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We prove that Borel QCD sum rules for heavy–light currents yield very strong correlations between the

b-quark mass mb and the B-meson decay constant fB, namely, �fB=fB � �8�mb=mb. This fact opens

the possibility of an accurate sum-rule extraction of mb by using fB as input. Combining precise lattice

QCD determinations of fB with our sum-rule analysis based on the three-loop Oð�2
sÞ heavy–light

correlation function leads to �mbð �mbÞ ¼ ð4:247� 0:034Þ GeV.
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I. INTRODUCTION

The b-quark mass—for instance, the MS running mass
at renormalization scale �, �mbð�Þ, or mb � �mbð �mbÞ—is
one of the fundamental parameters of the standard model
and therefore its precise knowledge is highly desirable.
The latest edition of the Review of Particle Physics reports
mb ¼ ð4:18� 0:03Þ GeV [1].

A direct way to determine mb is by means of lattice
QCD simulations; however, since the physical b-quark is
too heavy for current lattice setups, the determination of
mb from pure lattice QCD requires either the extrapolation
of the lattice results from lighter simulated masses or the
use of the heavy-quark effective theory (HQET) formu-
lated on the lattice. Using the former approach, the values
mb ¼ ð4:29� 0:14Þ GeV [2] and mb¼ð4:35�0:12ÞGeV
[3] have recently been deduced, while the results mb ¼
ð4:26� 0:09Þ GeV [4], mb ¼ ð4:25� 0:11Þ GeV [5], and
mb ¼ ð4:22� 0:11Þ GeV [6] have been determined adopt-
ing the HQET-based approach. All above findings have
been obtained using unquenched gauge configurations with
Nf ¼ 2 dynamical flavors in the sea.

Recently, more accurate determinations of the b-quark
mass have been performed by exploiting moment sum
rules for two-point functions of heavy–heavy currents:
low-n moment sum rules based on three-loop Oð�2

sÞ [7]
and four-loop Oð�3

sÞ [8] fixed-order pQCD calculations
combined with the experimental data yieldmb ¼ ð4:209�
0:050Þ GeV [7] and mb ¼ ð4:163� 0:016Þ GeV [8],
respectively. The latter finding has been confirmed by a
study based on a combination of perturbative QCD
and lattice QCD simulations with Nf ¼ 2þ 1 dynamical

flavors in the sea [9]. Combining large-n moments
obtained within renormalization-group-improved next-to-
next-to-leading logarithmic (NNLL) order � sum rules
with the experimental data yields mb¼ð4:235�
0:055ðpertÞ�0:03ðexpÞÞGeV [10].

In this paper, we show that the Borel QCD sum rules for
heavy–light correlators provide the possibility to extract

the bottom-quark mass with comparable accuracy if a
precise value for the B-meson decay constant fB is adopted
as input.
Let us first explore what degree of sensitivity of fB to

the precise value of the b-quark mass can be expected on
the basis of simple quantum-mechanical considerations.
Nonrelativistic potential models predict the following re-
lationship between the ground-state wave function at the
origin, c ðr ¼ 0Þ, and the ground-state binding energy ":

jc ðr ¼ 0Þj / "3=2: (1.1)

Equation (1.1) is exact for any ground state in a purely
Coulomb or purely harmonic-oscillator potential (or, to be
more precise, in any model where the potential involves
only one coupling constant). Moreover, this relation
proves to be a good approximation for ground states in
potentials given by the sum of confining and Coulomb
interactions [11].
Now, taking into account that the decay constant is the

analogue of the wave function at the origin and incorporat-
ing the known scaling behavior of the decay constant of a
heavy meson in the heavy-quark limit [12]—which should
work well for the beauty mesons—one obtains an approxi-
mate relation between the B-meson mass MB and the
heavy-quark pole mass mQ:

fB
ffiffiffiffiffiffiffiffi
MB

p ¼ �ðMB �mQÞ3=2: (1.2)

Keeping the ground-state mass fixed and equal to its
experimental value MB ¼ 5:27 GeV, we can easily pin
down the dependence of fB on small variations �mQ of

the heavy-quark pole mass near some average value ofmQ.

Taking into account that fB � 200 MeV for mQ �
4:6–4:7 GeV we end up with � � 0:9–1:0 and �fB �
�0:5�mQ or, equivalently,

�fB
fB

� �ð11–12Þ�mQ

mQ

: (1.3)
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Thus, the sensitivity of fB to the precise value of the heavy-
quark mass should be rather high: a variation of the quark
mass by þ100 MeV entails �fB � �50 MeV. Clearly, a
similar effect should be observable in the outcomes of
QCD sum rules [13,14].

Recently, several QCD sum-rule analyses [15–18] of
beauty-meson decay constants relying on three-loop
heavy–light correlators [19] have been published; see
Table I (note that all results collected in Table I are ob-
tained by applying the QCD sum-rule method to essen-
tially the same analytical expression for the correlator).

At first glance, the QCD sum-rule results for fB seem to
be very stable and practically independent of the input
value of mb. This, however, may not be regarded as an
argument in favor of the published predictions: obviously,
the results in Table I do not follow the general pattern
discussed above; for instance, the central values of mb

reported in [15,18] differ by some 200 MeV, whereas the
corresponding decay constants remain almost unchanged.
Therefore, we are forced to conclude that not all the results
in Table I are equally trustable.

Recall that the values of the ground-state parameters
in Table I are strongly influenced by (i) the way one
reorganizes the three-loop perturbative result in terms of
the pole or the running mass of the heavy quark, and
(ii) by one’s way of fixing the auxiliary parameters of the
sum-rule approach, particularly the effective continuum
threshold.

The goal of this paper is to present a critical detailed
analysis of the sum-rule extraction of fB. Our main con-
clusion is that if the appropriate expression for the corre-
lator in terms of the running heavy-quark mass is used and
consistent procedures for extracting the bound-state pa-
rameters are applied, the QCD sum-rule results are in
excellent agreement with the behavior expected from
quantum mechanics: the decay constant fB obtained from
QCD sum rules is strongly correlated with the input value

of the heavy-quark massmb. For all other input parameters
of the correlator (quark condensate, �s, renormalization
scale, etc.) fixed, we find

fBðmbÞ ¼
�
192:0� 37

mb � 4:247 GeV

0:1 GeV
� 3ðsystÞ

�
MeV:

(1.4)

Evidently, the dependence of fB on mb agrees very well
with the semiqualitative quantum-mechanical expression
(1.3). The strong correlation between fB and mb opens the
possibility to deduce an accurate value of mb using fB as
input. Combining our sum-rule analysis based on the
heavy–light correlator known to order �2

s with the average
of the most recent determinations of fB from lattice QCD,

fLQCDB ¼ ð191:5� 7:3Þ MeV (see Table II), leads to the
accurate estimate

mb ¼ ð4:247� 0:034Þ GeV: (1.5)

This paper is organized as follows: in the next section,
we discuss the convergence of the operator product expan-
sion (OPE) series for the correlator expressed in terms of
either pole or running quark mass. Section III presents the
details of the extraction procedure with particular emphasis
on the related uncertainties of the extracted parameters.
Section IV is devoted to the extraction of the b-quark mass.
Section V summarizes our conclusions.

II. CORRELATION FUNCTION,
OPERATOR PRODUCT EXPANSION,

AND HEAVY-QUARK MASS

The basic object for our study of the decay constants of
heavy pseudoscalar B (or Bs) mesons is the correlator
[13,14]

�ðp2Þ ¼ i
Z

d4xeipxh0jTðj5ðxÞjy5 ð0ÞÞj0i (2.1)

TABLE I. Some recent QCD sum-rule predictions for fB from heavy–light two-point
functions.

Reference [15] Reference [16] Reference [17] Reference [18]

mb (GeV) 4:05� 0:06 4:21� 0:05 4:245� 0:025 4:236� 0:069
fB (MeV) 203� 23 210� 19 193� 15 206� 7

TABLE II. Some recent lattice-QCD evaluations of fB and fBs
.

Collaboration Nf fB (MeV) fBs
(MeV) fBs

=fB

ETMC I [2] 2 195� 12 232� 10 1:19� 0:05
ETMC II [3] 2 197� 10 234� 6 1:19� 0:05
ALPHA [6] 2 193� 10 219� 12 1:13� 0:09
HPQCD I [20] 2þ 1 191� 9 228� 10 1:188� 0:018
HPQCD II [21] 2þ 1 189� 4 225� 4 —

FNAL/MILC [22] 2þ 1 196:9� 9:1 242� 10 1:229� 0:026
Our average 191:5� 7:3 228:8� 6:9 1:198� 0:030
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of two pseudoscalar heavy–light currents

j5ðxÞ ¼ ðmb þmÞ �qðxÞi�5bðxÞ; (2.2)

where qðxÞ denotes the field of the light quark of mass m,
that is, qðxÞ � dðxÞ for B and qðxÞ � sðxÞ for Bs. The OPE
for this correlator may be calculated by using perturbative
QCD and adding nonperturbative power corrections given
in terms of vacuum condensates. The QCD sum rule for
this correlator is obtained by equating the Borelized OPE
for the correlator (2.1), �ðp2Þ ! �ð�Þ, and the Borelized
correlator calculated by insertion of intermediate hadron
states:

�ð�Þ ¼ f2BM
4
Be

�M2
B� þ

Z 1

sphys

dse�s��hadrðsÞ

¼
Z 1

ðmbþmÞ2
dse�s��pertðs;�Þ þ�powerð�;�Þ; (2.3)

where MB is the mass of the B (or Bs) meson and fB is the
decay constant of the B (or Bs) meson, defined by

ðmb þmÞh0j �qi�5bjBi ¼ fBM
2
B: (2.4)

In (2.3), sphys ¼ ðMB� þMPÞ2 is the physical continuum

threshold, fixed by the mass MB� of the beauty vector
meson and the mass MP of the lightest pseudoscalar with
appropriate quantum numbers (the pion or the kaon,
respectively).

For large values of �, the contributions of excited states
to the Borelized correlator (2.3) decrease faster than the
ground-state contribution and thus�ð�Þ is saturated by the
ground state. Therefore, knowing the correlator at large �
provides direct access to the ground-state parameters.
However, analytic results for the correlator are obtained
from a truncated OPE, which yields a good approximation
to the correlator only at not too large �, where excited
states still contribute sizably to �ð�Þ.

To exclude the excited-state contributions from the sum
rule (2.3), one adopts the duality Ansatz: all contributions
of excited states are counterbalanced by the perturbative
contribution above an effective continuum threshold,
seffð�Þ, which differs from the physical continuum thresh-
old. While the physical continuum threshold is a constant
determined by the masses of the lightest hadrons that may
be produced from the vacuum by the interpolating current,
the effective continuum threshold is a parameter of the
sum-rule approach. The effective continuum threshold has
interesting and nontrivial properties which have been dis-
cussed in great detail in [23]. In particular, it has been
demonstrated that the ‘‘true’’ effective threshold which
correctly reproduces the true ground-state parameters is a
�-dependent function [24].

Applying the duality assumption entails the following
relation between the ground-state contribution and the
OPE:

f2BM
4
Be

�M2
B� ¼

Z seff ð�Þ

ðmbþmÞ2
dse�s��pertðs; �Þ þ�powerð�;�Þ

� �dualð�; seffð�ÞÞ: (2.5)

We refer to the right-hand side of this equation as the dual
correlator �dualð�; seffð�ÞÞ.
Clearly, even if the QCD inputs �pertðs;�Þ and

�powerð�;�Þ are known, the extraction of the decay con-

stant requires, in addition, a criterion for determining
seffð�Þ. As first step, however, we need a reasonably con-
vergent OPE for both correlator and dual correlator. For
heavy–light systems, the relative sizes of the lowest-order
terms, which contain powers of the heavy-quark mass, turn
out to depend strongly on one’s choice of the renormaliza-
tion scheme and scale.
The best-known three-loop calculations of the perturba-

tive spectral density [19] have been performed in form of

an expansion in terms of theMS strong coupling�sð�Þ and
the pole mass of the heavy-quark Mb:

�pertðs; �Þ ¼ �ð0Þðs;M2
bÞ þ

�sð�Þ
	

�ð1Þðs;M2
bÞ

þ
�
�sð�Þ
	

�
2
�ð2Þðs;M2

b; �Þ þ � � � : (2.6)

The correlator (2.1) and its Borel image (2.3) do not depend
on the renormalization scale �. Unfortunately, this nice
property is lost if one works with truncated expansions:
both the perturbative expansion truncated at fixed order in
�s and the lowest-order power corrections �powerð�;�Þ
given in terms of condensates and the radiative corrections
to the latter depend on �.
The pole mass has been used in most sum-rule studies

since the pioneering work [14]. It turns out, however, that
the OPE for the dual correlator expressed in terms of the
pole mass Mb exhibits a bad convergence, as illustrated in
Fig. 1.
An alternative option [16] is to reorganize the perturba-

tive expansion in terms of the runningMSmass, �mbð�Þ, by
substituting Mb in the spectral densities �ðiÞðs;M2

bÞ via its

perturbative expansion in terms of the running mass �mbð�Þ
(while keeping the integration variable s fixed)1

Mb ¼ �mbð�Þ
�
1þ �sð�Þ

	
r1 þ

�
�sð�Þ
	

�
2
r2 þ � � �

�
: (2.7)

Since the original correlator is known to order �2
s , it

suffices to use the relation between Mb and �mbð�Þ to �2
s

1Note that the scale � of �sð�Þ in the expansion (2.6) is not
necessarily equal to the scale � in the relation (2.7) between Mb

and �mbð�Þ; the two scales are, in principle, independent. As
noticed in [10], setting these scales equal to each other leads to a
reduced dependence of the truncated correlator on the then
common scale; however, more realistic error estimates are
obtained if one studies the sensitivity of the truncated correlator
to independent variations of the scales � and �.
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accuracy (although the �3
s term is also known [25]).

Moreover, one should omit all terms of order �3
s and

higher, induced by the substitution Mb ! �mbð�Þ in the
results of [19]. Explicit expressions for the perturbative
spectral densities and power corrections may be found in
[16,19] and are not given here. Notice that two different
scales, � and �, naturally emerge when reorganizing the
perturbative expansion from the pole b-quark mass to the
running b-quark mass. One may set these scales equal to
each other; we, however, leave the scales independent from
each other and investigate the impact of particular choices
of the scales � and � on the extracted values of mb and the
decay constants fB and fBs

.

One caveat is in order here: the spectral density (2.6)
involves an implicit 
 function restricting the integration
region in the correlator: for instance, for a massless light
quark, it reads 
ðs�M2

bÞ. Switching from the pole to the

running mass, Mb ! �mbð�Þ, this 
 function has to be
expanded in powers of �s, a step which induces ‘‘surface’’
terms �ðs�M2

bÞ and their derivatives. The spectral den-

sities �ðiÞðs;M2
bÞ, however, have zeros of second order at

this threshold s ¼ M2
b; consequently, to the Oð�2

sÞ accu-
racy considered, the surface terms do not contribute and
one merely has to perform the replacement 
ðs�M2

bÞ !

ðs� �m2

bð�ÞÞ. The surface terms enter the game at order�3
s

and higher.
In order to appreciate the amount of improvement

achieved by reorganizing the perturbative expansion in
terms of the running mass, Fig. 1 shows the perturbative
spectral densities and the estimates for fB arising from the

sum rule (2.5) for two choices of the b-quark mass: the pole

mass Mb and the running MS mass �mbð�Þ. All results are
given formb ¼ 4:163 GeV, corresponding to two-loop and

three-loop pole massesM2-loop
b ¼ 4:75 GeV andM3-loop

b ¼
4:89 GeV [25]. Since we work at Oð�2

sÞ accuracy, we use
for consistency the two-loop value of Mb to obtain the
results depicted in Fig. 1. For the other relevant OPE
parameters, we adopt the following values [1,26]:

mdð2GeVÞ¼ ð3:5�0:5ÞMeV;

msð2GeVÞ¼ ð95�5ÞMeV;

�sðMZÞ¼0:1184�0:0007;

h �qqið2GeVÞ¼�ðð269�17ÞMeVÞ3;
h�ssið2GeVÞ=h �qqið2GeVÞ¼0:8�0:3;�

�s

	
GG

�
¼ð0:024�0:012ÞGeV4:

(2.8)

The sum-rule estimates shown in Fig. 1 are obtained for
� ¼ � ¼ mb and for a �-independent effective threshold
seff . Clearly, the choice of the heavy-quark mass (that is,
pole or running) used in the OPE makes a great difference
for the numerical values of the truncated heavy–light cor-
relators and of the resulting decay constants.
The above observations may be summarized as follows:
(1) When the dual correlator is calculated in terms of

the heavy-quark pole mass, its perturbative expan-
sion exhibits no sign of convergence; the contribu-
tions of the Oð1Þ, Oð�sÞ, and Oð�2

sÞ terms are of
nearly the same magnitude. Therefore, in this
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FIG. 1 (color online). OPE computed in terms of pole mass (left) and MS mass (right) of the b-quark. First row: spectral densities;
second row: corresponding sum-rule findings for fB. In both cases, a typical value of the effective continuum threshold is used:
s0 ¼ 35 GeV2. Bold solid lines labelled ‘‘Pert 3-loop’’ and ‘‘total,’’ respectively: total result; black solid lines: Oð1Þ contribution; red
dashed lines: Oð�sÞ contribution; blue dotted lines: Oð�2

sÞ contribution; green dash-dotted lines: power contributions.
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scheme one cannot expect higher orders to give
smaller contributions.

(2) Formulating the perturbative series in terms of the

heavy-quark MS mass yields a clear hierarchy of
contributions.

(3) The decay constant extracted from the pole-mass
truncated OPE (fB ¼ 188 MeV) is substantially

smaller than that from the MS-mass OPE truncated
at the same order (fB ¼ 220 MeV). Nevertheless,
both decay constants exhibit a satisfactory degree of
stability over a wide range of the Borel parameter.
We therefore stress again that mere Borel stability is
by far not sufficient to guarantee the reliability of
any sum-rule extraction of bound-state features. We
have illustrated these findings before in some exactly
solvable quantum-mechanical examples [11,23].

Because of the evident lack of convergence of the truncated

pole-mass OPE for the correlator, we employ theMS-mass
OPE in our subsequent sum-rule analysis.

III. EXTRACTION OF THE DECAY CONSTANT

According to the standard procedures of the QCD sum-
rule approach, its application requires the following steps.

1. The Borel window
The working � window is chosen such that the OPE

gives a sufficiently accurate description of the exact corre-
lator (i.e., all higher-order radiative and power corrections
are small) and at the same time the ground state gives a
‘‘sizable’’ contribution to the correlator. Hence, we require
[11,24,27] that the power corrections do not exceed 30% of
the dual correlator (to fix the maximal �) and that the
ground-state contribution does not fall below 10% (to fix
the minimal �).

In practice, our � window for the BðsÞ mesons is 0:05 &
� ðGeV�2Þ & 0:175. Such a window is much more ex-
tended than the � range usually adopted in the literature,
e.g., 0:17&� ðGeV�2Þ&0:25 [16] or 0:20&�ðGeV�2Þ&
0:26 [18]. We observe (i) that our upper bound in � is much
safer with respect to the convergence properties of both
perturbative and power-correction series, and (ii) that our
lower bound in � produces a dual correlator (2.5) which
represents the ground-state contribution in a much wider
range of values of �. The latter property corresponds to the

fact that the quantity ½�dualð�; seffð�ÞÞ � eM2
B�� should ex-

hibit a plateau in a wide range of values of �, which makes
the extraction of the decay constant fB much more reliable.

Finally, we notice that it would be extremely unreason-
able to assume a �-independent effective threshold seff in a
�windowwhere the impact of the contamination of excited
states in the full correlator changes quite significantly, as
explicitly shown in Ref. [24].

2. The effective continuum threshold
To find seffð�Þ, we employ a previously developed

algorithm [11,24], which has proven to provide a
reliable extraction of the ground-state parameters in

quantum-mechanical models and of the charmed-meson
decay constants in QCD [27]. We introduce the dual in-
variant massMdual and the dual decay constant fdual by the
definitions

M2
dualð�Þ � � d

d�
log�dualð�; seffð�ÞÞ;

f2dualð�Þ � M�4
B eM

2
B��dualð�; seffð�ÞÞ:

(3.1)

By construction, the dual mass should reproduce the true
ground-state mass MB. So, the deviation ofMdual fromMB

measures the contamination of the dual correlator by ex-
cited states. Starting from an Ansatz for seffð�Þ and requir-
ing a minimum deviation of Mdual from MB in the �
window generates a variational solution for seffð�Þ. With
the latter at our disposal, fdualð�Þ yields the desired decay-
constant estimate. Since we deal with a limited � window,
it suffices to consider polynomials in �, including also
the standard assumption for the effective threshold, a
�-independent constant:

sðnÞeff ð�Þ ¼
Xn
j¼0

sðnÞj �j: (3.2)

We obtain the expansion coefficients sðnÞj by minimizing the

squared difference between M2
dual and M2

B in the � window:

�2 � 1

N

XN
i¼1

½M2
dualð�iÞ �M2

B�2: (3.3)

3. Uncertainties in the extracted decay constant
The resulting value of the decay constant fBðsÞ is, beyond

doubt, sensitive to the input values of the OPE parameters,
which determine what we call the OPE-related error, and
to the details of the adopted prescription for fixing the
behavior of the effective continuum threshold seffð�Þ,
which we will refer to as the systematic error.
OPE-related error: We estimate the size of the OPE-

related error by performing a bootstrap analysis [28], allow-
ing the OPE parameters to vary over the ranges indicated in
(2.8) and using 1000 bootstrap events. Gaussian distribu-
tions for all OPE parameters but the scales � and � are
employed. For the latter, we assume uniform distributions in
the range 3 � �, � ðGeVÞ � 6. The resulting distribution
of the decay constant turns out to be close to Gaussian shape.
Hence, the quoted OPE-related error is a Gaussian error.
Systematic error: The systematic error, encoding the

limited intrinsic accuracy of the sum-rule method, consti-
tutes a rather subtle point. In quantum mechanics, we
observed, for polynomial parametrizations of the effective
continuum threshold seffð�Þ, that the band of results ob-
tained from linear, quadratic, and cubic Ansätze for the
effective threshold encompasses the true value of the decay
constant [24]. Moreover, the extraction procedures in
quantum mechanics and in QCD proved to be strikingly
similar [11]. Thus, the half-width of this band may be
regarded as a realistic estimate for the systematic
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uncertainty of the prediction. The ultimate efficiency and
reliability of this algorithm have already been established
for the decay constants ofD andDs mesons [27]. Here, we
apply this technique to the B and Bs mesons.

A. Decay constant of the B meson

Recall that the � window for the BðsÞ mesons is fixed by

the above criteria to be equal to � ¼ ð0:05–0:175Þ GeV�2.
Figure 2 shows the corresponding results for the effective
continuum threshold seffð�Þ and the extracted fB.
Obviously, in this window the �-dependent effective
thresholds reproduce the meson mass MB much better
than the constant one [Fig. 2(a)]. This signals that those
dual correlators that correspond to such �-dependent
thresholds are less contaminated by the excited states.

According to Fig. 2(d), the dependence of our QCD
sum-rule prediction for the B-meson decay constant fB
on mb and the quark condensate h �qqi � h �qqð2 GeVÞi, for
fixed values of the other OPE parameters, may be well
parametrized by

fdualB ðmb;�¼�¼mb;h �qqiÞ
¼
�
192:0�37

�
mb�4:247GeV

0:1GeV

�

þ4

�jh �qqij1=3�0:269GeV

0:01GeV

�
�3ðsystÞ

�
MeV; (3.4)

representing the range of results obtained for n ¼ 1, 2, 3
in the Ansatz (3.3) within the two short-dashed lines in
Fig. 2(d).
Note that our algorithm, relying on polynomial func-

tions, provides a clear and unambiguous prescription for
fixing the effective continuum thresholds. The � depen-
dence of the latter is crucial for deriving the dual mass, the
definition of which involves a derivative with respect to �.
On the other hand, our decay-constant prediction may be
reproduced by the constant effective continuum threshold
seff ¼ ð33:1� 0:5Þ GeV. However, in order to obtain this
very range of values, one has to apply our algorithm, which
takes advantage of the freedom provided by the � depen-
dence of the thresholds.
Performing the bootstrap analysis of the OPE uncertain-

ties and adding the half-width of the band deduced from
our �-dependent Ansätze for the effective continuum
threshold of degree n ¼ 1, 2, 3 as (intrinsic) systematic
error, we find

fB ¼ ð192:0� 14:3ðOPEÞ � 3:0ðsystÞÞ MeV: (3.5)

The main contributions to the OPE uncertainty in
the extracted fB arise from the renormalization-scale de-
pendence and the errors in mb and the quark condensate.
Let us emphasize that for mb ¼ 4:05 GeV one gets
fB ¼ 265 MeV which is very far from the result reported
in [15]; cf. Table I.
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FIG. 2 (color online). Dual mass Mdualð�Þ (a), corresponding to �-dependent effective continuum threshold seffð�Þ according to our
Ansatz (3.2), determined by minimizing the expression (3.3) (b), and dual decay constant fdualð�Þ (c). Results for mb � �mbð �mbÞ ¼
4:25 GeV, � ¼ � ¼ mb, and central values of the other relevant parameters are shown. (d) Dual decay constant of the B meson vs mb

for� ¼ � ¼ mb and central values of all the other OPE parameters. The integer n ¼ 0, 1, 2, 3 is the degree of the seffð�Þ polynomial in
the Ansatz (3.2). Red dotted line: n ¼ 0; green solid line: n ¼ 1; blue dashed line: n ¼ 2; black dot-dashed line: n ¼ 3; red short-
dashed lines: delimiters of the range of results.
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B. Decay constant of the Bs meson

A similar procedure yields for the Bs meson

fdualBs
ðmb;�¼�¼mb;h �ssiÞ

¼
�
228:0�43

�
mb�4:247GeV

0:1GeV

�

þ3:5

�jh�ssij1=3�0:248GeV

0:01GeV

�
�4ðsystÞ

�
MeV: (3.6)

Performing the bootstrap analysis of the OPE uncertainties,
we obtain

fBs
¼ ð228:0� 19:4ðOPEÞ � 4ðsystÞÞ MeV: (3.7)

C. fBs
=fB

The resulting ratio of the B and Bs decay constants reads

fBs
=fB ¼ 1:184� 0:023ðOPEÞ � 0:007ðsystÞ; (3.8)

in excellent agreement with the recent lattice results sum-
marized in Table II. The error in the ratio (3.8) arises
mainly from the uncertainties in the quark condensates
h�ssi=h �qqi ¼ 0:8� 0:3.

IV. EXTRACTION OF THE
BOTTOM-QUARK MASS

The results of the previous section reveal a strong sensi-
tivity of the sum-rule predictions for fB and fBs

on the

FIG. 3 (color online). (a) Summary of our results for fB. Lattice (LQCD) outcomes are from [2,3,6] for two dynamical light flavors
(Nf ¼ 2) and from [21,22] for three dynamical flavors (Nf ¼ 2þ 1). For the �-dependent QCD sum-rule (QCD-SR) result, the error

shown is the sum of the OPE and systematic uncertainties in (3.5), added in quadrature. (b) Similar findings for fBs
. (c) The value ofmb

extracted from the sum rule (2.5) by a bootstrap analysis of the OPE uncertainties making use of the central value fB ¼ 191:5 MeV
and the other relevant parameters collected in (2.8). The dependence of mb on the number of terms in the perturbative expansion of the
correlator is indicated by LO, NLO, and NNLO. The shaded areas correspond to �1� intervals of the results by PDG [1], Chetyrkin
et al. [8] and Hoang et al. [10]. (d) Distribution ofmb as obtained by the bootstrap analysis described in the text. Gaussian distributions
for all the OPE parameters (apart from the scales � and �) with the associated uncertainties collected in (2.8) are employed. For the
independent parameters � and �, uniform distributions in the range 3 GeV<�, � < 6 GeV are assumed.
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precise value of mb, in accordance with our simple
quantum-mechanical analysis. This feature opens the
promising possibility to extract an accurate value of
the b-quark mass mb � �mbð �mbÞ by exploiting the accurate
lattice results for fB and fBs

.

The latest lattice-QCD findings for these decay con-
stants are recalled in Table II and Figs. 3(a) and 3(b) (see
also [29]). Using these results and applying the algorithms
described above, the sum rule (2.5) yields the results formb

shown in Fig. 3. Figure 3(c) presents the extracted values of
mb depending on the number of terms kept in the pertur-
bative part of the correlator. Moving from Oð1Þ leading
order (LO) toOð�sÞ next-to-leading order (NLO) accuracy
of the perturbative expansion has two effects: first, the
central mb value decreases sizeably from mLO

b ¼ð4:38�
0:1ðOPEÞ�0:020ðsystÞÞGeV to mNLO

b ¼ ð4:27� 0:04ðOPEÞ �
0:015ðsystÞÞ GeV, and, second, the OPE error also reduces

considerably. Adding the Oð�2
sÞ (NNLO) correction

does not, however, entail a sizeable change of the predic-
tions: mNNLO

b ¼ ð4:247 � 0:027ðOPEÞ � 0:011ðsystÞÞ GeV.
Obviously, the extracted values of mb exhibit a nice
‘‘convergence’’ depending on the accuracy of the pertur-
bative correlation function.

The OPE error in the extracted mNNLO
b is related to the

variations of the OPE parameters in the ranges given in
(2.8) and the independent variations of the scales � and �
in the range 3 GeV � �, � � 6 GeV. The individual con-
tributions to the OPE error read 14 MeV ð�; �Þ, 20 MeV
(quark condensate), 7 MeV (gluon condensate), 8 MeV
(�s), and 4 MeV (light-quark mass). Adding these values
in the quadrature gives 27MeV. The systematic uncertainty
in the extracted value of mb is found as the spread of the
results for different Ansätze for the effective continuum
threshold and amounts to 11 MeV. To obtain the final
estimate formb one should further add the (Gaussian) error
18 MeV, related to the uncertainty in the lattice value of
fB ¼ ð191:5� 7:3Þ MeV.

TheOð�3
sÞ correction to the perturbative spectral density

is, at present, not known. Nevertheless, on the basis of our
findings we do not expect a sizeable shift of the central
value of mb due to the inclusion of the Oð�3

sÞ correction.
One, however, might expect a reduction of the sensitivity
of the extracted value of mb to the precise values of the
scales � and � and thus a further increase of the accuracy
of the extracted value of the bottom-quark mass.

V. SUMMARYAND CONCLUSIONS

We performed a detailed QCD sum-rule analysis of the
B- andBs-meson decay constants, with particular emphasis
on the study of the errors in the extracted decay-constant
values: the OPE uncertainty due to the errors of the QCD
parameters and the intrinsic error of the sum-rule approach
due to the limited accuracy of the extraction procedure.
Our main findings may be summarized by the following
observations:

(1) The choice of the renormalization scheme used to
define the heavy-quark mass is crucial for the con-
vergence of the perturbative expansion of the two-
point function: the latter exhibits in its pole-mass
formulation no sign of convergence but develops in
its running-mass formulation a clear hierarchy of the
perturbative contributions. For the extracted decay
constant, the pole-mass result is sizeably smaller
than its running-mass counterpart, albeit both enjoy
a perfect stability in the Borel parameter. Borel
stability does not imply reliability of sum-rule
results.

(2) The extraction of hadronic properties is significantly
improved by allowing a Borel-parameter depen-
dence for the effective continuum threshold, which
then quite naturally increases the accuracy of the
duality approximation. As shown already before in
the charmed-meson sector [27], considering suitably
optimized polynomial Ansätze for the effective con-
tinuum threshold provides an estimate of the intrin-
sic uncertainty of the method of QCD sum rules.

(3) For beauty mesons, a very strong correlation be-
tween the exact mb value and the sum-rule result
for fB is found:

�fB
fB

� �8
�mb

mb

: (5.1)

This enables us to revert the problem and to make
use of the precise lattice-QCD computations of fB to
extract the value of mb. Combining our sum-rule
analysis with the latest results for fB and fBs

from

lattice QCD yields

mb ¼ ð4:247� 0:027ðOPEÞ � 0:018ðexpÞ
� 0:011ðsystÞÞ GeV; (5.2)

the OPE error is related to the uncertainties in the
OPE input parameters, and the ‘‘exp’’ error is in-
duced by the error in the lattice determination of fB.
Good news is that the systematic uncertainty of
the sum-rule method, estimated from the spread of
the results for different Ansätze of the effective
continuum threshold, amounts to 11 MeV and re-
mains under control. Adding all three errors in
quadrature yields our final estimate

mb ¼ ð4:247� 0:034Þ GeV: (5.3)

With (5.3), the QCD sum rules for heavy–light
correlators evaluated at Oð�2

sÞ accuracy yield, for
the decay constants,

fB ¼ ð192:0� 14:3ðOPEÞ � 3:0ðsystÞÞ MeV; (5.4)

fBs
¼ ð228:0� 19:4ðOPEÞ � 4ðsystÞÞ MeV; (5.5)
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fBs
=fB ¼ 1:184� 0:023ðOPEÞ � 0:007ðsystÞ: (5.6)

Our algorithm enables us to provide both the OPE
uncertainties and the intrinsic (systematic) uncer-
tainty of the sum-rule method related to the limited
accuracy of the extraction procedure. We observe an
extreme sensitivity of the decay constant to the input
value of the quark mass, but only for beauty mesons.
It is not observed in the charm sector, where one
finds �fD=fD ¼ �0:3�mc=mc [27]. Therefore, the
extracted value of fD is rather mildly sensitive to the
precise value ofmc. In the charm sector, on the other
hand, one observes a stronger sensitivity of the
extracted value of fD to the algorithm adopted
for fixing the �-dependent effective continuum
threshold [27].

(4) Our value (5.2) of mb is extracted from the Borel
QCD sum rule for the heavy–light correlator known
to Oð�2

sÞ accuracy. Taking into account that the
value of mb is changing only marginally when mov-
ing from the Oð�sÞ to Oð�2

sÞ accuracy of the corre-
lator, we do not expect that the inclusion of the
presently unknown Oð�3

sÞ correction will lead to a
substantial change in the extracted value of mb. Our
result is compatible with the result [7]

mb ¼ ð4:209� 0:050Þ GeV (5.7)

found from moment sum rules for heavy–heavy
correlators known to the same Oð�2

sÞ accuracy as
in our analysis. We observe an excellent agreement
with the prediction of the renormalization-group-
improved NNLL analysis of the � sum rule [10],

mb¼ð4:235�0:055ðpertÞ�0:003ðexpÞÞGeV: (5.8)

Our result agrees within 2� with the PDG estimate

mb ¼ ð4:18� 0:03Þ GeV: (5.9)

We realize, however, a pronounced tension with the
predictions of [8]

mb ¼ ð4:163� 0:016Þ GeV; (5.10)

and [30]

mb ¼ ð4:171� 0:009Þ GeV; (5.11)

based on sum rules for heavy–heavy correlators
calculated to Oð�3

sÞ accuracy. As already noticed
above, it seems unlikely that the Oð�3

sÞ correction
may bring our result in agreement with the relatively
low value of [8]; therefore, we expect that this
tension will persist. The origin of this disagreement
requires further considerations.

We conclude by emphasizing that the properly formulated
Borel QCD sum rules for heavy–light correlators provide a
competitive tool for the reliable calculation of heavy-
meson properties and for the extraction of basic QCD
parameters by making use of the results from lattice
QCD and the experimental data. We point out that in the
context of QCD sum rules based on correlation functions
calculated at Oð�2

sÞ accuracy, Eq. (5.2) gives the appropri-
ate value of the b-quark mass.
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