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Using the example of the two-dimensional (2D) Ising model, we show that in contrast to what can be done

in configuration space, the tensor renormalization group formulation allows one to write exact, compact, and

manifestly local blocking formulas and exact coarse-grained expressions for the partition function. We argue

that similar results should hold for most models studied by lattice gauge theorists. We provide exact

blocking formulas for several 2D spin models [the Oð2Þ and Oð3Þ sigma models and the SU(2) principal

chiral model] and for the three-dimensional gauge theories with groups Z2, U(1) and SU(2). We briefly

discuss generalizations to other groups, higher dimensions and practical implementations.
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I. INTRODUCTION

Lattice field theory is a well-developed numerical
method which allows us to study the nonperturbative
behavior of asymptotically free theories. The continuum
limit of these theories is reached in the limit of zero bare
coupling. If a mass gap remains present in this limit, the
lattice spacing becomes exponentially small compared to
the physical scale associated with the mass gap. Keeping
the physical volume reasonably large requires an exponen-
tially large volume or clever extrapolations. For gauge
theories with enough massless fermions, a nontrivial infra-
red fixed point may appear (for a review see Ref. [1]).
Evidence for quasiconformal behavior requires small
masses and large volume. The practical demands of
these two limits are sometimes too taxing to lift contro-
versies regarding the existence of nontrivial fixed points.
A well-known example is SU(3) with 12 fundamental
fermions [2–6].

The above considerations make clear that reaching
exponentially large volumes is a highly desirable outcome
for lattice field theorists. This goal could be reached if a
reasonably accurate blocking procedure could be designed.
By blocking (or block-spinning or coarse-graining) we
mean a partial integration procedure used in the renormal-
ization group (RG) approach [7–9] to replace the initial
degrees of freedom on sites or links corresponding to a
lattice spacing a by some new ones assigned to the sites or
links corresponding to the a lattice spacing ba while keep-
ing the macroscopic observables and extensive quantities
unchanged. We call b the scaling factor (typically b ¼ 2).
By blocking n times, linear lattices of order bn can be
reached, which is the aforementioned goal.

It is often believed that blocking in configuration space,
for instance by summing over the spins in a block while
keeping their sum constant, is tedious but straightforward.
The example of the two-dimensional (2D) Ising model
with two-by-two blocks (briefly discussed in Sec. II) can

be used to show that the procedure is far from straightfor-
ward because it generates an arbitrarily large number of
new interactions of arbitrarily large range that are difficult
to enumerate and control. It is possible to invent approx-
imations where no new interactions are generated by the
blocking process. Examples are the Migdal-Kadanoff
approximation [10,11], the approximate recursion formula
[12] or other hierarchical approximations [13,14].
However, the lack of reference to an exact procedure
makes the systematic improvement of these approxima-
tions difficult.
In this paper, we show that, in contrast to the difficult

situation encountered in configuration space, the tensor
renormalization group (TRG) formulation allows us to
write exact blocking formulas for several classes of spin
and gauge models. For these models, the partition function
can be written as a product of tensors attached to sites (or
links, or plaquettes) with their indices suitably contracted
(traced). After blocking, the partition function has exactly
the same form as before except for the fact that the lattice
spacing is twice as big and that the sum over the indices has
more terms. The recursion formulas for the tensors are
manifestly local and do not generate new types of tensors.
However, the ability to reinterpret these results in terms of
blocked configurations and interactions is probably lost.
The TRG approach of classical lattice models was

introduced in Refs. [15–17] and was motivated by tensor
states developed in RG studies of quantum models [18].
For this reason, we often refer to sums over tensor indices
as sums over states. Improved methods to take the environ-
ment into account were proposed in Refs. [19,20]. One
important purpose of our article is to show that TRG
methods can be applied to many models studied by lattice
gauge theorists and that detailed comparisons with
standard Monte Carlo simulations should be performed.
In Sec. II, we start with the well-understood case of the

2D Ising model on a square lattice for which very accurate
TRG-based numerical calculations [21] were performed.
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The construction of the initial tensor can be performed
using singular-value decomposition (SVD). This task can
be simplified by using the character expansion techniques
used to reformulate lattice models in terms of dual varia-
bles [22]. As the recursion formula is iterated, the number
of states increases rapidly and truncation methods are
necessary. Optimal methods with apparent convergence
when going to a sufficiently large number of states were
discussed in Ref. [21]. It is interesting to notice that two-
state approximations provide much better estimates of the
critical exponents [23] than the Migdal-Kadanoff approxi-
mation. However, there is an intermediate region for the
number of states retained where oscillations appear in
individual tensor components and new techniques need to
be developed if we want to work within this ‘‘intermediate-
number-of-states zone.’’ This situation has been recently
documented and analyzed in Ref. [24] which also provides
a nice introduction to the TRG method.

The rest of the paper is organized as follows. We provide
the exact tensor recursion formulas for the 2D Oð2Þ and
Oð3Þ sigma models (Sec. III), the 2D SU(2) principal chiral
model (Sec. IV) and the three-dimensional (3D) Z2, U(1)
and SU(2) pure gauge theories (Sec. V). Again, the calcu-
lation of the initial tensor can be done from expansions
used in dual formulations [22,25–28] even though we do
not deal with the dual variables here. The generalizations
of these results and ongoing practical applications are
discussed in the conclusions.

II. BLOCKING THE 2D ISING MODEL

In order to appreciate the importance of having exact
blocking formulas, we discuss the 2D Ising model on a
square lattice with nearest-neighbor ferromagnetic inter-
actions and an inverse temperature �. We first work in
configuration space (with spin and blocked spin variables)
and then with the TRG approach. Some of the features
observed generalize to other Abelian spin models.

A. Configuration-space blocking

We first describe an algorithm to block spin once in
configuration space and try to generate a new energy
function. The main purpose of the discussion is to show
that unless approximations are made, this new energy
function is very different from the original one. We con-
sider square blocks with a checkerboard configuration
partitioning the blocks into A and B blocks, as illustrated
in Figs. 1 and 2.

We treat the spins in the B blocks as fixed background
and proceed to calculate unnormalized probabilities for the
total spin in the A blocks. For a given A block, there are
eight background spins belonging to the four nearest-
neighbor B blocks, as shown in Fig. 1. The total spin �A

in the A block takes values�4,�2 and 0. For each value of
�A and for each of the background configurations, we can
sum over the known Boltzmann weights and obtain 5� 28

unnormalized probabilities. The next step is to try to block
spin in the B blocks. We consider a given B block such as
the one at the center of Fig. 2. This can be done by
combining our previous results for the four nearest-
neighbor A blocks. We can now sum over the Boltzmann
weights corresponding to each of the values �4, �2 and 0
in the B block. This clearly generates probabilities for the
55 configurations of the four �As and the central �B and
consequently generates nearest-neighbor interactions
among these blocked variables.
The crucial point is that the results depend on the

remaining background spins attached to the four A blocks
and so the sums over the remaining spins in the B blocks
cannot be done independently of one another. There are
twelve such spins in the four B blocks. We denote these

A BB

B

B

FIG. 1 (color online). First blocking on AB checkerboard.

B AA

A

AB' B'

B' B'

''B''B
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FIG. 2 (color online). Second blocking on AB checkerboard.
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four blocks as B0, which are located diagonally from the
central B block under consideration. There are eight spins
in the next-to-nearest-neighbor B blocks, denoted as B00. If
we try to construct the new energy function numerically,
this requires 55220 (about 3 billion) memory entries. It is
clear that these correlations will generate more than
nearest-neighbor interactions.

We should now pause and discuss what has been
accomplished so far and what remains to be done. For
this purpose, we can tile the original lattice with the
‘‘diamonds’’ of Fig. 2. The unshared spins inside the
diamonds have been blocked. This is 5=8 of the total
number of spins. The remaining spins (3=8 of the total
number of spins) are at the shared boundaries of the
diamonds and form diagonals. The B0 blocks are shared
by two diamonds and the B00 blocks are shared by four. One
can in principle combine four such diamonds into a new
diamond with twice the linear size. This discussion makes
clear that arbitrary range interactions are generated and
finding a new energy function in terms of polynomials of
the �A and �B seems to be a Herculean task at least as
difficult as calculating the exact partition function in a
comparable volume.

B. TRG blocking

In contrast, blocking is amazingly simple in the TRG
formulation. For each link we can write

expð��1�2Þ¼coshð�Þ
�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tanhð�Þ

q
�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tanhð�Þ

q
�2

�

¼coshð�Þ X
n12¼0;1

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tanhð�Þ

q
�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tanhð�Þ

q
�2

�
n12 :

(2.1)

Using this identity for each link in the partition function,
we can then regroup the four terms involving a given spin
�i and sum over its two values �1. The results can be

expressed in terms of a tensor TðiÞ
xx0yy0 which can be visual-

ized as a cross attached to the site i with the four legs
covering half of the four links attached to i. The horizontal
indices x, x0 and vertical indices y, y0 take the values 0 and
1 as the index n12 in Eq. (2.1). The tensor is zero for an odd
number of 1’s. For an even number of 1’s, a factorffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tanh ð�p Þ appears for each 1 irrespective of the direction.

This can be summarized as follows:

TðiÞ
xx0yy0 ¼ fxfx0fyfy0�ðmod½xþ x0 þ yþ y0; 2�Þ; (2.2)

where f0 ¼ 1 and f1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tanh ð�Þp

. The delta symbol is 1 if
xþ x0 þ yþ y0 is zero modulo 2 and zero otherwise.

The partition function of the model can now be
written as

Z ¼ Tr
Y
i

TðiÞ
xx0yy0 : (2.3)

Tr is a short notation for contractions (sums over 0 and 1)
over the links joining nearest neighbors on the lattice. This
expression reproduces the proper closed paths of the high-
temperature expansion.
We now use this reformulation to block spin [21,23]. We

consider an isotropic procedure with a square block enclos-
ing four sites as in the previous subsection and sum over
the states inside the block associated with the nearest-
neighbor links joining these four points. This defines a
new rank-4 tensor T0

XX0YY0 where each index now takes

four values,

T0
Xðx1;x2ÞX0ðx0

1
;x0

2
ÞYðy1;y2ÞY0ðy0

1
;y0

2
Þ

¼ X
xU;xD;xR;xL

Tx1xUy1yLTxUx
0
1
y2yRTxDx

0
2
yRy

0
2
Tx2xDyLy

0
1
; (2.4)

where Xðx2; x2Þ is a notation for the product states. In
Ref. [23] we used the convention Xð0; 0Þ ¼ 1, Xð1; 1Þ ¼
2, Xð1; 0Þ ¼ 3, Xð0; 1Þ ¼ 4. This is represented graphically
in Fig. 3. The partition function can be written as

Z ¼ Tr
Y
2i

T0ð2iÞ
XX0YY0 ; (2.5)

where 2i denotes the sites of the coarser lattice with twice
the lattice spacing of the original lattice. As pointed out in
Ref. [23] the TRG blocking is exact and can be written
compactly because the procedure separates, unambigu-
ously, the degrees of freedom inside the block which are
integrated over from those kept to communicate with the
neighboring blocks.

C. Abelian factorization and connection
to configuration space

Equation (2.2) shows that the initial tensor factors nicely.
This property can be extended to spin models with an
Abelian group. For an explicit example see Oð2Þ in
Sec. III A. The general reasoning goes as follows. The
Boltzmann weight associated with a link can be expanded
in characters (Fourier modes). For an Abelian group, each
character of the expansion is a product of two characters
involving each of the site variables. Similarly the coeffi-
cient of the expansion can be written as the product of two
square roots of itself, each one being associated with a
given site. One can then regroup all the characters and
square roots associated with the variable of a given site.
The initial tensor is obtained after integrating over the site
variable. This gives a Kronecker delta times a product
similar to what is seen in Eq. (2.2). The reasoning imme-
diately extends to arbitrary dimension.
The sum over the internal states in Fig. 3 and Eq. (2.4) is

very similar to a sum over momenta in Feynman diagrams.
Three of the sums are absorbed using the Kronecker delta
associated with three vertices, but there is a global condi-
tion on the external legs that, if satisfied, guarantees that
the fourth condition is satisfied. Consequently there is, in
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general, a sum over ‘‘states circulating in the loop’’ which
is enclosed in the block. This sum of factorizable terms is
apparently not factorizable and it seems impossible to
rewrite the blocked tensor as coming from a blocked
energy function with an Abelian symmetry. This argument
indicates that a direct connection between blocked tensors
and blocked energy functions might be difficult or impos-
sible to find.

III. TRG FORMULATION OF Oð2ÞAND Oð3Þ
SIGMA MODELS

The Hamiltonian for the OðNÞ nonlinear sigma models
can be written as

H ¼ �X
hiji

Si � Sj; (3.1)

with Si a unit vector in RN , or equivalently a point on an
ðN � 1Þ-dimensional unit sphere. We will discuss explic-
itly the Abelian case N ¼ 2 and the non-Abelian case N ¼
3 in two dimensions. In both cases, the TRG expression of
the partition function has the same form as Eq. (2.3) for the
Ising model, with the only differences being the range of
the indices and the initial values. Similarly, the blocking of
the tensor has the same form as Eq. (2.4) and will not be
written explicitly.

A. Oð2Þ model

For N ¼ 2, Si is a unit vector staying at each site
i: ðcos ð�iÞ; sin ð�iÞÞ. The partition function reads

Z ¼
Z Y

i

d�i
2�

e
�
P
hiji

cos ð�i��jÞ
: (3.2)

Using

e� cos ð�i��jÞ ¼ Xþ1

nij¼�1
einijð�i��jÞInijð�Þ; (3.3)

where the In are the modified Bessel functions of the first
kind. From the basic property of the exponential, it is

possible to collect all the factors involving a given �i and
integrate over this variable. This results in a tensor attached
to the site i. In two dimensions,

Ti
nix;nix0 ;niy;niy0

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Inixð�Þ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Iniyð�Þ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Inix0 ð�Þ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Iniy0 ð�Þ

q
�nixþniy;nix0þniy0 :

(3.4)

The sign convention is that we have positive signs for the
left and top indices and negative signs for the right and
bottom indices. This allows us to write the partition func-
tion and the blocking of the tensor similarly to the Ising
model. The only difference is that the sums run over the
integers. As the Inð�Þ decay rapidly for large n and fixed �
(namely like 1=n!) there is no convergence issue. The
generalization to higher dimensions is straightforward
(2D indices in D dimensions).

B. Oð3Þ model

For N ¼ 3, Si is a unit vector at site i: ðsin ð�iÞ�
cos ð�iÞ; sin ð�iÞ sin ð�iÞ; cos ð�iÞÞ. In terms of these varia-
bles, the energy function can then be written as

H ¼ �X
hiji

cos�ij; (3.5)

where �ij is the angle between Si and Sj and cos�ij can be

expressed in terms of the angles as

cos�ij ¼ cos�i cos�j þ sin�i sin�j cos ð�i ��jÞ: (3.6)

Expanding as for Oð2Þ and using Inð�Þ ¼ I�nð�Þ,

e� cos� ¼ I0ð�Þ þ 2
X1
n¼1

Inð�Þ cos ðn�Þ; (3.7)

we can then use the Chebyshev polynomials of the first
kind to re-express

cos ðn�Þ ¼ Tnðcos�Þ: (3.8)

Using the Legendre polynomials Pnðcos�Þ, we can write

e� cos�ij ¼ I0ð�Þ þ 2
X1
n¼1

Inð�Þ
Xn
l¼0

anlPlðcos�ijÞ; (3.9)

with

anl ¼ 2lþ 1

2

Z 1

�1
TnðxÞPlðxÞdx: (3.10)

By using the addition theorem for spherical harmonics

Plðcos�ijÞ ¼ 4�

2lþ 1

Xl
m¼�l

Y�
lmð�j; �jÞYlmð�i; �iÞ; (3.11)

Eq. (3.9) can be written as

xU

xD

yL yR

x1

x2

x1'

x2'

y1 y2

y1' y2'

'XX

Y

Y '

FIG. 3 (color online). Graphical representation of T0
XX0YY0 .
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e� cos�ij ¼ X1
l¼0

Alð�Þ
Xl

m¼�l

Y�
lmð�j; �jÞYlmð�i; �iÞ; (3.12)

where

A0ð�Þ ¼ I0ð�Þ þ 2
X1
n¼1

Inð�Þan04�;

A1ð�Þ ¼ 2
X1
n¼1

Inð�Þan1 4�3 ;

..

.

Alð�Þ ¼ 2
X1
n¼l

Inð�Þanl 4�

2lþ 1
:

(3.13)

Again, the Bessel functions control the decay for large l.
The elements of the T tensor can then be written as

Tðl1;m1Þ;ðl2;m2Þ;ðl3;m3Þ;ðl4;m4Þ

¼
Z 2�

0
d�

Z �

0
d� sin �Yl1m1

ð�;�ÞY?
l2m2

ð�;�Þ

� Yl3m3
ð�;�ÞY�

l4m4
ð�;�Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Al1Al2Al3Al4

q
: (3.14)

The direction convention is shown in Fig. 4. Equation (3.14)
can be further simplified by expanding the product of
two spherical harmonics in terms of spherical harmonics
themselves,

Yl1m1
ð�;�ÞYl3m3

ð�;�Þ ¼ Xlmax

L¼lmin

G
ðm1;m3;l1;l3Þ
L Y

m1þm3

L ð�;�Þ:

(3.15)

Explicit formulas for Gðm1;m3;l1;l3Þ
L and a discussion of

the Gaunt coefficients can be found in Ref. [29]. The
summation bounds are

lmax ¼ l1 þ l3;

lmin ¼
�
�min if lmax þ �min is even;

�min þ 1 if lmax þ �min is odd;

�min ¼ max ðjl1 � l3j; jm1 þm3jÞ:
(3.16)

The angular integration in Eq. (3.14) can be performed
using the orthonormal property of the spherical harmonics
with the result

Tðl1;m1Þ;ðl2;m2Þ;ðl3;m3Þ;ðl4;m4Þ

¼�m1þm3;m2þm4

X
L

G
ðm1;m3;l1;l3Þ
L G�ðm2;m4;l2;l4Þ

L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Al1Al2Al3Al4

q
:

(3.17)

In contrast to Oð2Þ, there are now two indices associated
with each leg of the tensor and the factorization of the
initial tensor is lost.

IV. TRG FOR SU(2) PRINCIPAL CHIRAL MODELS

The partition function for the principal chiral model
reads

Z ¼ Y
n

Z
dUðnÞY

ni

exp

�
�

2
Re½tr½UðnÞUyðnþ iÞ��

�
;

(4.1)

with i a unit vector in one of the spatial directions and n a
spatial location. Then, since the action only depends on the
trace of the matrix representation of the group elements,
we can write it in terms of a character expansion,

exp

�
�

2
Re½tr½UðnÞUyðnþ iÞ��

�
¼ X

r

Frð�Þ	rðUðniÞÞ;

(4.2)

with the sum over the representations of the group and
UðniÞ a short notation for UðnÞUyðnþ iÞ. 	r is the trace in
the irreducible representation r of SU(2). The explicit form
of the measure, 	rðUÞ and Frð�Þ (in terms of Bessel
functions), for SU(2) and other groups can be found in
Ref. [30]. Some of the results below will be written using
the conventions from Ref. [29]. We can rewrite the
partition function as

Z ¼ Y
n

Z
dUðnÞY

ni

X
rðniÞ

FrðniÞð�Þ	rðniÞðUðniÞÞ: (4.3)

Let A 2 SUð2Þ and let Dr
mnðAÞ be the matrix elements in

the rth irreducible representation (the ‘‘Wigner D-
functions’’). Then to extract the angle dependence inside
of the 	’s we note that the 	’s are the traces of these
representations and thus

	rðABÞ ¼ Dr
mnðAÞDr

nmðBÞ: (4.4)

i
l1, m1 l2, m2

l3, m3

l4, m4

Yl1m1

Yl2m2
�

Yl3m3

Yl4m4
�

FIG. 4. 2D Oð3Þ.
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For a 2D lattice, there are four times when a product of
pairs of sites contains the same site, so if we multiply out
all of the nearest-neighbor pairs and collect the single same
site together, we obtain

Z ¼ Y
n

Z
dUðnÞY

ni

X
rðniÞ

FrðniÞð�Þ

�X
m;k

DrðniÞ
mk ðUðnÞÞDrðniÞ

km ðUðnþ iÞÞ (4.5)

¼ X
fr0sg

X
fm0sg

X
fn0sg

Y
l

ðFr1;lð�ÞFr2;lð�Þ

� Fr3;lð�ÞFr4;lð�ÞÞ
1
2

Y
n

Z
dUðnÞDr1;l

m1n1ðUÞ

�D
r2;l
m2n2ðUÞDr3;l

m3n3ðUÞDr4;l
m4n4ðUÞ; (4.6)

with l a product over the sites of the lattice, and r1, r2, r3, r4
the four links incoming and outgoing from the site. Each Fr

is shared by two sites on the lattice since they are located
on the links. Then from the integrals we get a constraint at
each site on the lattice, and a product over constraints and
link variables, Fr.

To preform the integration over the site variables we can
use the Clebsch-Gordan series to rewrite two D-functions
as a single D-function with accompanying Clebsch-Gordan
symbols,

Dr1
m1n1ðUÞDr2

m2n2ðUÞ ¼ Xr1þr2

r¼jr1�r2j

X
m;n

Cr1r2r
m1m2nD

r
mnðUÞCr1r2r

n1n2n:

(4.7)

Then for the integrals above we can change out the fourDs
for two, and using Dr

mn ¼ ð�1Þn�mDr��m�n and their or-
thogonality [28]

Z
dUDr1

m1n1ðUÞD�r2
m2n2ðUÞ ¼ 1

2r1 þ 1
�r1r2�m1m2

�n1n2 ;

(4.8)

we can write down the integral exactly,

Z
dUDr1

m1n1ðUÞDr2
m2n2ðUÞDr3

m3n3ðUÞDr4
m4n4ðUÞ

¼ X
r0;m0;n0

X
r00;m00;n00

Cr1r2r
0

m1m2m
0C

r1r2r
0

n1n2n
0C

r3r4r
00

m3m4m
00C

r3r4r
00

n3n4n
00

�
Z

dUDr0
m0n0D

�r00
�m00�n00 ð�1Þn00�m00

(4.9)

¼ X
r0;m0;n0

X
r00;m00;n00

Cr1r2r
0

m1m2m
0C

r1r2r
0

n1n2n
0C

r3r4r
00

m3m4m
00d�1

r0

� ð�1Þn00�m00
Cr3r4r

00
n3n4n

00�m0;�m00�n0;�n00�r0;r00 (4.10)

¼ X
r0;m0;n0

d�1
r0 ð�1Þm0�n0Cr1r2r

0
m1m2m

0C
r1r2r

0
n1n2n

0C
r3r4r

0
m3m4�m0C

r3r4r
0

n3n4�n0 :

(4.11)

This allows us to write the partition function directly as

Z¼ X
fr0sg

X
fm0sg

X
fn0sg

Y
l

ðFr1;lð�ÞFr2;lð�ÞFr3;lð�ÞFr4;lð�ÞÞ
1
2

� X
r0;m0;n0

d�1
r0 ð�1Þm0�n0Cr1r2r

0
m1m2m

0C
r1r2r

0
n1n2n

0C
r3r4r

0
m3m4�m0C

r3r4r
0

n3n4�n0 ;

(4.12)

and gives us a T tensor of the form

Tðr1;m1;n1Þðr2;m2;n2Þðr3;m3;n3Þðr4;m4;n4Þ

¼ ðFr1ð�ÞFr2ð�ÞFr3ð�ÞFr4ð�ÞÞ
1
2

X
r0;m0;n0

d�1
r0 ð�1Þm0�n0

� Cr1r2r
0

m1m2m
0C

r1r2r
0

n1n2n
0C

r3r4r
0

m3m4�m0C
r3r4r

0
n3n4�n0 : (4.13)

This T tensor can be used just as a typical spin-model
tensor with four (grouped) indices. The typical contraction
between tensor legs can be carried out with the help of a
grouped set of Kronecker deltas,

~�ðr;i;i0Þðr0;j;j0Þ ¼ �r;r0�i;j�i0;j0 : (4.14)

This tensor ensures the same representation per link, and
circulates the trace of the matrix indices along the link
between sites.

V. TRG FORMULATIONS OF LATTICE
GAUGE MODELS

In this section, the tensor-network forms for the partition
function of Abelian and non-Abelian gauge models, in-
cluding 3D Z2 gauge theory, D-dimensional U(1) gauge
models (D ¼ 2, 3, 4), and SU(2) gauge models are shown.
Two formulations of the TRG method are constructed: one
is left-right asymmetric and the other symmetric.

A. Three-dimensional Z2 gauge theory

We first consider a simple gauge theory on a lattice—the
three-dimensional compact Z2 gauge theory, with the
partition function

Z ¼ X
f�g

exp

�
�
X
P

�12�23�34�41

�
; (5.1)

where the action is a sum over all the plaquettes and the
fields �ij ¼ �1 are attached to each link of the lattice. We

can now proceed as in Eq. (2.1) and write a single plaquette
contribution using a sum with n ¼ 0 or 1 of

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tanh ð�Þ4

q
�12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tanh ð�Þ4

q
�23

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tanh ð�Þ4

q
�34

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tanh ð�Þ4

q
�41

�
n
:
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Regrouping the factors with a given �l and summing over
�1 we obtain a tensor attached to this link,

AðlÞ
n1n2n3n4 ¼ ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

tanh�4
p Þn1þn2þn3þn4

� �ðmod½n1 þ n2 þ n3 þ n4; 2�Þ: (5.2)

The four links attached to a given plaquette p must carry
the same index 0 or 1. For this purpose we introduce a new
tensor,

BðpÞ
m1m2m3m4

¼ �ðm1;m2;m3;m4Þ ¼
�
1; allni are the same;

0; otherwise:

(5.3)

The partition function can now be written as

Z ¼ ð2 cosh�Þ3VTrY
l

AðlÞ
n1n2n3n4

Y
p

BðpÞ
m1m2m3m4

; (5.4)

where V is the volume of the system and Tr is a notation
for a sum over all the shared plaquettes. A graphical
representation of the tensors is provided in Fig. 5. One
can check that the new expression for the partition function
reproduces the strong-coupling expansion.

1. Asymmetric formulation

By using three A tensors and three B tensors as shown
Fig. 6, a basic cell can be constructed. There are twelve
external legs. We can recombine the indices attached to the
legs pointing in the same directions using product states
(labeled by capital letters). For instance, X ¼ x1 � x2, and
similarly with the other directions. Proceeding this way, we
obtain a new tensor T6XX0YY0ZZ0 which can be treated as in
the case of a 3D spin model. However, in the positive
ðX; Y; ZÞ and negative ðX0; Y0; Z0Þ directions, the opposite
legs are associated with different tensors. For instance, X is
associated with A and X0 with B.

The partition function can be rewritten as the tensor-
network state of the new T6 tensor at each cube c,

Z ¼ ð2 cosh�Þ3VTrY
c

TðcÞ
6XX0YY0ZZ0 : (5.5)

To block spin, we can use anisotropic steps by contracting
the lattice alternatively in the x-axis, y-axis, and z-axis
directions. In each step, the lattice size is reduced by a
factor of 2 in the appropriate direction and a new T0

6 tensor

is generated as

T0
6XX00 ~YðY1;Y2Þ ~Y0ðY0

1
;Y0

2
Þ ~ZðZ1;Z2Þ ~Z0ðZ0

1
;Z0

2
Þ

¼ X
X0
T6XX0Y1Y

0
1
Z1Z

0
1
T6X0X00Y2Y

0
2
Z2Z

0
2
; (5.6)

where ~YðY1; Y2Þ is the notation for the product states
~Y ¼ Y1 � Y2 and similarly with the other directions. The
partition function can then be rewritten as the trace of the
product of T0

6 tensors as before blocking.

It is straightforward but tedious to write an isotropic
blocking formula involving the product of eight T6 tensors.
It is also possible to find tensors associated with the parti-
tion function in the temporal gauge. The A tensors on the
temporal links disappear while those on the spatial links
have a space-time asymmetry. This will be important for
numerical applications.

A
B

n1

n2

n3

n4

m1

m2

m3

m4

FIG. 5 (color online). A tensor and B tensors.

A

A

A B

B

B

O
X

X'

Y

Y'

Z

Z'

FIG. 6 (color online). (Top) A new basic cell in an original
cube. (Bottom) The equivalent T6 tensor with center (1=4, 3=4,
3=4) in the original cube.
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2. Symmetric formulation

The difference between the positive and negative direc-
tions in the previous formulation can be avoided by
introducing new tensors. First, we notice that the A and B
tensors do not suffer from this asymmetry. However they
do not close under blocking. To see this we can try to
combine the B tensors of two adjacent plaquettes in the
same plane into a new one. This does not work because the
A tensor on the common link induces two new legs or-
thogonal to the plane and pointing in opposite directions.
This is the effect that is eliminated in the Migdal-Kadanoff
approximation by bond-sliding. Here, we want an exact
formula so we modify the B tensor to form a ~B tensor with
six indices (see Fig. 7) with the initial value

~Bn1n2n3n4zz
0 ¼ Bn1n2n3n4�zz0 (5.7)

for a plaquette in the x-y plane and with similar expressions
for the two other planes. The new legs piercing the pla-
quettes can be traced by introducing a new tensor Cxx0yy0zz0

at the center of the cubes, as shown in Fig. 8, with the initial
value

Cxx0yy0zz0 ¼ �xx0�yy0�zz0 ; (5.8)

where the �ij is the Kronecker delta function. In general,

the C tensor has the same indices as the T6 tensor shown at
the bottom of Fig. 6, but its center is (1=2, 1=2, 1=2) in the
original cube.

We can now rewrite the partition function as

Z ¼ Kð2 cosh�Þ3VTrY
l

AðlÞY
p

~BðpÞY
c

CðcÞ; (5.9)

where the indices are implicit to keep the formula short.
The Kronecker delta in the initial values can be summed
along open or closed lines (depending on the boundary
conditions) and give rise to a power of 2 that can be
eliminated by adjusting the constant K. The other traces
are as in the original expression of the partition function.

A blocking procedure can be constructed by sequentially
combining two cubes into one in each of the directions.
This is illustrated in one direction in Fig. 8.

Now we can write explicit blocking formulas. On the
link of the new lattice formed by two cubes, two parallel A

tensors form the new A0 tensor with product states (capital
letters). Each tensor element is

A0
Xðx1;x2ÞX0ðx0

1
;x0

2
ÞYðy1;y2ÞY0ðy0

1
;y0

2
Þ ¼ Ax1x

0
1
y1y

0
1
� Ax2x

0
2
y2y

0
2
: (5.10)

On the new face, two ~B tensors and one A tensor form a
new ~B0 tensor,

~B0
xx0Yðy1;y2ÞY0ðy01;y02ÞZðz1;z2;z3ÞZ0ðz01;z02;z03Þ

¼ X
x3;x

0
3

~Bxx3y1y
0
1
z1z

0
1
Ax3x

0
3
z3z

0
3

~Bx0
3
x0y2y02z2z

0
2
: (5.11)

At the center, twoC tensors and one ~B tensor form a newC0
tensor,

C0
xx0Yðy1;y2;y3ÞY0ðy0

1
;y0

2
;y0

3
ÞZðz1;z2;z3ÞZ0ðz0

1
;z0
2
;z0
3
Þ

¼ X
x2;x

0
2

Cxx2y1y
0
1
z1z

0
1

~Bx2x
0
2
y2y

0
2
z2z

0
2
Cx0

2
x0y3y03z3z

0
3
: (5.12)

B. U(1) gauge models

In this section, we formulate the U(1) gauge models inD
dimensions in terms of tensor-network states. The partition
function of these models can be written as

Z ¼ Y
hiji

Z �

��

d�ij
2�

exp

�
�
X
P

cos ð�12 þ �23 � �43 � �14Þ
�
;

(5.13)

where the product is running through all the links of the
lattice and the sum is over all the plaquettes.
Using the Fourier expansion with the Bessel functions as

in Eq. (3.2) and collecting the factors for each link, we
obtain the tensor

An1...n2ðD�1Þ ¼
Y2ðD�1Þ

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Inið�Þ4

q
�

� X2ðD�1Þ

i¼1

ð�1Þiþ1ni

�
; (5.14)

where the Ins are the modified Bessel functions. For anyD,
we can use a B tensor that ensures that the four indices
attached to a plaquette are identical just like for the Z2

case. The partition function can be written as

B
�

A

A

A
A

n1

n2

n3

n4

z

z'

FIG. 7 (color online). The A tensors on the links and the ~B
tensor at the center of the plaquette.

C
CB

�

B
�

B
�A

A

A

FIG. 8 (color online). Blocking procedure.
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Z ¼ Tr
Y
l

AðlÞ
n1...n2ðD�1Þ

Y
p

BðpÞ
m1m2m3m4

: (5.15)

We can construct the blocking procedure in both the asym-
metric and symmetric ways by following what has been
done for Z2. From a geometric viewpoint, a basic cell in a
D-dimensional lattice contains D A tensors with 2ðD� 1Þ
legs each, and DðD�1Þ

2 B tensors, each always with four legs.

We now will consider D ¼ 2, 3 and 4 separately.

1. D ¼ 2

For D ¼ 2, the A tensor is just a diagonal matrix. This
allows us to block two adjacent B tensors and get another B
tensor. We can also construct an asymmetric tensor T4 from
a basic cell as illustrated in Fig. 9. If one leg is fixed, all the
other three are also fixed because of the constraint of the B
tensor. Thus,

T4 � Txx0yy0 ¼ Ixð�Þ�ðx; x0; y; y0Þ: (5.16)

This tensor can be blocked isotropically with the result
ðIxð�ÞÞ4�ðx; x0; y; y0Þ. For periodic boundary conditions we
can pursue this process, and we get the known answer

Z ¼ X1
n¼�1

Inð�ÞLx�Ly ; (5.17)

where Lx � Ly is the area of the system. For open bound-

ary conditions, we can represent the three-indices tensor at
the boundary as a four-indices tensor with an index 0 for
the leg going outside the boundary. With this, only the n ¼
0 term survives from the sum obtained with periodic
boundary conditions. This is very similar to the one-
dimensional Oð2Þ model.

2. D ¼ 3

The treatment is almost identical to the 3D Z2 gauge
model. The geometric construction is the same but the

initial tensor is given by Eq. (5.14) and the initial sums
run over the integers instead of 0 and 1 for Z2.

3. D ¼ 4

The basic cell of tensors in D ¼ 4 is illustrated in
Fig. 10. There are four A tensors with six legs and six B
tensors in one basic cell of the hypercube. There are three
legs pointing in each of the directions. Following the
asymmetric procedure, we can combine each of these three
legs into a single index, build a rank-8 tensor and block as
in the spin model case. It seems possible to follow the
symmetric procedure and build a modified B tensor with
four additional legs in the directions orthogonal to the
plaquette, a modified C tensor with two additional legs
pointing in the direction orthogonal to the cubes and a new
tensor with eight legs located at the center of the hyper-
cubes. Blocking in one direction is then performed by
contracting two similar tensors with a tensor associated
to the object with one less dimension in between.

C. Abelian factorization

All the initial A tensors calculated have the factorization
property shown by Abelian spin models and discussed in
Sec. II C. The same reasoning can be used for Abelian
gauge theories. Assuming the character expansion for the
single plaquette weight

e��Sp ¼ X
r

Frð�Þ	rðUÞ; (5.18)

we can rewrite 	rðUÞ as the product of the four characters
for each of the four links 	rðU1Þ	rðU2Þ	rðU3Þ	rðU4Þ,
factorize the contributions associated with each link and
then integrate over the link variables. The initial tensor
reads

B A

A

'xx

y

y'

FIG. 9 (color online). T4 tensor which contains two A tensors
and one B tensor.

A

B

FIG. 10 (color online). Four-dimensional U(1) tensor in a
hypercube. The A tensors are on the links, and the B tensors
are at the center of the plaquettes.
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Aijkl ¼ ðFið�ÞFjð�ÞFkð�ÞFlð�ÞÞ14�g
iþk;jþl: (5.19)

The main difference with the spin model is the appearance
of the fourth root instead of the square root.

D. TRG formulation of 3D SU(2) gauge

Using the conventions from Ref. [29], and following a
procedure described in Ref. [28], we start with a partition
function for the 3D SU(2) gauge model,

Z ¼ Y
ni

Z
dUðniÞY

nij

exp

�
�

4
Re½tr½UðnijÞ��

�
; (5.20)

with UðnijÞ the product of group elements around a pla-
quette and ni the links of the lattice. Since the action only
depends on the trace of matrix representations of SU(2), we
can rewrite the action as a character expansion,

e��Sp ¼ X
r

Frð�Þ	rðUðnijÞÞ: (5.21)

Again, see Ref. [30] for explicit forms. Then the partition
function can be written as

Z ¼ Y
ni

Z
dUðniÞY

nij

X
rðnijÞ

FrðnijÞð�Þ	rðnijÞðUðnijÞÞ: (5.22)

We can rewrite the characters of the product of group
elements as the trace over the product of the matrix repre-
sentations of group elements,

	rðU1U2U3U4Þ ¼ Dr
ijðU1ÞDr

jkðU2ÞDr
klðU3ÞDr

liðU4Þ;
(5.23)

and with these ‘‘Wigner D-functions’’ we can perform the
product over plaquettes of the lattice, and gather together
the four D-functions which all share the same link variable.
In three dimensions there are four plaquettes for each link
and so there are four D-functions per link variable. This
situation is identical to the 2D principal chiral model, since
in 2D there are four links impinging on a site. The only
minor difference in this case is that each plaquette is
bordered by four links, as opposed to 2D where each link
is bordered by two sites. The consequence of this is that the
character coefficients are shared more between the links.
We can use the same analysis as before for the integration
and write down the partition function directly,

Z ¼ Y
ni

X
r;m;n

Z
dUðniÞðFr1ð�ÞFr2ð�ÞFr3ð�ÞFr4ð�ÞÞ

1
4

�Dr1
m1n1ðUÞDr2

m2n2ðUÞDr3
m3n3ðUÞDr4

m4n4ðUÞ (5.24)

¼ Y
ni

X
r0s

X
m0s;n0s

ðFr1ð�ÞFr2ð�ÞFr3ð�ÞFr4ð�ÞÞ
1
4

� X
r0;m0;n0

d�1
r0 ð�1Þm0�n0Cr1r2r

0
m1m2m

0C
r1r2r

0
n1n2n

0C
r3r4r

0
m3m4�m0C

r3r4r
0

n3n4�n0 :

(5.25)

This gives us an A tensor of the form

Aðr1;m1;n1Þðr2;m2;n2Þðr3;m3;n3Þðr4;m4;n4Þ

¼ ðFr1ð�ÞFr2ð�ÞFr3ð�ÞFr4ð�ÞÞ
1
4

� X
r0;m0;n0

d�1
r0 ð�1Þm0�n0Cr1r2r

0
m1m2m

0C
r1r2r

0
n1n2n

0C
r3r4r

0
m3m4�m0C

r3r4r
0

n3n4�n0 :

(5.26)

Now, the model demands that there be a single representa-
tion assigned to each plaquette; we see this during the
character decomposition when a single plaquette takes on
a single representation. However, while the D-function
matrix indices are traced out, they demand to be traced
out in a specific way, namely, to close around a plaquette.
This behavior must be obeyed during the tensor recon-
struction. This can be handled by separate tensors. One
tensor—the original B tensor from Abelian models—can
remain the same and is responsible for keeping the repre-
sentations the same on a plaquette. Next we need adjacent
(link) matrix indices, ms and ns, to be contracted. This is
achieved with four Kronecker deltas, each contracting a
pair of adjacent indices. The initial value of the tensor is
given by

~Bðr;i;i0Þðr0;j;j0Þðr00;k;k0Þðr000;l;l0Þ ¼ Brr0r00r000�i;j�j0;k�k0;l�l0;i0 : (5.27)

We can now proceed as in the 3D Abelian case to write the
partition function and perform blockings using A and B
tensors. The only difference is that the single indices of the
Abelian formulas need to be replaced by three indices.

VI. CONCLUSIONS

In conclusion, we have shown that the partition func-
tions of the 2DOð2Þ andOð3Þ sigma models, the 2D SU(2)
principal chiral model and the 3D gauge theories with the
groups Z2, U(1) and SU(2) can be written in terms of local
tensors and that exact blocking formulas can be written for
these models. The basic ingredient is the character expan-
sion. This is available for any finite or compact group. For
Abelian models, the factorization properties discussed for
spin and gauge models should guarantee that the proce-
dures described here can be extended for any compact
Abelian group in any dimension. In the non-Abelian
case, it is in addition necessary to re-express products of
representations in terms of irreducible representations.
Again, this is possible for OðNÞ and SUðNÞ with larger N
than the ones considered here.
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Models with fermions have not been discussed. In
Ref. [23], it was shown that standard SVD methods can
be used to factorize exponentials of quadratic forms in
Grassman numbers and then perform the local integrations.
This yields tensors similar to the ones constructed for spin
models. Combining this result with the ones for the gauge
models presented here is an important goal. A first objec-
tive could be the 2D Schwinger model. It is interesting that
the quantum treatment of this model in 1þ 1 dimensions
in terms of tensor network states has been proposed re-
cently [31]. It would be very interesting to understand the
standard quantum-classical correspondence in a unified
tensor language.

Exact blocking formulas may be useful for analytical
problems, such as the understanding of confinement for 4D
SU(2) and the lack thereof for U(1) gauge theories [32].
There are many possible numerical applications of the
blocking formulas presented here. The finite size of com-
puter memory requires truncations and projections which
are model dependent. The 2DOð2Þmodel can be treated as
the 2D Ising model. The good agreement between TRG
and Monte Carlo calculations of thermodynamics quanti-
ties and critical properties will be reported elsewhere [33].
Numerical implementations for 3D Ising gauge theory are
under way.

In general, the computational demands are very different
from those present in Monte Carlo simulations. For a given
set of states in the external legs (which communicate with
the other blocks as in Fig. 3), the sums over the internal
states amount to solving a small lattice problem and takes
little CPU time. However, the large number of combina-
tions of external states requires many repetitions and can
stretch the limit of computer memory.

The numerical treatment seems insensitive to sign prob-
lems. In conventional Monte Carlo simulations, calcula-
tions with complex� can only be achieved by a reweighing
of configurations obtained with real � where the sign
problem is absent. This only allows small imaginary values

of �. In contrast, the TRG method allows larger imaginary
parts. This allowed us to calculate the zeros of the partition
function for the 2D Ising and Oð2Þ models in good agree-
ment with existing results [33]. We plan to use the TRG
method to study the ZN clock and Oð2Þ models with a
complex chemical potential and compare the results with
those obtained with dual formulations [34] and world-line
methods [35,36].
In summary, the TRG method is a very promising

method to deal with models studied by lattice gauge the-
orists. We hope that the recent numerical success will
extend to other models and that ultimately it will be useful
to approach important problems, such as the phase diagram
of QCD and the boundary of the conformal window for
various multiflavor gauge theories.
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