single Oð4Þ scaling
direction.

From the vanishing of �l3 and the fact that �l1 ¼ �l2 ¼
�l12=2, the fixed-point potential for FP9 is that of an Oð8Þ
model. The stability matrix indicates that this fixed point is
unstable. Comparison of the eigenvalues of the stability
matrix with Table II shows that it has one relevant Oð8Þ
scaling direction. Since all eigenvalues of the stability
matrix are negative, fixed points FP10 and FP11 are ultra-
violet (UV) stable fixed points. Fixed points FP1 and FP2

are unstable fixed points, none of them belonging to one of
the OðNÞ universality classes.

Finally, FP3 and FP4 are IR stable fixed points. While
for the other fixed points the (rescaled) eigenvalues of the
(squared) mass matrix are always positive semidefinite,
for FP3 and FP4 we find one negative eigenvalue in all
minima of the (rescaled) fixed-point potential �Uð ��; ��; �a1Þ,
which corresponds to an unphysical situation. However,
this could be an artifact of our fourth-order truncation of
the potential (16), and the masses could be real-valued in
higher order [39]. In that case, these IR stable fixed points
are in the SUð2Þ �Uð2Þ universality class. Nevertheless, at
our truncation order we have to reject them.

B. Parametrization in terms of original fields

In this section, in contrast to the previous one, we keep
the potential parametrized in terms of the original fields�i.
This avoids the use of the chain rule together with tedious
rewriting procedures and serves as a check of our results.
As in the previous section, we expand the rhs of Eq. (11)
and read off flow equations for the couplings by compari-
son of coefficients, but now the expansion is in powers of
the original fields�i instead of the invariants ’i, �. Again,
in order to obtain the correct flow equations, accounting for
all three anomaly terms, we have to keep at least three
fields nonzero after having performed the second deriva-
tives in Eq. (12). For a general rule which and how many
fields one has to keep at a minimum, in a case where the
invariants are not known, we refer to Appendix C.

For checking purposes we keep an additional field non-
zero, say �1, and set�2, �3, a2, and a3 to zero after having

computed the second derivatives. This means that the com-
parison of coefficients is carried out using the potential (9)
for�2 ¼ �3 ¼ a2 ¼ a3 ¼ 0 on the lhs of the flow equation
(11). In this case the (scale-dependent) potential (9) reads

Uk ¼ a21m
2
2;k þ �2m2

2;k þ �2m2
1;k þ �2

1m
2
1;k

þ �a�ða41 þ �4Þ þ ���ð�4 þ �4
1Þ

þ �1ð�2
1a

2
1 þ �2�2Þ þ �2a

2
1�

2 þ �0ða21�2 þ �2
1�

2Þ
þ �1a1��þ �3�

2
1�

2; (29)

with

�a� � �1

24
� yþ z

2
; ��� � �1

24
þ yþ z

2
;

�0 � �1

12
þ �2 � z; �1 � �1

12
� 3z;

�2 � �1

12
þ z� 2y; �3 � �1

12
þ zþ 2y;

 � 4zþ 2�2:

Note that

�3 ¼ 2���; �2 ¼ 2�a�; �0 ¼ �1þ

2
;

y¼ ���

2
��a�

2
; z¼��1

4
þ���

4
þ�a�

4
;

�1 ¼ 3�1þ 9�a�þ 9���; �2 ¼ �1

2
þ

2
����

2
��a�

2
:

We verified that we obtain unambiguous flow equations
for m2

1;k, m
2
2;k, �1;k, �2;k, yk, and zk, no matter from which

of the coefficients in Eq. (29) we extract them (which is a
freedom we have due to the additional field we have kept
nonzero). We do not state the flow equations and fixed
points again; we have checked that they are equivalent to
those found in Sec. II A.

C. Physical anomaly strength

So far we have considered only a finite anomaly strength.
According to Ref. [25], however, the limit c!�1 should
be closer to reality: in order to reproduce the correct
vacuum mass of the eta meson in the two-flavor quark-
meson model at tree level, one has to choose a value for
the anomaly strength [jcj � ð958 MeVÞ2] which exceeds a
physically reasonable UV cutoff scale for the RG flow
(k� 600 MeV). Therefore, on all scales relevant for the
RG flow, effectively c ! �1. More precisely, instead of
this limit, we should rather consider the limit

m2
2;k ¼

1

2
�2

k � ck ! 1; (30)

otherwise m2
1;k � 1

2�
2
k þ ck ! �1 would impose severe

constraints on the RG flow in order to finally obtain
positive-definite masses for � and ~�.

TABLE II. Stability-matrix eigenvalues, yi, for the Wilson-
Fisher fixed point of the OðNÞ model, d ¼ 3, FRG (in local-
potential approximation), up to quartic coupling. The bar
denotes rescaled quantities.

N 1
2 ��2� ��1� � ¼ �1=y1 y2

1 �0:03846 7.76271 0:54272 ¼ �1=� 1:84256 1.1759

2 �0:04545 6.67366 0:55149 ¼ �1=� 1:81327 1.21327

4 �0:05556 5.1988 0:564751 ¼ �1=� 1:77069 1.27069

8 �0:06757 3.59143 0:581495 ¼ �1=� 1:71971 1.34471
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In the limit m2
2;k ! 1 the flow equations (23)–(27)

simplify to

k
@ �m2

1

@k
¼ �2 �m2

1 �
4�l1
�2 ��21

; (31)

k
@�l12
@k

¼ ��l12 þ 8�l1ð�l3 þ 6�l12Þ
3�2 ��31

; (32)

k
@�l1
@k

¼ ��l1 þ 32�l21
�2 ��31

; (33)

k
@�l2
@k

¼ ��l2 þ 2

3�2

�l23 þ 2�l3 �l12 þ 4�l212
��31

; (34)

k
@�l3
@k

¼ ��l3 þ 16�l3 �l1
3�2 ��31

: (35)

The above flow equations have only one nontrivial fixed
point, namely the Oð4Þ fixed point,

ð �m2
1¼�0:0555556; �l1¼0:216617; �l2¼0; �l12¼0; �l3¼0Þ:

(36)

Calculating its stability-matrix eigenvalues,

f�1:77069;1:27069;�1;�0:83334;�0:5g; (37)

we find that it is IR unstable. According to standard rules
one would, erroneously, conclude that the phase transition
cannot be of second order. According to common sense,
however, this cannot be true since the fields � and ~a are
infinitely heavy, so that fluctuations of these fields are
completely suppressed and cannot affect the critical be-
havior. In Sec. III we explain, using a simpler model as an
example, why we have to neglect the spurious negative
eigenvalues when inferring the order of the phase transi-
tion. From the discussion in Sec. III, we conclude that
couplings occurring only in front of terms involving infi-
nitely heavy fields have to be neglected in the stability
analysis of fixed points. This can be also understood from
the fact that the fluctuations represented by infinitely heavy
fields are zero.

Inserting the fixed-point solution (36) into the rescaled
potential (16), we obtain

�Uk¼0 ¼ �0:0555556ð ��2 þ ~��2Þ þ 0:216617ð ��2 þ ~��2Þ2:
(38)

Since the fixed-point potential is Oð4Þ symmetric, we can

choose ~��0 ¼ 0 in the vacuum state. Then, the rescaled
vacuum is given by

ð ��0 ¼ 0:358099; ~��0 ¼ 0Þ: (39)

Using these vacuum expectation values we calculate the
rescaled mass eigenvalues (i.e., the rescaled physical
masses):

�M 2
� ¼ 2=9; �M2

�i
¼ 0; �M2

� ! 1; �M2
ai ! 1:

(40)

We see that, as expected, we have three Goldstone bosons,
the three pions ~�, whereas � and ~a are infinitely heavy and
thus decouple. Considering Eq. (16), we conclude that the
couplings �l2, �l12, and �l3 appear only in front of terms
involving infinitely heavy fields and must not be included
in the stability analysis. Including only �m2

1 and
�l1, we find

the stability-matrix eigenvalues

f�1:77069; 1:27069g; (41)

from which we finally conclude that there exists a stable
Oð4Þ fixed point in case of infinite anomaly strength. We
also note that we verified that above the critical dimension,
d 	 4, the Gaussian fixed point becomes IR stable with
mean-field critical exponent � ¼ 1=2, as expected.

III. COUPLED VECTOR MODEL

In order to justify why we can neglect the spurious
negative eigenvalues occurring in Sec. II C, we discuss a
simpler model where the reasons become transparent. We
consider the case of the most simple coupled vector model,
which involves two scalar fields �1 and �2:

U¼m2
1�

2
1þm2

2�
2
2þ

�11

24
�4

1þ
�12

12
�2

1�
2
2þ

�22

24
�4

2: (42)

For a mean-field analysis of the model we refer to
Ref. [40], for a leading-order � expansion to Ref. [41].
Using the method of Taylor expansion and comparison

of coefficients, we find the following flow equations:

k
@ �m2

1

@k
¼ �2 �m2

1 �
1

36�2

�
3 ��11

��21
þ

��12

��22

�
;

k
@ �m2

2

@k
¼ �2 �m2

2 �
1

36�2

�
3 ��22

��22
þ

��12

��21

�
;

(43)

k
@ ��11

@k
¼ � ��11 þ 1

�2

� ��2
11

��31
þ

��2
12

9 ��32

�
;

k
@ ��22

@k
¼ � ��22 þ 1

�2

� ��2
22

��32
þ

��2
12

9 ��31

�
;

(44)

k
@ ��12

@k
¼ � ��12 þ

��12

9�2 ��31 ��
3
2

½2 ��12ð ��1 þ ��2Þ ��2 ��1
þ 3 ��22 ��

3
1 þ 3 ��11 ��

3
2�; (45)

where we again used the abbreviation (28).
In this work we are only interested in the Ising fixed

point,

ð �m2
1 ¼ �0:03846; �m2

2 ¼ 0;

��11 ¼ 7:76271; ��12 ¼ 0; ��22 ¼ 0Þ;
(46)

the stability-matrix eigenvalues of which,

FUNCTIONAL RENORMALIZATION GROUP STUDY OF THE ... PHYSICAL REVIEW D 88, 056014 (2013)

056014-7



f�2;�1:84256; 1:1759;�1;�0:666667g; (47)

indicate that it appears to be unstable in the �m2
2,

��12, and
��22 directions.
Examining the above flow equations in the limit �m2

2 ! 1,

k
@ �m2

1

@k
¼�2 �m2

1�
1

12�2

��11

��21
; k

@ ��11

@k
¼� ��11þ 1

�2

��2
11

��31
;

(48)

k
@ ��22

@k
¼� ��22þ 1

9�2

��2
12

��31
; k

@ ��12

@k
¼� ��12þ 1

3�2

��12
��11

��31
;

(49)

we still find negative eigenvalues corresponding to the un-
stable ��12 and ��22 directions, respectively. Obviously, we
have the same situation as in Sec. IIC. Formally, the negative
eigenvalues would indicate that the Ising fixed point is IR
unstable. In this particular case, however, one cannot con-
clude from this that the phase transition is fluctuation-induced
first order. Fluctuations in ��12 and ��22 direction are com-
pletely suppressed due to the infinitely heavy �2 field
and cannot affect the critical behavior. To prove this, we
investigate in detail the scale evolution of the dimensionful

potential for different initial values for the parameters in the
UV. Using the invariants

’1 ¼ �2
1; ’2 ¼ �2

2; (50)

we make the following ansatz for the potential running under
the RG flow:

Uk ¼ Vkð’1Þ þWkð’1Þ’2 þ Xkð’1Þ’2
2: (51)

Having expressed themass eigenvaluesM2
i in terms of’1 and

’2, we expand the rhs of Eq. (11) and read off flow equations
for Vkð’1Þ, Wkð’1Þ, and Xkð’1Þ by comparison of coeffi-
cients. We solve the resulting system of three partial differ-
ential equations together with the initial conditions

Vk¼�ð’1Þ ¼ m2
1;�’1 þ �11;�

24
’2

1;

Wk¼�ð’1Þ ¼ m2
2;� þ �12;�

12
’1; Xk¼�ð’1Þ ¼ �22;�

24
:

(52)

Figure 1 illustrates the potential for various values of the
RG flow parameter k for various values of m2

2;� and �12;�

for fixed values of m2
1;�, �11;�, and �22;� ¼ 0. We observe

that the influence of the coupling ��12 on the shape of the
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k

FIG. 1. Scale evolution of the potential Vk. In each panel, the solid line is the same and corresponds to the start of the evolution in the
UV (k=� ¼ 1). Furthermore, in each panel there are two sets of three curves (drawn with identical line mode). These three curves
correspond to the RG potentials at the scales k=� ¼ 0:7, k=� ¼ 0:4, and k=� ¼ 0:12 respectively. For all panels, m2

1;� ¼ �0:005�2,

�11;� ¼ 0:02�, �22;� ¼ 0. In the upper left, the lower left, and the lower right panels, the dotted curves correspond to m2
2;� ¼ 0,

�12;� ¼ 0 (and therefore coincide with solutions for the Ising model). In the upper left and upper right panels, the dashed curves are for

m2
2;� ¼ 0, �12;� ¼ 8�. In the lower left panel, the dot-dashed curves are for m2

2;� ¼ 0:5�2 and �12;� ¼ 8�. In the lower right panel,

the dot-dashed curves are for m2
2;� ¼ 8�2 and �12;� ¼ 8�.
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potential becomes smaller for larger values ofm2
2. We have

checked that the same is true for nonzero values of the
coupling ��22. We also observe that the RG-evolved poten-
tial exhibits the typical shape for a (fluctuation-induced)
first-order phase transition in the case of a light ’2 field
(upper panels), while the transition remains of second
order for a heavy ’2 field (lower panels).

IV. CONCLUSIONS

We investigated the conjecture that the two-flavor chiral
phase transition of QCD can be of second order in the
presence of the axial anomaly. We studied the most general
renormalizable Lagrangian invariant under SUð2ÞA�Uð2ÞV ,
using the FRG method in the local-potential approximation.
We took into account all possible ’t Hooft determinant-like
terms, the couplings of which we denoted as c, y, and z,
respectively. We distinguished between the case of finite and
the limit of divergent anomaly strength c.

Our conclusions are as follows. An Oð4Þ IR fixed
point indeed exists for the two-flavor linear sigma model
in the presence of the axial anomaly. However, it is only
IR stable in the case of infinite anomaly strength. This
case is reasonable if the IR value of the anomaly
strength exceeds the cutoff scale of the linear sigma
model, which is true at the mean-field level but not
beyond this admittedly very crude approximation. For
finite anomaly strength, however, we found that the Oð4Þ
IR fixed point is unstable. Nevertheless, we find other IR
stable fixed points which are in the SUð2Þ �Uð2Þ uni-
versality class. These have unphysical mass-matrix ei-
genvalues in our fourth-order truncation of the potential
and were thus neglected in our considerations. However,
in a scheme which accounts for higher orders, they
might become physical [39], indicating that the two-
flavor chiral phase transition of QCD could be of second
order, but not with Oð4Þ critical exponents. We want to
note that the possibility of another universality class
[Uð2ÞL �Uð2ÞR=Uð2ÞV] has also been recently empha-
sized in Ref. [42]. On the other hand, if the SUð2Þ �
Uð2Þ fixed points should remain unphysical, the absence
of other IR stable fixed points indicates that the phase
transition should be fluctuation-induced first order.
However, we note that the strength of the first-order
phase transition depends on the initial values for the
parameters in the UV and could be extremely weak,
which would make it practically indistinguishable from
a second-order phase transition in this case [39].
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APPENDIX A: CONSTRUCTING INVARIANTS

In condensed-matter systems, finite groups G play an
important role. For such groups, there exist practical meth-
ods how to construct the most generalG-invariant Landau-
Wilson polynomials for certain representations �ðGÞ.
These methods have been applied to study phase transi-
tions in various condensed-matter systems [18,43–45]. For
arbitrary continuous groups, however, such a program is, at
the very least, not well documented. In the following we
describe how to construct the SUð2ÞA � SUð2ÞV invariants
for the ½�2; 2� þ ½2; �2� representation. We note that our
method is not restricted to this special case, and we have
checked that it can be successfully applied to other groups
as well. However, one has to know the explicit form of the
symmetry transformation for the representation of interest.
The ½�2; 2� þ ½2; �2� representation is 8 dimensional.

Accordingly, the corresponding invariants of order N are
polynomials in eight components which are in our notation
the fields �, ~�, �, and ~a, i.e., they are of the form

p ¼ X
mi2m

cimi; (A1)

where m denotes the set of all possible monomials of
order N,

m ¼ f�n1�n2
1 �n3

2 �n4
3 �n5an61 an72 an83 g;

ni 2 N;
X
i

ni ¼ N; (A2)

and the coefficients ci are expected to be rational multi-
ples of each other.
Infinitesimal SUð2ÞA transformations for the above

representation are determined by [46]

�0 ¼ �þ ~	 � ~�; �0
i ¼ �i � 	i�;

�0 ¼ �� ~	 � ~a; a0i ¼ ai þ 	i�;
(A3)

where ~	 ¼ ð	1; 	2; 	3Þ consists of three infinitesimal
angles. Infinitesimal SUð2ÞV transformations for the
above representation are determined by

�0 ¼ �; ~�0 ¼ ~�þ ~
� ~�;

�0 ¼ �; ~a0 ¼ ~aþ ~
� ~a;
(A4)

where ~
 ¼ ð
1; 
2; 
3Þ consists of three infinitesimal
angles.
Under the transformation (A3), the polynomial p trans-

forms as

p ! p0 ¼ X
mi2m

c0ið ~c; ~	Þmi; (A5)

where the new coefficients, c0i, depend on the coefficients ~c
and the angles ~	, and where we only keep terms linear in
	i. Since invariants are defined by p ¼ p0, we obtain a
system of equations,
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ci ¼ c0ið ~c; ~	Þ; (A6)

determining all invariants of order N.
For N ¼ 2, the sum in Eq. (A1) runs from i ¼ 1 to

i ¼ 36, since there are 36 different monomials of order
N ¼ 2. Using for example Mathematica’s option
SolveAlways [47], solutions for the coefficients ci can be
found, such that Eq. (A6) is fulfilled for arbitrary values
of the angles 	i. Inserting the solution into the general
ansatz (A1), we obtain

p ¼ c1ð�2 þ ~�2Þ þ c2ð�2 þ ~a2Þ þ c3ð��� ~� � ~aÞ: (A7)

Since the coefficients ci are independent from each other,
there exist exactly three linearly independent invariants of
order N ¼ 2:

’1 ¼ �2 þ ~�2; ’2 ¼ �2 þ ~a2; ’3 ¼ ��� ~� � ~a:
(A8)

For N ¼ 4, the sum in Eq. (A1) runs from i ¼ 1 to
i ¼ 330, since there are 330 different monomials of order
N ¼ 4. Again, using Mathematica, we find solutions for
the coefficients ci, such that Eq. (A6) is fulfilled for arbi-
trary values of the angles 	i. Inserting the solution into the
general ansatz (A1), we obtain

p ¼ c1ð�2 þ ~a2Þ2 þ c2ð�2 þ ~�2Þ2 þ c3ð���þ ~� � ~aÞ2
þ c4ð���þ ~� � ~aÞð�2 þ ~�2Þ þ c5ð�2 þ ~a2Þ
� ð���þ ~� � ~aÞ þ c6½ð�2 þ ~a2Þð�2 þ ~�2Þ
� ð��� ~� � ~aÞ2�: (A9)

Since the coefficients ci are independent from each other,
there exist exactly four linearly independent invariants of
order N ¼ 4:

’2
1; ’

2
2; ’1’2; � ¼ ’2

3: (A10)

Note that the quadratic invariant ’3 is not invariant under
parity transformations

�!�; ~�! ~�; �!��; ~a!� ~a; (A11)

and therefore cannot appear in a theory without parity
violation.

Note further that the invariants (A8) and (A10) are also
invariant under SUð2ÞV transformations (A4). Proceeding
along the same lines described above one can derive sev-
eral additional invariants for this symmetry. Since these are
not SUð2ÞA symmetric, and hence no SUð2ÞA � SUð2ÞV
invariants, we do not list them here.

APPENDIX B: CRITICAL EXPONENTS FROM
THE STABILITY MATRIX

In the following we describe how to calculate critical
exponents proceeding in complete analogy to Ref. [48].
The method is appropriate as long as the anomalous di-
mension � is small, which is assumed to be the case in the

local-potential approximation. For given beta functions

ið �pÞ � k@k �pi for the rescaled parameters �p ¼ f �pig (i.e.,
the rescaled mass terms and couplings) of the Lagrangian,
the stability matrix for a fixed point is defined as

ðSijÞ �
�
@
i

@ �pj

��������� �p¼ �p�
; (B1)

where a fixed point f �p�
i g is determined by


iðf �p�
i gÞ ¼ 0: (B2)

The stability properties of a fixed point can be determined
from the eigenvalues of the stability matrix S. Eigenvalues
with positive real part correspond to IR stable (UV un-
stable) directions, whereas eigenvalues with negative real
part correspond to IR unstable (UV stable) directions. If a
fixed point is IR (UV) stable in a direction in coupling
space, the flow, for decreasing k, in the neighbourhood of
the fixed point is directed towards it (away from it) in this
direction in coupling space. For fixed points associated
with second-order phase transitions, for every plane in
coupling space an IR stable direction exists. However,
since a phase transition always requires that a scaling
variable (e.g., the temperature T) approaches a critical
value, there has to exist at least one IR unstable direction.
Tuning a system towards the critical point corresponds to
tuning the parameters �pi to a point on the critical surface (a
point which is attracted by the IR fixed point). Such a fixed
point can be associated with a second-order phase transi-
tion and is simply called IR stable. In case of a single
scaling variable, the eigenvalues of the stability matrix for
an IR stable fixed point have positive real parts, except for
one which is negative, say y1. The critical exponent �,
determined by

T ! Tc: �� jT � Tcj��; (B3)

is then given by

� ¼ � 1

y1
: (B4)

APPENDIX C: OðNÞ IR FIXED POINTS

In order to determine the universality class that a fixed
point belongs to, one has to compare its stability-matrix
eigenvalues with those of the fixed points defining certain
universality classes. In Table II we list stability-matrix
eigenvalues for OðNÞ models,

U ¼ 1

2
�2

XN
n¼1

�2
i þ

�1

24

0
@XN

n¼1

�2
i

1
A2

; (C1)

which are relevant for our discussion. We keep only terms
with relevant canonical scaling dimension. Higher-order
terms are irrelevant with respect to the Gaussian fixed point
and should be negligible also with respect to nontrivial
fixed points in a resummed � expansion. This is different in
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the FRG approach. At nontrivial fixed points, higher-order
terms are expected to have a distinct effect on critical
exponents [48]. However, in this work we are only inter-
ested in identifying the universality class of a fixed point,
so we can neglect these higher orders, if we also do this in
the model which wewant to compare theOðNÞmodel with.
For more evolved FRG studies ofOðNÞmodels we refer for
example to Refs. [9,48–52] and references therein.

As an example, we can now explicitly determine the
universality class of the IR fixed point of the flow equations
(69)–(71) in Ref. [6]. These are the flow equations we
obtain from our results in the limit c; y; z ! 0. The IR
fixed point is given by ð ��2�; ��1�; ��2�Þ¼ð�0:135;3:591;0Þ
and is unstable as one infers from the stability-matrix
eigenvalues f�1:71971; 1:34471;�0:25g, which are in per-
fect agreement with the Oð8Þ values in Table II.

In the context of OðNÞ models we can easily study the
influence of setting fields to zero after having performed
the second derivatives in Eq. (12). It does not affect the
results at all, because the coefficients in the expansion
of the flow equation (11) in terms of fields do not
change by setting certain fields to zero. Due to the
OðNÞ symmetry we can read off the flow equation for
�1 from any quartic term. This argument directly gen-
eralizes to all other potentials for which one obtains
unambiguous flow equations for all couplings, keeping
all fields nonzero. In such a case, instead of keeping all
fields nonzero, one can set as many fields to zero [after
having performed the second derivatives in Eq. (12)] as
one likes, as long as one still obtains a flow equation for
each coupling. The flow equations are the same in both
cases.
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