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4Instituto de Fı́sica Teórica, UNESP Rua Dr. Bento T. Ferraz, 271, Bloco II, 01140-070 São Paulo, Brazil

(Received 13 March 2013; published 9 September 2013)

Assuming that the 125 GeV particle observed at the LHC is a composite scalar and responsible for the

electroweak gauge symmetry breaking, we consider the possibility that the bound state is generated by a

non-Abelian gauge theory with dynamically generated gauge boson masses and a specific chiral symmetry

breaking dynamics motivated by confinement. The scalar mass is computed with the use of the Bethe-

Salpeter equation and its normalization condition as a function of the SUðNÞ group and the respective

fermionic representation. If the fermions that form the composite state are in the fundamental represen-

tation of the SUðNÞ group, we can generate such a light boson only for one specific number of fermions for

each group. We address the uncertainties underlying this result, when considering the strong dynamics in

isolation.
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I. INTRODUCTION

The ATLAS and CMS experiments at the CERN Large
Hadron Collider (LHC) recently reported the discovery of
a new resonance at approximately 125 GeV [1]. This
particle appears to be consistent with the Standard Model
(SM) Higgs scalar boson, although the data, up to now,
seems to indicate an excess of events in the �� decay
branching ratio of this particle. This �� decay implies
that this particle is a boson, being the scalar case the
simplest possibility, but we still have a long way to deter-
mine this resonance precise quantum numbers [2].

In this work we will assume that the 125 GeV resonance
is a composite scalar boson. Composite scalar bosons are
known to be formed in QCD, one example of such possi-
bility is the elusive sigma meson [3], that is assumed to be
the Higgs boson of QCD. In QCD, as shown by Delbourgo
and Scadron [4], its mass (m�) is directly related to the
dynamical quark mass (�) as

m� ¼ 2�: (1)

This relation comes out from the following relation:

�ðp2Þ � �P
BSðp; qÞjq!0 � �S

BSðp; qÞjq2¼4m2
dyn
; (2)

where the solution [�ðp2Þ] of the fermionic Schwinger-
Dyson equation (SDE), that indicates the generation of a
dynamical quark mass and chiral symmetry breaking of
QCD, is a solution of the homogeneous Bethe-Salpeter
equation (BSE) for a massless pseudoscalar bound state
(�P

BSðp; qÞjq!0), indicating the existence of Goldstone

bosons (pions), and is also a solution of the homogeneous
BSE of a scalar p-wave bound state (�S

BSðp; qÞjq2¼4�2),

which implies the existence of the scalar (sigma) boson
with the mass described above.
The BSE scalar solution depends strongly on the chiral

symmetry breaking (CSB) dynamics. The relation given by
Eq. (1) can be modified when we consider the inhomoge-
neous BSE, or, in an easier approach, the homogeneous
BSE solution associated with a normalization condition as
discussed in Ref. [5], leading to lighter scalars masses. In
particular, there are several papers in the literature discus-
sing composite scalars, which may play the role of the
standard model Higgs boson, where it is claimed that they
may have relatively low masses, as a result of a walking
chiral symmetry breaking dynamics [6–10].
The dynamics necessary to break the chiral symmetry, to

form pseudoscalar and scalar bound states is connected to
the behavior of the main Green’s functions of non-Abelian
gauge theories (NAGT). In the QCD case the gluon propa-
gator is a fundamental two-point function needed to com-
pute the SDE or BSE, and it is now known from lattice [11]
and SDE calculations [12] that the gluon acquires a dy-
namical mass. This result confirms the old Cornwall’s
proposal that non-Abelian gauge bosons acquire dynami-
cal masses [13], and it also imposes a severe constraint on
the CSB and Goldstone boson formation in these theories
[14], even forbidden nontrivial SDE solutions leading to
CSB in the case of fermions in the fundamental represen-
tation. A possible solution to the CSB problem discussed in
Ref. [14] was proposed recently [15], where CSB is in-
timately related to confinement, what may indeed be ex-
pected for any NAGT [16]. We detailed the model of
Ref. [15] to non-Abelian gauge theories [17] and proposed
a slight modification of it in Ref. [18]. It is within this
scenario that we will discuss the possible composite origin
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of the boson seen at the LHC. Note that we discuss the
composite scalar mass only in the context of a pure strong
interaction theory, and this mass value can be modified
by radiative corrections due to the electroweak as well as
to new beyond standard model interactions necessary to
generate standard fermion masses.

If this composite boson is related to the SM Higgs
boson, its dynamics is also responsible for the vacuum
expectation value (VEV) that promotes the electroweak
gauge symmetry breaking, therefore setting the scalar
boson mass to 125 GeV, and using the SM VEV, we may
be able to infer the underlying symmetry group structure
of the composite particle once we know the CSB dynamics.
In the next section we discuss the CSB dynamics.
These dynamics, motivated by confinement, are such that
they may cause the decoupling of most of the degrees
of freedom of the new strong interaction, and probably
leaves only such a ‘‘light’’ scalar boson as a reminiscent of
its CSB.

The distribution of this work is the following: In Sec. II
we discuss the chiral symmetry breaking model and
how the scalar mass comes out from the BSE and its
normalization condition. In Sec. III we explain how we
can compare the scalar mass to the data and discuss details
of the group structure that appear in our mass formula.
Section IV contains a brief remark about the mass of
spin 1 composites. Section V contains our results and
conclusions.

II. CSB AND THE BSE

A. A model for CSB

The standard fermionic SDE for NAGT with dynami-
cally generated gauge boson masses in the Landau gauge is
given by

Mðp2Þ ¼ C2

ð2�Þ4
Z

d4k

� �g2ðp� kÞ3Mðk2Þ
½ðp� kÞ2 þm2

gðp� kÞ�½k2 þM2ðk2Þ� ; (3)

where Mðp2Þ is the dynamical fermion mass [� � Mð0Þ],
C2 is the fermionic Casimir eigenvalue and �g2 is the
effective charge

�g2ðk2Þ ¼ 1

b ln ½ðk2 þ 4m2
gÞ=�2� ; (4)

where b ¼ ð11N � 2nfÞ=48�2 for the SUðNÞ group with

nf flavors,mg is the infrared dynamical gauge boson mass,

whose phenomenologically preferred value is mg � 2�

[13,19]. For fermions in the fundamental representation
of the SUðNÞ group this coupling [ �gð0Þ] should be at least a
factor 2 larger to trigger CSB [14,15,20–22].

The approach of Ref. [15] follows from a series of
reasons. First, according to Ref. [13], the SDE of NAGT

have solutions that minimize the energy consistent with
dynamically massive gauge bosons, leading to an effective
theory endowed with vortices, and these vortices should be
responsible for confinement. Lattice simulations are show-
ing evidences for a relation between CSB and confinement,
where center vortices play a fundamental role. In the SUð2Þ
case the artificial center vortices’ removal also implies a
recovery of the chiral symmetry [23–25]. Objects like
vortices cannot enter into the SDE at the same level of
ordinary Green’s functions, since they appear in the effec-
tive theory and must be introduced by hand. Secondly, the
effective action describing confinement is an (approxi-
mate) area-law action, which implies in an effective con-
fining propagator, behaving as 1=k4, proportional to the
string tension (KF) and finite at the origin due to entropic
reasons, what is necessary to generate the Goldstone
bosons in the CSB [15]. Therefore, we are led to introduce
the following effective confining propagator in the fermi-
onic SDE:

D��
eff ðkÞ � ���DeffðkÞ; DeffðkÞ ¼ 8�KF

ðk2 þm2Þ2 ; (5)

where m is an entropic regulator, and the effective propa-
gator should not at all be related to the propagation of a
standard quantum field [15].
The fermionic gap equation taking into account the

dynamically massive gauge bosons and the effective con-
fining propagator is given by [15]

Mðp2Þ ¼ 1

ð2�Þ4
Z

d4kDeffðp� kÞ 4Mðk2Þ
k2 þM2ðk2Þ þ

C2

ð2�Þ4

�
Z

d4k
�g2ðp� kÞ3Mðk2Þ

½ðp� kÞ2 þm2
gðp� kÞ�½k2 þM2ðk2Þ� ;

(6)

where Mðp2Þ ¼ Mcðp2Þ þMgðp2Þ is the dynamical

fermion mass generated by the confining [Mcðp2Þ] and
one-dressed-gauge [Mgðp2Þ] boson contributions. As we

remarked in Ref. [18] this equation resembles, in a differ-
ent context, what we have in the successful phenomeno-
logical quarkonium potential described by

VFðrÞ ¼ KFr� ð4=3Þð�s=rÞ; (7)

where the first term is the quark confining part and the
second term is the one-gluon exchange contribution.
Therefore, the confining part of Eq. (6) is a reasonable
phenomenological way to study CSB taking into account
the effective confining area law. Note that our discussion
relies heavily on QCD, although all the facts presented
here are expected to be valid for any NAGT.
The confining propagator is an effective one, and not

related to a standard quantum field. Therefore it is natural
to expect a cutoff to where it can be propagated, and this
point was particularly emphasized in Ref. [18]. For in-
stance, if we think of the phenomenological quarkonium
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potential that we discussed in the previous paragraph, we
find a limitation up to where the linear part of the potential
is effective. We know that for nf ¼ 2 quarks in the funda-

mental representation, lattice QCD data seem to indicate
that the string breaks at a critical distance rc � 1:25 fm
[26]. Comparatively we may set a maximum momentum
p2 � KF up to where the confining part of the confining
gap equation should be integrated. A discussion about
separating the fermionic SDE in a confining part plus the
one-gauge boson exchange has also been performed in a
similar context in Ref. [27]. The solution of Eq. (6) with
such a cutoff is quite complicated and we will digress
briefly about it in the sequence.

Equation (6) has been solved analytically and numeri-
cally in different approximations. If we take the cutoff of
both integrals of Eq. (6) to infinity we can observe that
Mðp2Þ behaves asymptotically as 1=p2 [15,18]. But what
we want is a limitation in the upper cutoff in the first
integral. This is not easy to do, so we have set arbitrarily
the upper cutoff of both integrals to a momentum scale
where the confining propagator is really effective. With
this approximation the asymptotic behavior changes to a
logarithmic function (details of this calculation can be seen
in Sec. 4 of Ref. [17]). In another approximation we
assumed that the major contribution in the momentum
integration of the first integral in Eq. (6) comes from the
infrared region with p, k � KF � m. Expanding the con-
fining propagator and considering only the leading term,
leads to

Mðp2Þ ¼ 2

�3

KF

m4

Z
d4k

Mðk2Þ
k2 þM2ðk2Þ�ðm

2 � k2Þ þ C2

ð2�Þ4

�
Z

d4k
�g2ðp� kÞ3Mðk2Þ

½ðp� kÞ2 þm2
gðp� kÞ�½k2 þM2ðk2Þ� :

(8)

The expansion is reasonable if we compare the difference
of the confining propagator (quite peaked in the infrared)
with the gauge-boson propagator (see respectively Figs. (4)
and (3) of Ref. [17]). It is possible to verify analytically
that the asymptotic behavior of this equation is logarith-
mic. This is easy to see because the confining contribution
has been reduced to an effective four-fermion interaction,
what is equivalent to a bare mass behavior. This equation
has also been solved numerically in order to confirm the
logarithmic ultraviolet behavior (the result is plotted in
Fig. 9 of Ref. [17]).

In Ref. [18] it is argued that if the effective confining
propagator in Eq. (6) is restrained to be different from zero
up to squared momenta of order KF (or m2) the effect of
confinement is equivalent to the simulation of a ‘‘bare
confining’’ mass. This can be verified in an extreme ap-
proach, limiting the confining propagator with Heaviside
step functions and changing Eq. (6) to

Mðp2Þ ¼ 1

ð2�Þ4
Z

d4kDeffðp� kÞ�ðKF � k2Þ�ðKF � p2Þ

� 4Mðk2Þ
k2 þM2ðk2Þ þ

C2

ð2�Þ4

�
Z

d4k
�g2ðp� kÞ3Mðk2Þ

½ðp� kÞ2 þm2
gðp� kÞ�½k2 þM2ðk2Þ� :

(9)

This equation can be transformed into a differential equa-
tion. Derivating the � function we obtain a delta function
and the final effect is similar to the decoupling of the
integral equations. This can be verified in the numerical
evaluation of Eq. (9), which is shown in Fig. 1.
We have performed the numerical calculation of the

dynamical mass for a set of constants (KF, mg, �) with

values around those typically expected for QCD. Figure 1
shows the dynamical mass in the cases N ¼ 3, KF ¼
0:20 GeV2, � ¼ 0:3 GeV, nf ¼ 6, m2

g ¼ 0:20 GeV2 and

C2 ¼ 4=3. Note that in the sequence, always when men-
tioning QCD, wewill work with the most usual value of the
string tension KF ¼ 0:18 GeV2 and a characteristic scale
�QCD ¼ � ¼ 300 MeV. First, the breaking is totally

dominated by the confining propagator. The dynamical
mass basically depends on the values of KF and m and
the infrared value is not so different from the one obtained
with Eq. (8). Secondly, the numerical result is obtained
forcing the continuity of the solution, and this explains the
graphics of Fig. 1: The curves are exactly the continuous
superposition of a ‘‘constant confining mass’’ generated by
the restrained confining propagator, plus a very small mass,
behaving asymptotically as 1=p2 and consistent with the
value expected if we had solved the gap equation only with
the massive gauge boson propagator [20–22]. In the QCD
case this bare confining mass can still be dressed with the
gluon exchange effects, and, stressing the discussion of

FIG. 1 (color online). Dynamical quark mass obtained with the
numerical calculation of Eq. (9).
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Ref. [18], we propose that the fermionic self-energy
[�ðpÞ � MðpÞ] of any NAGT are of the so-called ‘‘irregu-
lar’’ form and will be parameterized as [28,29]

�ðp2Þ ��½1þ bg2 ln ðp2=�2Þ���; (10)

where � is the characteristic scale of mass generation,

� ¼ 3c=16�2b (11)

and

c ¼ 1

2
½C2ðR1Þ þ C2ðR2Þ � C2ðR3Þ�: (12)

Here c is the most general Casimir operator that will
appear in the case where we have a NAGT with fermions
in two different representations, R1 and R2, which con-
dense and form bound states in the representation R3 (in
the QCD case c is reduced to the usual Casimir operator
C2 ¼ 4=3), b is the first 	 function coefficient, g2 is the
NAGT coupling constant for which we assume the same
expression of Eq. (4) setting � ¼ �. The main feature of
Eq. (10), as explained in Ref. [18], is that when this self-
energy is used in technicolor models to compute ordinary
fermion masses, the final result will depend at most loga-
rithmically on the gauge boson masses that connect differ-
ent fermionic families. In this case these gauge bosons
can be made quite massive, and, even if they intermediate
flavor changing neutral currents, their effects will be
almost decoupled from the theory, leading to viable
phenomenological models.

We finally remark that the confining effective propagator
described in Eq. (5) is one possible way to model an area
law for confinement of fermions in the fundamental repre-
sentation of a SUðNÞ NAGT [15]. This propagator, if
confinement is the result of vortices, has to be introduced
by hand into the SDE, because vortices are already the
result of dynamical gauge boson mass generation at a
primary level. The string breaking should also to be present
in this effective theory, exactly constraining the momen-
tum region where the confining propagator is effective. The
actual effect of confinement may still be more sophisti-
cated than this simple model, but it does reproduce many of
the confinement characteristics learned with lattice simu-
lations, and is a solution for CSB in face of all the problems
described in Refs. [14,15]. Therefore it is quite possible
that confinement generates dynamical CSB in NAGT, but
in a way that it looks like an explicit breaking of the chiral
symmetry.

B. BSE and the normalization condition

The complete determination of bound states is obtained
from solutions of the renormalized inhomogeneous BSE.
Since the inhomogeneous BSE is quite difficult to solve it
is usual to look for the homogeneous solutions associated
with a normalization condition. The BSE normalization
condition in the case of a NAGT is given by [30]

2{q�¼ {2
Z
d4pTr

�
P ðp;pþqÞ

�
@

@q�
Fðp;qÞ

�
P ðp;pþqÞ

�

� {2
Z
d4pd4kTr

�
P ðk;kþqÞ

�
@

@q�
K0ðp;k;qÞ

�

�P ðp;pþqÞ
�
; (13)

where

K0ðp; k; qÞ ¼ 1

ð2�Þ4 Kðp; k; qÞ;

Fðp; qÞ ¼ 1

ð2�Þ4 S
�1ðpþ qÞS�1ðpÞ;

where P ðp; pþ qÞ is a solution of the homogeneous BSE,
Kðp; k; qÞ is the fermion-antifermion scattering kernel
and SðpÞ is the fermion propagator. The manipulation of
Eq. (13) is identical to the one of Ref. [5]. Skipping the
algebra already discussed in Ref. [5] and identifying

GðpÞ � �ðp2Þ
�

; (14)

we obtain an expression for the scalar boson mass,

M2
S ¼ 4�2

�
� 4nfN

16�2

Z
d4p

�2G4ðpÞ½p2 þ�2G2ðpÞ�2
ðp2 þ�2G2ðpÞÞ4

� 1

ðpÞ2 ½�bg
2ðpÞ�

�
�

f0�

�
2 þ IKð�;p; k; g2Þ

�
: (15)

In Eq. (15) f0� describes the composite pseudoscalar
decay constant associated to nd fermion doublets and
IKð�;p; k; g2Þ is a higher order contribution to the BSE
kernel. Working in the rainbow-ladder approximation we
can neglect this contribution which is Oðg2ðp2Þ=4�Þ
smaller than the first term on the right-hand side of
Eq. (15).
Equations (10) and (14) when inserted into Eq. (15),

with some algebra already detailed in Ref. [5], lead to

M2
S ¼ 4�2

�
bg2ð�Þð2�� 1Þ

½4þ 2bg2ð�Þð2�� 1Þ�
�
: (16)

Notice that in order to have a positive mass we must
have ð2�� 1Þ> 0, in such a way that we recover Lane’s
condition [30], i.e.

� >
1

2
: (17)

It is interesting to discuss the constraint imposed by
Eq. (17) on the fermion content of the theory. The bound
state wave function, and consequently the self-energy
given by Eq. (10), decreases according to the value of �,
and we must have � > 1=2 because this is the ‘‘hardest’’
expression for the wave function that we may have in field
theory, otherwise the wave function is not normalized and
consistent with a localized bound state. This constraint was
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first obtained decades ago by Mandelstam, was recovered
in the case of gauge theories by Lane [30], and appears
naturally in our Eq. (16). If this condition is applied to
QCD, or SUð3Þ with quarks in the fundamental represen-
tation, computing Eq. (11) and imposing � > 1=2 we
verify that the wave function is normalized only with
nq > 5, i.e. QCD could obey such wave function only

with more than five quarks. Therefore Eq. (17) will always
impose a lower limit on the number of fermions of the
theories that we shall deal with.

We stress that the BSE normalization condition modify
the standard result of Eq. (1) only for very hard asymptotic
self-energy solutions. Otherwise it is barely possible to
obtain a light composite scalar boson, because its mass is
going to be twice the value of the dynamical fermion mass,
and this one, if related to the SM VEV, will lead to a quite
heavy scalar boson.

III. GROUP STRUCTURE ASSOCIATED TO A
125 GEV BOSON MASS

Many of the 125 GeV boson couplings observed at the
LHC are similar to the ones expected for the Higgs boson.
Although it may even happen that in the end this boson
shall not be related to the SM symmetry breaking, the most
intriguing case is the one where it is really the responsible
for the SM gauge boson masses. In this case the VEV (v)
generated by the strong interaction is connected to the
gauge boson mass through

v2 ¼ h ���i2=3 ¼ 4M2
W

g2W
; (18)

where gW is the weak coupling constant, MW the charged

weak boson mass, and h ���i is the new SUðNÞ strong
NAGT condensate, whose VEV is given by v� 246 GeV.

At this point we differ from the Refs. [5,10] since the
dynamical mass, which appears in Eq. (16), is related to
the fermion condensate [or the VEV in Eq. (18)] through
the confining propagator and consequently to the string
tension, as discussed in Refs. [17,18]. Considering the
four-fermion approximation shown in Eq. (8), and neglect-
ing the massive one-gauge boson exchange, what is also
consistent with the imposition of a momentum cutoff of
OðKFÞ in Eq. (9), the relation between the VEV and the
dynamical mass � is [18]

h ���iR � �NR

8�

m4
R

KR

�R: (19)

In Eq. (19) we show the VEVof fermions in the represen-
tation R with dimension NR, the parameter m in the effec-
tive confinement propagator is written as mR, and string
tensionKR computed at the scaleKR [17,18]. With Eq. (19)
we finally obtain the scalar boson mass

MS ¼ 16�KR

NRm
4
R

jh ���iRj
�

bg2Rð2�� 1Þ
½4þ 2bg2Rð2�� 1Þ�

�
1=2

: (20)

The coupling g2R in Eq. (20) is to be understood as the
coupling value at the scale where the condensate or the
dynamical mass is generated, which is of the same order of
magnitude as the NAGT infrared scale. This coupling is
frozen for momenta smaller than the dynamical gauge
boson mass scale, and its frozen value is basically deter-
mined by the values of mg and �. Unfortunately there are

no studies about how the ratio mg=� vary for different

representations. In the sequence we shall assume that this
quantity does not vary strongly and the ratio is not so
different from what has been discussed in the QCD case.
We will also be arguing that the dynamical mass is related
to the string tension for different representations as well as
the ratio KR=� does not vary strongly with N for SUðNÞ
theories.

We can now set MS ¼ 125 GeV and h ���iR �
ð246Þ3 GeV3, obtaining a function involving the variables
KR, m, NR, �, b and g2 for the representation R computed
at the scale KR. There is now an important point that has
been emphasized in Refs. [15,31]: Due to entropic reasons
(or minimization of the energy) in order to generate the
Goldstone bosons associated to the CSB we must have

m2
R � �2

R � KR: (21)

This last equation reduces Eq. (20) to an equation involv-
ing KR and quantities only dependent on the symmetry
group and fermionic content of any NAGT. This also
imply that

h ���iR � �NR

8�
K3=2

R ; (22)

where the condensate is directly related to the string
tension.
Considering Eq. (21) we obtain the following scalar

boson mass:

MS � 2
ffiffiffiffiffiffiffi
KR

p �
bg2Rð2�� 1Þ

½4þ 2bg2Rð2�� 1Þ�
�
1=2

; (23)

where KR is now the typical NAGT scale that forms the
composite states, � is given in Eq. (11) and obeys Eq. (17),
and

b ¼ 1

ð4�Þ2
�
11

3
C2ðGÞ � 4

3
TðRÞnFðRÞ

�
; (24)

remembering that C2ðRÞI ¼ Ta
RT

a
R and C2ðRÞdðRÞ ¼

TðRÞdðGÞ, where dðRÞ is the dimension of the repre-
sentation R, while the label G refers to the adjoint
representation.
The string tension determining the fermion dynamical

mass and the composite boson mass is now fixed by the SM
condensate value. It is interesting to recall some properties
of its value. In the representation R it should be also related
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to the SUðNÞ group structure and to the characteristic scale
(�) of the NAGT. The QCD string tension for the funda-
mental representation is well known from phenomenologi-
cal and lattice studies, however for other groups and
representations we have to rely in lattice simulations.
Lattice data for SUðNÞ (and large N) seems to tell us that
the ratio KR=� is approximately constant up to order 1=N2

[32,33], although this result may still be questioned [34]
and is connected to the way the string tensions of different
representations are related, i.e. they follow a Casimir or a
sine law scaling [34,35]. Therefore, we will derive the
string tension for different groups assuming that KF=� is
a constant. This constant is determined using the known
value for the QCD fundamental representation string ten-
sion (KF ¼ 0:18 GeV2) and �QCD ¼ 300 MeV. We then

consider Casimir scaling for the string tension

KR � CR

CF

KF; (25)

where CR=CF is the ratio between the Casimir operators
for the representation R and the fundamental one. For
SUðNÞ theories and a finite N the Casimir scaling law

must break down at some point, to be replaced by a
dependence on the N-ality k of the representation [35]

KR ¼ fðkÞKF: (26)

This change of behavior is credited to an effect of force
screening by the gauge bosons. For fermions in the adjoint
representation the N-ality is zero, therefore, according to
Casimir scaling, the adjoint string tension is given by

KA ¼ 2N2

N2 � 1
KF; (27)

and, as a reasonable approximation, it is possible to assume
KA � 2KF.
Finally, the composite scalar boson mass in the approxi-

mation of Eq. (23) depends on the string tension, b and �
for a given group and representation, and the value of
mg=� that enters into the infrared value of the coupling

constant. To generate our results we assume that KR=� is
approximately constant for SUðNÞ theories. Once we have
KF=� for QCD, we determine the different ratios KR=�
assuming Casimir scaling, what also give us, considering

FIG. 2 (color online). Scalar boson mass MS calculated using the SUðN ¼ 2; 3; 4; 5Þ gauge group in the fundamental representation
with different numbers of Dirac fermions.
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Eq. (21), the relation between the dynamical mass and �
for a given representation. The ratio between the gauge
boson mass and �, based on general arguments [13,36], is
left to vary in the sameway it was found to vary for QCD. It
is important to remember that the ratio mg=� has a lower

bound as discussed in Ref. [36], which is approximately
given by mg=� � 1:2, as well as we may not expect that

mg is much larger than 3� if we assume that the NAGT

phenomenology is not too much different from what we
know from QCD [37].

IV. A REMARK ON AVECTOR COMPOSITE

It is not necessary to rely on lengthy calculations to
estimate the approximate composite vector meson mass
in this scenario. The vector composite mass in a NAGT
with a potential like the one of Eq. (7) is heavy basically
due to the spin-spin part of the hyperfine interactions. For S
waves the hyperfine splitting has been determined as [38]

Mð3S1Þ �Mð1S0Þ �
8

9
�g2ð0Þ jc ð0Þj2

�2
; (28)

where jc ð0Þj2 is the meson wave function at the origin, and
we assumed that the fermion masses forming the meson are
equal to the dynamical mass �� ffiffiffiffiffiffiffi

KR

p
. Equation (28) has

been derived in the heavy quarkonium context [38],
although it seems to work reasonably well even in the
presence of light fermions (or mesons) [39].

Assuming that no lighter composite pseudoscalar has
been seen below 125 GeV, that �g2ð0Þ=4� � 0:5 [15,37],
and that jc ð0Þj2 � �3, what is consistent with Eq. (2) we
obtain the following inequality from Eq. (28):

Mð3S1Þ> ð2� ffiffiffiffiffiffiffi
KR

p þ 125Þ GeV: (29)

With the dynamical fermion mass values that we obtain in
this work, we can see that the vector composite is going to
be a very heavy meson, whose phenomenology will be
quite model dependent.

V. RESULTS AND CONCLUSIONS

Our results are presented in the following figures for a
choice of SUðNÞ groups, fermionic representations and
their respective number of fermions. In these figures the
horizontal dark gray line represents the mass (and respec-
tive uncertainty) of the boson observed at the LHC. The
pale gray vertical region is the one defining the expected
values for the ratio mg=�. The continuous black lines

correspond to the scalar masses computed with Eq. (23)
for a given number of fermions. The gauge group, number
of fermions and respective representations that we use here
were chosen keeping in mind that we have to respect
asymptotic freedom and the limit given by Eq. (17).

In Fig. 2 we show the results for the scalar composite
mass formed by fermions belonging to the SUðN ¼
2; 3; 4; 5Þ gauge groups. Note that for these groups and

fermions in the fundamental representation only the
theory with one specific number of fermions can generate
a scalar boson of 125 GeV. These number of fermions are
nf ¼ 6, 8, 10 respectively for SUð3Þ, SUð4Þ, SUð5Þ. In
Fig. 3 we consider nf ¼ 6 fermions in the fundamental

representation and verify that only in the SUð3Þ case we

FIG. 3 (color online). Scalar boson mass MS calculated using
the SUðN ¼ 2; 3; 4Þ gauge group in the fundamental representa-
tion with the number of Dirac fermions nF set at 6.

FIG. 4 (color online). Scalar boson mass MS calculated using
the SUðN ¼ 2; 3; 4Þ gauge group in the adjoint representation
with the number of Dirac fermions nF set at 2.
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can generate a composite scalar boson with a mass equal to
125 GeV.

It is quite important to stress that the results shown here
were obtained in the case of a isolated strong interaction
theory. When we consider the effect of radiative correc-
tions, due to the electroweak and new beyond standard
model interactions necessary to generate standard fermion
masses, the strongly generated scalar mass can be lowered
by a factor of an order up to 5. As pointed out recently in
Ref. [40] radiative corrections induced by the effective
scalar coupling to the top quark may decrease the scalar
mass. These corrections give a contribution to the scalar
mass with a negative signal typical of fermion loops.

In Fig. 4 we show the case of nf ¼ 2 fermions in the

adjoint representation. For the groups SUð2Þ to SUð5Þ we
do not find a solution compatible with the LHC data. A
possible solution appears only for quite large Nð>100Þ. In
Fig. 5 we show the results for the two-index antisymmetric
representation in the case of SUð3Þ to SUð6Þ with different
number of fermions, and in the SUð5Þ (and for larger
groups) no solution is found. The scalar masses shown in

the figures result from a delicate balance between the 	
function coefficient b and the Casimir operator c, while we
must keep the theory asymptotically free and � > 1=2. The
values of gR do not interfere strongly in the final result. The
scalar mass decreases withN (or ‘‘color number’’Nc) since
this leads to a larger b and smaller � values. In the case of
2-index antisymmetric representations the theory becomes
almost conformal with a small number of fermions, the
coefficient b approaches zero and the scalar mass start
being more dependent on the value of the string tension
and its value increases for larger groups. The results of
Figs. 2–5 were obtained considering NAGT in isolation.
The scalar composite masses described in these figures
were computed under certain controllable approximations,
as in the Bethe-Salpeter approach, and we neglected higher
order corrections when discussing the effect of the BSE
normalization condition in Eq. (15). The results also de-
pend on the string tension for different representations,
whereas we have a reasonable knowledge of this quantity
only for QCD. Another source of uncertainty is the value of
the dynamical gauge boson mass for different symmetry

FIG. 5 (color online). Scalar boson mass MS calculated using the SUðN ¼ 3; 4; 5; 6Þ gauge group in the 2-index antisymmetric
representation with different numbers of Dirac fermions.
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groups and with different fermionic representations.
Unfortunately even for QCD we must recognize that the
dynamical gauge boson mass generation mechanism only
recently started to be studied with simulations in large
lattices. Therefore, it is not necessary to stick to the face
value of 125 GeV for the scalar mass, even in the context of
an isolated strong interaction theory. Uncertainties of sev-
eral percent may be expected and we shall also comment
later on the possible effect of mixing with other scalar
states, what may also introduce a large uncertainty in the
calculation.

The chiral symmetry breaking solution that we discussed
in Sec. II happens due to confinement and the dynamical
mass is directly related to the string tension. The scalar mass
turns out to be strongly dependent on the string tension and
its value is determined through the SM vacuum expectation
value. The other ingredient in the scalar mass formula is the
value of the coupling constant in the low energy limit, which
is frozen and dependent on the ratio mg=� [41]. This

dependence comes from the asymptotic behavior of the
bound state wave function. The self-energy used to compute
the scalar mass [Eq. (10)], and the related spin 0 wave
function, is known to occur in the cases of extreme walking
theories or four-fermion dominated chiral symmetry break-
ing [42,43]. The origin of this solution in our study is totally
based in confinement, appearing at an effective level where
we may say that confinement generates a hard mass [18].
However our result for the scalar mass is general in the sense
that it does not matter what is the mechanism generating
such solution, because this is the hardest asymptotic behav-
ior for the scalar wave function and no other behavior can
lead to smaller scalar masses.

In Sec. III we discussed the relation between the string
tension in different representations and its relation to �, as
well as the values of the ratio mg=�. We may say that the

relation between these quantities is poorly known even in
QCD, and the best evaluations for these quantities come
from lattice theory (see Refs. [32–35] and references
therein). We tested possible variations of the string tension
for different representations with the scale �, and no
appreciable changes compared to the previous figures ap-
pear in these cases.

The problem to have a light scalar associated to the SM
symmetry breaking has more subtleties than the ones de-
scribed here. Actually, the understanding of the scalar
composite mass is an open problem even in the case of
the QCD ‘‘Higgs’’ boson, or the � meson (see, for in-
stance, a partial list of references on this subject [44]).

In this work we consider the possibility that the 125 GeV
boson discovered at the LHC may be a composite scalar.

The homogeneous BSE tell us that the mass of such scalar
boson in one NAGT is MS � 2� and of the order of the
natural scale of the strong interaction that forms the com-
posite state. The effective scalar mass is determined from
the inhomogeneous BSE, or by the homogeneous BSE plus
its normalization condition. For soft wave functions (or
fermion self-energies) the normalization condition does
not modify the prediction of the homogeneous equation.
However the mass is lowered when the wave function has a
hard behavior. We discuss a chiral symmetry breaking
model where the wave function can decrease very slowly
with the momentum. For this solution to exist the number
of fermions in the theory must be larger than a critical
number given by Eq. (17), otherwise the wave function is
not normalized. This normalization condition is respon-
sible for small scalar masses.
Our results were obtained considering a pure strong

interaction dynamics. The effect of radiative corrections,
due to the electroweak interactions and new beyond stan-
dard model interactions necessary to generate standard
fermion masses, may be responsible for the decrease of
the scalar composite mass, particularly due to the effect of
fermion loops. This means that if the 125 GeV boson is
indeed a composite boson it may be necessary a precise
engineering of different interactions to explain its mass.
There are important points that remain to be answered in

this problem, for instance, the effect of the next order
corrections to the BSE normalization condition. However
there are also questions that may be answered soon by
lattice simulations. Small composite scalar masses can be
obtained as a consequence of a wave function that de-
creases slowly with the momentum. They imply in a con-
straint on the number of fermions depending on the group
and fermionic representation. If this constraint is not
obeyed probably the scalar masses tend to be large, be-
cause the chiral symmetry breaking mechanism is different
from the one discussed here with softer wave functions and
fermionic self-energies. Therefore, it will be quite interest-
ing to have simulations of NAGT providing the scalar mass
values for different groups and fermionic representations,
which may even be a test of the chiral symmetry breaking
dynamics.
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