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In this article we study the finite temperature and chemical potential effects in a nonlocal Nambu-Jona-

Lasinio model in the real time formalism. We make the usual Wick rotation to get from imaginary to real

time formalism. In doing so, we need to define our regulator in the complex plane q2. This definition will

be crucial in our later analysis. We study the poles in the propagator of this model and conclude that only

some of them are of interest to us. Once we have a well-defined model in a real time formalism, we look at

the chiral condensate to find the temperature at which chiral symmetry restoration will occur. We find a

second-order phase transition that turns to a first-order one for high enough values of the chemical

potential.
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I. INTRODUCTION

The study of QCD in the nonperturbative regime is a
highly interesting topic. Important features of QCD, such
as confinement or the QCD phase diagram, cannot be
described through a perturbative analysis of the theory.
Because of this, several methods have been developed in
order to deal with the nonperturbative sector, such as lattice
QCD. However successful, lattice QCD does not seem to
be an appropriate tool for studying problems with finite
baryon chemical potential because of the well-known
‘‘sign problem’’ [1,2]. Another method frequently used to
study the nonperturbative sector of QCD is the use of
effective models such as the Nambu-Jona-Lasinio (NJL)
model. This was originally developed as a model of
interacting nucleons [3,4]; however, nowadays it is vastly
used as a model of interacting quarks to explore finite
temperature and density effects [5–9].

The nonlocal NJL (nNJL) model is a generalization of
the NJL model [10,11]. The model has a nonlocal interac-
tion modulated by a regulator. This regulator can take a
variety of forms, inspired by different models [12,13].

In the last years, some regulators were proposed in order
to reproduce lattice simulations of the light quarks propa-
gator [14]. Two regulators are associated with the renormal-
ization function and self-energy. These kinds of regulators
are interesting due to their analytic structure. They exhibit a
cut in the complex plane, which is one of the features we are
interested in when treating the system in a real time formal-
ism [15]. We want to study the effects of these kind of
regulators in the presence of temperature and density effects.

Temperature and chemical potential effects are usually
introduced in the nNJL model through the Matsubara
(imaginary time) formalism [16,17]. However, in this
case the sums of Matsubara frequencies are an issue
because of the complicated shape the regulators may

have. A real time formalism was initially proposed to avoid
the necessity of truncating the Matsubara frequencies in
numerical calculations. This formalism provides a descrip-
tion of the effective quarks which we find to be quite
insightful, since it provides us with a clear interpretation
of confinement effects [10,11]. The main purpose behind
working with the real time formalism in such kind of
effective models is to achieve a description of the system
in terms of quasiparticles. The resulting quasiparticles will
be expressed in terms of a mass and a decay width, allow-
ing us to understand which of them will be relevant for the
description of the system, and which not. Those too mas-
sive will be not accessible, and particles with a big decay
width are too unstable. This is the case indeed when deal-
ing with the high temperature regime, with a Lorentzian
regulator, where only a few number of poles contribute to
the dynamics of the system, unlike the Gaussian regulator
case [15,18]. Real time formalism is also interesting since
it allows us to study phenomena beyond thermodynamic
equilibrium through the Schwinger-Keldysh formalism
[19–21]. The use of a Lorentzian regulator has the advan-
tage of generating a finite number of poles, contrary to the
case of the Gaussian regulator [15]. This fact softens the
instabilities generated by the truncation of the pole series at
low temperature [18].
In this article wewill develop the real time formalism for

a nNJL model with a fractional Lorentzian regulator,
which produces a cut in the complex plane, exhibiting a
propagator with only complex poles. We will get the
behavior of the masses of the quasiparticles as a function
of the vacuum expectation value of a scalar bosonic field
and we will look for a critical temperature at which chiral
symmetry is restored in the chiral limit. We will then
include a finite baryon chemical potential and look at
how this affects the chiral symmetry restoration.
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The paper is organized as follows. In Sec. II, we intro-
duce the nNJL model and develop the real time formalism
in a general manner. In Sec. III we will turn to our particu-
lar choice of regulator and study the behavior of the masses
as T increases. Wewill also find the critical temperature for
chiral symmetry restoration. In Sec. IV we present a brief
discussion on the thermodynamical potential of the model
and the incorporation of nonzero chemical potential.
In Sec. V we present our conclusions.

II. nNJL MODEL IN REAL TIME FORMALISM

We consider the nNJL model, described by the
Euclidean Lagrangian,

LE ¼
�
�c ðxÞð�i6@þmÞc ðxÞ �G

2
jaðxÞjaðxÞ

�
: (1)

The nonlocal aspects of the model are introduced through
the nonlocal currents jaðxÞ defined as

jaðxÞ ¼
Z

d4yd4zrðy� xÞrðz� xÞ �c ðxÞ�ac ðzÞ; (2)

where �a ¼ ð1; i�5 ~�Þ. A standard bosonization procedure
can be performed on the model by incorporating scalar (�)
and pseudoscalar ( ~�) fields. Quark fields can then be
integrated out [13,22]. We proceed in the mean field ap-
proximation. We assume the ~� fields to have null mean
value because of isospin symmetry. So we take

� ¼ ��þ ��; (3)

~� ¼ � ~�; (4)

where �� is the vaccum expectation value of the scalar field.
To first order in the fluctuations we can write the mean field
effective action

�MF ¼ V4

�
��2

2G
� 2Nc

Z d4qE
ð2�Þ4 tr ln S�1

E ðqEÞ
�
; (5)

with SEðqEÞ being the Euclidean effective propagator

SE ¼ �6qE þ�ðq2EÞ
q2E þ �2ðq2EÞ

: (6)

Here, �ðq2EÞ is the constituent quark mass

�ðq2EÞ ¼ mþ ��r2ðq2EÞ: (7)

Finite temperature (T) and chemical potential (�) effects
can be incorporated through the Matsubara formalism.
To do so, we make the following substitutions:

V4 ! V=T; (8)

q4 ! �qn; (9)

Z dq4
2�

! T
X
n

; (10)

where qn includes the Matsubara frequencies and the
chemical potential

qn � ð2nþ 1Þ�T þ i�: (11)

The grand canonical thermodynamical potential in the
mean field approximation is given by �MFð ��; T;�Þ ¼
ðT=VÞ�MFð ��; T;�Þ [23]. The value of �� can then be
obtained through the solutions of the gap equation
@�MF=@ �� ¼ 0, which means

��

G
¼ 2NcT

X
n

Z d3q

ð2�Þ3 r
2ðq2EÞ trSEðqEÞjq4¼�qn : (12)

So far we have worked in the imaginary time formalism.
In order to go to the real time formalism we must perform a
rotation from Euclidean to Minkowski space by taking
q4 ¼ iq0. We will then obtain the zero temperature
propagator in Minkowski space

S0 ¼ i
6qþ�ð�q2Þ
q2 ��2ð�q2Þ ; (13)

where q2 ¼ �q2E. This propagator has singularities in the
complex plane q2. In what follows we will assume that this
propagator has only complex singularities. Following our
quasiparticle interpretation of the singularities, we will
define a mass and a decay width by writing the poles of
the propagator at

q2 ¼ M2 ¼ M2 þ iM�; (14)

where M is the constituent mass of the quasiparticle and �
its decay width. Our next step is to introduce the thermal
propagator in the real time formalism.
In the real time formalism, the number of degrees of

freedom is doubled [16,17,24–27]. This means that the
thermal propagator is given by a 2� 2 matrix with ele-
ments Sij. However, in one-loop calculations only the S11
component is necessary. We can write a general expression
for S11 in terms of the spectral density function

S11 ¼
Z dk0

2�i

�ðk0; qÞ
k0 � q0 � i"

� nFðq0 ��Þ�ðqÞ; (15)

where nFðq0 ��Þ is the Fermi-Dirac distribution

nFðq0 ��Þ ¼ ðeðq0��Þ=T þ 1Þ�1. We can obtain the spec-
tral density function from

�ðqÞ ¼ SþðqÞ � S�ðqÞ; (16)

where

S�ðqÞ ¼ �
I
��

dz

2�i

S0ðz� i"; qÞ
z� q0 � i"

: (17)
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This is just a generalization of the free particle case where
�ðqÞ ¼ S0ðq0 þ i"; qÞ � S0ðq0 � i"; qÞ. The integration
path �� is shown in Fig. 1.

Performing the integrations we get

�ðqÞ¼X
M

i

ðM2�q2ÞððM2Þ��q2Þ ½ððM
2Þ� �q2ÞAðM2Þ

�ðM2�q2ÞAððM2Þ�Þ�; (18)

where the sum is over the various poles (M) of the
propagator and

AðM2Þ ¼ ZðM2Þ
2E

ðq0ð6qþ �ð�M2ÞÞ � �0ðq2 �M2ÞÞ:
(19)

As usual, E2 ¼ M2 þ q2 and

ZðM2Þ ¼
�

@

@q2
ðq2 ��2ð�q2ÞÞ

��1jq2¼M2 (20)

is the renormalization constant. The finite temperature
propagator can then be obtained by putting this result
into Eq. (15). Finite temperature and chemical potential
contributions to this propagator will be decoupled from the
zero temperature ones. In this sense, we can write our
propagator as

S11ðq; T;�Þ ¼ S0ðqÞ þ ~Sðq; T;�Þ: (21)

Here all finite temperature effects are inside ~Sðq; T;�Þ
and S0ðqÞ is just the zero temperature propagator. From
Eq. (15) we can see that all of the T, � contribution comes
from the second term. However, this term does not vanish
when T, � ! 0 since nFðq0 ��Þ ! �ð�q0Þ. To avoid
this, we can define

~Sðq; T;�Þ ¼ �nFðq0 ��Þ�ðqÞ þ KðqÞ; (22)

where we have added the function KðqÞ that is fixed in

order to ensure that ~Sðq; 0; 0Þ ¼ 0. Our next step is to

obtain the gap equation in real time formalism. We can
achieve this by taking SE ! S11 in Eq. (12). In this manner
we get

@�MF

@ ��
¼ g0ð ��Þ þ ~gð ��; T;�Þ ¼ 0; (23)

where

g0ð ��Þ ¼ ��

G
� Nc

�2

Z 1

0
dqEq

3
E

r2ðq2EÞ�ðq2EÞ
q2E þ �2ðq2EÞ

; (24)

~gð ��; T;�Þ ¼ �2Nc

Z d4q

ð2�Þ4 r
2ð�q2Þtr~Sðq; T;�Þ; (25)

and where again ~gð ��; T;�Þ has all of the finite temperature
and chemical potential contributions to the gap equation.

By putting our expression for ~S into Eq. (25) we get

~gð ��;T;�Þ¼2iNc

X
M

ZðM2Þ�ð�M2Þ

�
Z d4q

ð2�Þ4
r2ð�q2Þ

E
ðnFðq0��ÞþnFðq0þ�ÞÞ

�
�

q0
M2�q2

� q0
ðM2Þ��q2

�
: (26)

The integration in q0 can be performed along the path
shown in Fig. 2.
The integration can be computed to give

~gð ��; T;�Þ ¼ �Nc

�2

X
M

�
ZðM2Þ�ð�M2Þr2ð�M2Þ

�
Z

dkk2
nFðE��Þ þ nFðEþ�Þ

E

þ ðM2 ! ðM2Þ�Þ
�
: (27)

With this we have temperature and chemical potential
dependent expressions for our propagator and the gap
equation. In the next section we will choose a regulator
and look for the critical temperature at which chiral
symmetry is restored.

FIG. 1. Integration path in the definition of S�.

FIG. 2. Integration path for the thermal part of the gap
equation. The poles of the Fermi-Dirac distribution are marked
with crosses.
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III. POLES OF THE PROPAGATOR AND CHIRAL
SYMMETRY RESTORATION

So far we have not said much about the regulator rðq2EÞ.
In [14] a regulator has been constructed that agrees quite
well with lattice data. Inspired by this fact, we choose our
regulator to be

r2ðq2EÞ ¼
1

1þ ðq2E
�2Þ3=2

; (28)

where� is a free parameter of the model to be determined.
Also, we will work in the chiral limit wherem ¼ 0. We can
put this regulator in Eq. (20) to get

ZðM2Þ ¼
�
1� 3

ð�M2=�2Þ3=2
1þ ð�M2=�2Þ3=2

��1
: (29)

To complete the description of our model, we need to fix its
free parameters. Since we are working in the chiral limit,
we are left with only three parameters that need to be fixed,
namely G, �, and �� at T ¼ 0.

The value of �� at T ¼ 0 can be determined from the gap
equation in Eq. (12). In order to fix the other two parame-
ters we resort to quantities of known value: the chiral
condensate at zero temperature and the pion decay con-
stant. It is quite easy to obtain an expression for the chiral
condensate at zero temperature

hq �qi ¼ �Nc

Z d4qE
ð2�Þ4 trSEðqEÞ � f �� ! 0g: (30)

In our notation, hq �qi includes only one flavor, i.e., hq �qi ¼
hu �ui ¼ hd �di. Finally, we need an expression for the pion
decay constant in the chiral limit. Such an expression can
be obtained from the quadratic terms in the mean field
expansion of the action [28]

f2� ¼ 2Nc

Z d4qE
ð2�Þ4

2�2ðqEÞ � q2E�ðqEÞ�0ðqEÞ
½q2E þ �2ðq2EÞ�

: (31)

We take ð�hq �qiÞ1=3 ¼ 260 MeV and f� ¼ 90 MeV. With
this input, we obtain for our parameters

� � 635 MeV; (32)

�� � 261 MeV; (33)

G � 28� 10�6 MeV�2: (34)

Once we have fixed the parameters, we can work with our
model and study its properties in the real time formalism.

In Minkowski space our regulator will take the form

r2ð�q2Þ ¼ 1

1þ ð� q2

�2Þ3=2
: (35)

We should now define what we will understand by the semi-
integer exponent in the previous equation. This regulator

was originally defined in Euclidean space, in which case, the

function z3=2 is defined within the real numbers and is well
behaved. However, once we have rotated to real time, we
need to define this function in the complex plane. In this
case, the function has a cut in the complex plane being a
multivalued function. Usual definitions of such a function
are made in such a way that it will no longer be a multi-
valued function; however, this is a feature we want to keep,
so we will define the function as

z3=2 ¼ ðRei�Þ3=2 ¼ r3=2e
3
2i�: (36)

This means that we will keep the multivalued nature of our
regulator, which will double the number of singularities
our propagator will have (for each singularity in the first
Riemann sheet we will get another one in the second
sheet). We can search for such singularities (poles) in our
propagator by considering the solutions to

q2 � �2ð�q2Þ ¼ 0: (37)

In this manner we find eight poles which, however,
appear in complex conjugates pairs so we can speak of
only four poles plus their complex conjugates. We then
have four different masses and decay widths at

M2
j ¼ M2

j � iMj�j; (38)

with j ¼ 1; . . . ; 4.
We can parametrize the poles using their complex argu-

ment as q2 ¼ Rð�Þei�. We can get an expression for Rð�Þ
from Eq. (37). In this way, our poles are completely
described by their argument �. Our propagator then has
two Riemann sheets, one for 0< �< 2� and another for
2�< �< 4�. With this notation and using Eq. (37) we
can plot where these poles are in both sheets.
As can be seen from Fig. 3 all of the singularities have

nonvanishing imaginary parts. However, the pole at q2 ¼
M2

2 has M2
2 < 0. Following our interpretation this would

be a particle with a negative square mass. Such a particle is
a highly unstable one and it could not contribute to a
condensate. Including such a quasiparticle would lead to
nonphysical results, like a condensate that grows with T.
Therefore we will not consider it in the further analysis.
We can also use Eq. (37) to get the behavior of the poles

as a function of ��.
As can be seen from Figs. 4–6, for low temperatures

(high ��) the three remaining poles have similar masses
lying between 200 and 500 MeV. However for high tem-
peratures (near the critical temperature for chiral symmetry
restoration and low ��) the pole at q2 ¼ M2

1 (Fig. 4) has
M1 ! 0 while the other two remain with M3;4 >
400 MeV. These other two singularities also have a
much greater decay width. Here, the quasiparticle inter-
pretation we have in the real time formalism comes in
handy. We can interpret these two singularities as much
more massive and short-lived quasiparticles with respect to
that of Fig. 4. Such quasiparticles should not make a
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significant contribution to a condensate. Because of
these two reasons their contribution to the condensate is
negligible.

We can also use Eq. (27) to get the behavior of �� as a
function of temperature for � ¼ 0 and with this we can

plot the behavior of the mass and decay width of the
remaining quasiparticle as a function of T.
As we can see from Fig. 7, for high enough temperature

the mass of the pole rapidly decreases. Because of this
small mass, this pole has a significant contribution to the
condensate, while the M3 and M4 ones are negligible.
We can use the solutions of the gap equation to compute

the chiral condensate

hq �qi ¼ �Nc

Z d4q

ð2�Þ4 trS11ðq; T;�Þ � f �� ! 0g: (39)

This can be easily computed and we can obtain the critical
temperature at which hq �qi ¼ 0, i.e., the temperature at
which chiral symmetry is restored.
As can be seen from Fig. 8 a critical temperature is

found around T � 110 MeV. This is a reasonable result
since similar temperatures are found in models beyond the
chiral limit and with Polyakov loop included [29,30]. The
critical temperature is not the same. It is important to note

FIG. 6. Behavior of the pole at q2 ¼ M2
4 as a function of ��.

The solid line stands for M4 and the dashed line for �4.
All quantities are given in MeV.

FIG. 3. Position of the poles in both Riemann sheets for T ¼ 0
( �� ¼ 261 MeV). The dots mark where the poles are.

FIG. 4. Behavior of the pole at q2 ¼ M2
1 as a function of ��.

The solid line stands for M1 and the dashed line for �1. All
quantities are given in MeV.

FIG. 5. Behavior of the pole at q2 ¼ M2
3 as a function of ��.

The solid line stands for M3 and the dashed line for �3.
All quantities are given in MeV.
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that such a transition would not be found if we had in-
cluded the singularity withM2

2 < 0. Since it has a negative
real part for the square mass, it is a highly unstable particle
and hence, it cannot contribute to a condensate. If we had
not dropped the negative square mass singularity we would
not have found a chiral symmetry restoration. This is the
reasonwhy it is important to analyze the behavior of the poles
of the propagator and the squared masses that come from it.

The extension of this model beyond the chiral limit
implies the existence of more poles. The inclusion of the
Polyakov loop can be done easily using the Polyakov
gauge [31,32]. In this scenario we would find even more
poles due to the nature of the inverse propagator matrix.

Figure 9 shows the position of the poles of the propa-
gator for T ¼ 0 beyond the chiral limit. The appearance of
more poles is fairly easy to take into account. The formal-
ism can be worked out in exactly the same way. We only
would have more terms in each expression, but they would
all have the same form, just being evaluated at different
poles. The inclusion of Polyakov loops, however, could be
irrelevant since the model includes confinement effects by

itself. Nevertheless, the inclusion of the Polyakov loop
contributes to eliminate some instabilities that appear in
regulators that exhibit complex poles [18,33].

IV. THERMODYNAMICAL POTENTIAL
AND CHEMICAL POTENTIAL

We will now compute the grand canonical thermody-
namical potential. We start from Eq. (23) and integrate to
get

�MF ¼ �0ð ��Þ þ ~�ð ��; T;�Þ; (40)

where

�0ð ��Þ ¼
Z

g0ð ��Þd ��; (41)

~�ð ��; T;�Þ ¼
Z

~gð ��; T;�Þd ��þ CðT;�Þ; (42)

FIG. 7. Behavior of the pole as a function of temperature.
The solid line stands for M1 and the dashed line stands for �1.
All quantities are given in GeV.

FIG. 8. Behavior of hq �qi as a function of temperature.
hq �qi0 stands for the chiral condensate at zero temperature.

FIG. 9. Position of the poles in both Riemann sheets for T ¼ 0
beyond the chiral limit. The dots mark the location of the poles.

M. LOEWE, F. MARQUEZ, AND C. VILLAVICENCIO PHYSICAL REVIEW D 88, 056004 (2013)

056004-6



and CðT;�Þ is an integration constant that we will choose
in order to satisfy�MFð �� ¼ 0Þ ¼ 0. It is a straightforward
excercise to get

�0 ¼ ��2

2G
� Nc

2�2

Z 1

0
dqEq

3
E ln ½q2E þ �2ðq2EÞ�: (43)

The computation of ~� is less trivial. We want to integrate
in ��; however, ~gð ��; T;�Þ is written in such a way that the
�� dependence is hidden on the pole (M) dependence.
Since M is a pole of the propagator, we can write

�2ð�M2Þ ¼ ��2r4ð�M2Þ ¼ M2: (44)

Differentiating the previous equation, we find

d �� ¼ dM2

2r2ð�M2Þ�ð�M2ÞZðM2Þ : (45)

Putting this into Eq. (42) we get

~�ð ��; T;�Þ

¼ Nc

2�2

X
M

Z
dM2

�
dkk2

nFðE��Þ þ nFðEþ�Þ
E

�

þ ðM2 ! ðM2Þ�Þ þ CðT;�Þ: (46)

Finally, performing the M2 integration, we get

~� ¼ Nc

�2

X
M

Z
dkk2½2E� T ln ð1þ e

E��
T Þ

� T ln ð1þ e
Eþ�
T Þ� þ ðM2 ! ðM2Þ�Þ

þ CðT;�Þ: (47)

From this expression we can compute the thermodynam-
ical potential for different values of fT;�g.
As can be seen from the top plot in Fig. 10, we have a

second-order phase transition around T ¼ 110 MeV for
� ¼ 0. For higher values of the chemical potential, we
find a first-order phase transition and the critical tempera-
ture decreases. This computation can be extended to the
whole T �� plane containing then a phase diagram.
As shown in Fig. 11 the second-order phase transition

turns into a first-order one around ðT;�Þ �
ð105; 150 MeVÞ. The diagram has the usual form and
exhibits the behavior one would expect for the model.

V. CONCLUSIONS

We have developed the real time formalism for a nNJL
model in the chiral limit with a fractional Lorentzian
regulator obtained in recent nonlocal NJL models which
try to match lattice results on the quark propagator. Instead
of the two regulators used in such model, here we only
consider one of them that produces corrections to the mass,
neglecting the regulator that produces a nontrivial wave

FIG. 10. Thermodynamical potential for T¼ð80;100;110MeVÞ
and � ¼ 0 MeV (top) and for T ¼ ð10; 35; 60 MeVÞ and � ¼
450 MeV (bottom).

FIG. 11. ðT;�Þ phase diagram for the model. The dashed line
indicates a second-order phase transition and the solid line a
first-order one. The point indicates where the second-order phase
transition turns to first order and corresponds to ðT;�Þ �
ð105; 150 MeVÞ.
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function renormalization term in the infrared sector. We
obtained all the different quasiparticles masses and decay
widths and their thermal behavior, in order to decide which
of them will be relevant near the chiral phase transition.
Due to the presence of the cut in the complex plane, the
singularities are doubled. However, one of the main con-
clusions of this article is that only physical poles with a
positive squared mass have to be considered. Not doing this
will lead to inconsistencies like a condensate that grows
with T. So, the Wick rotation cannot be performed in a
simple way, and those unphysical terms must be removed
by changing the path of integration shown in Fig. 1 to
obtain the appropriate spectral function.

Although similar analytic procedures can be used to
compute the sum of the Matsubara frequencies, this direct
treatment allows us to explore the system in different sce-
narios, explicitly including only the relevant quasiparticles
that participate in the dynamics of the system, depending on
their thermal behavior. An extension to the case where the

chiral symmetry is explicitly broken can be obtained directly
as we have shown. The reasonable values obtained for the
critical temperature and critical chemical potential provide
support for this procedure compared with full model.
We would like to apply this technique to the Keldish

formalism and to construct an out of equilibrium effective
model.
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