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The spectrum of energy levels is computed for all available angular momentum and parity quantum

numbers in the SU(2)-Higgs model, with parameters chosen to match experimental data from the Higgs-W

boson sector of the standard model. Several multiboson states are observed, with and without linear

momentum, and all are consistent with weakly interacting Higgs and W bosons. The creation operators

used in this study are gauge-invariant so, for example, the Higgs operator is quadratic rather than linear in

the Lagrangian’s scalar field.
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I. INTRODUCTION

The complex scalar doublet of the standard model ac-
commodates all of the necessary masses for elementary
particles. A testable prediction of this theory is the pres-
ence of a fundamental scalar particle: the Higgs boson.
Recently, ATLAS and CMS have discovered a Higgs-like
boson with a mass near 125 GeV [1,2].

Lattice simulations of the scalar doublet with the SU(2)
gauge part of the electroweak theory give a nonperturbative
description of the Higgs mechanism. Early studies [3–16]
revealed two regions in the phase diagram: the Higgs
region with three massive vector bosons and a single
Higgs particle, and the confinement region with QCD-
like bound states of the fundamental fields. These two
regions are partially separated by a first-order phase tran-
sition, but are analytically connected beyond the phase
transition’s end point. Subsequent lattice studies of the
SU(2)-Higgs model have explored the electroweak finite-
temperature phase transition [17–20] and recent work has
incorporated additional scalar doublets [21,22].

In the present work, we calculate the spectrum of the
standard SU(2)-Higgs model at zero temperature in the
Higgs region of the phase diagram. As already mentioned,
there will be a Higgs boson (H) and three massive vector
bosons (W1, W2 and W3), but the spectrum contains much
more than this.

For comparison recall the well-known case of QCD,
which has a small number of fields in the Lagrangian
(gluons and quarks) and a huge number of particles in
the spectrum (glueballs and hadrons). The glueballs and
hadrons are created by gauge-invariant operators but the
gluons and quarks correspond to gauge-dependent fields in
the Lagrangian. The spectrum of the SU(2)-Higgs model is
similar, at least in the confinement region: the Lagrangian
contains gauge fields and a doublet of scalar fields, but
lattice simulations suggest a dense spectrum of ‘‘W-balls’’
and ‘‘hadrons.’’ (For lattice studies of the spectrum in
2þ 1 dimensions, see Refs. [23,24].)

It is interesting to consider the spectrum in the Higgs
region of the phase diagram. At weak coupling (which is

directly relevant to the actual experimental situation), one
might anticipate one Higgs boson, three vector bosons, and
nothing else. On the other hand, since the Higgs region and
the confinement region are truly a single phase, one might
wonder whether the rich spectrum of confinement-region
states will persist into the Higgs region, though smoothly
rearranged in some way. An appealing view can be found
in Refs. [23,24] where the smooth transition from confine-
ment region to Higgs region was observed for an SU(2)-
Higgsmodel in 2þ 1 dimensions. Reference [24] describes
the results in terms of a flux loop that is completely stable in
the pure gauge theory but can decay in the confinement
region of the SU(2)-Higgs phase diagram. When approach-
ing the analytic pathway into the Higgs region, such decays
become so rapid that the particle description loses its rele-
vance, leaving the Higgs regionwith the simple spectrum of
Higgs andW bosons. Reference [24] concludes by empha-
sizing the usefulness of a future study ofmultiparticle states
in the Higgs region.
In practice, even a simple spectrum of four bosons (W1,

W2, W3, H) will be accompanied by a tower of multi-
particle states (WW, WH, HH, WWW; . . . ) that is consis-
tent with conservation of weak isospin, angular momentum
and parity. Therefore a thorough lattice study of the spec-
trum will always involve many states appearing with many
different quantum numbers. In general, these could be
bound states and/or scattering states, and there is a history
of nonlattice attempts to determine whether a pair of Higgs
bosons might form a bound state [25–32].
The existence of nonperturbative states for �4 theory in

2þ 1 dimensions has support from lattice simulations
[33,34]. Attempts for the 3þ 1 dimensional SU(2)-Higgs
model [35,36] (see for example Fig. 3 of Ref. [36]) indicate
that the task of computing the Higgs-region spectrum
with sufficient precision to observe and identify more
than the most basic states is a significant challenge. We
have had success in this endeavor, which is the theme of the
present work.
Section II describes the method used to create the lattice

ensembles. Section III develops a set of creation operators
that is able to probe all quantum numbers Ið�PÞ, where I
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denotes weak isospin, P is parity, and � is a lattice repre-
sentation corresponding to angular momentum. Section IV
explains how the variational method was used for analysis
of the lattice data. Section V presents the energy spectrum
that was obtained from our lattice simulations. Section VI
examines the effects on the spectrum of increasing the
lattice volume. Section VII reports on a simulation with a
much larger Higgs mass, so that changes in the energy
spectrum can be observed and understood. Section VIII
describes the construction of two-particle operators and
uses them to extend the observed energy spectrum.
Concluding remarks are contained in Sec. IX.

II. SIMULATION DETAILS

The discretized SU(2)-Higgs action used for lattice
simulations is given by

S½U;�� ¼ X

x

�
�
X

�<�

�
1� 1

2
TrðU�ðxÞU�ðxþ �̂Þ

�Uy
�ðxþ �̂ÞUy

� ðxÞÞ
�
þ 1

2
Trð�yðxÞ�ðxÞÞ

þ �

�
1

2
Trð�yðxÞ�ðxÞÞ � 1

�
2

� �
X4

�¼1

Trð�yðxÞU�ðxÞ�ðxþ �̂ÞÞ
�
; (1)

where U�ðxÞ ¼ eiag0A�ðxÞ is the gauge field, �ðxÞ is the

scalar field in 2� 2 matrix form, � ¼ 4
g2
0

is the gauge

coupling, � ¼ 1�2�
8þa2�2

0

is the hopping parameter (related to

the inverse bare mass squared), and � ¼ �2�0 is the scalar
self-coupling. The 2� 2 complex scalar field contains only
four degrees of freedom because of a relation involving a
Pauli matrix,

�2�ðxÞ�2 ¼ ��ðxÞ; (2)

and is written as �ðxÞ ¼ �ðxÞ	ðxÞ, where �ðxÞ> 0 is
called the scalar length and 	ðxÞ 2 SUð2Þ is the scalar’s
angular component. We refer to �ðxÞ as the scalar field
rather than the Higgs field, reserving the ‘‘Higgs’’ label for
the physical particle which, as discussed in Sec. III, is
quadratic in the scalar field.

Our simulations are performed in the Higgs region of the
phase diagram, with a gauge coupling near the physical
value g20� 4
	

sin2�W
� 4
	

1�m2
W=m2

Z

�0:5, corresponding to � ¼ 8,

which is in the weak coupling region. The remaining
parameters are tuned to � ¼ 0:131 and � ¼ 0:0033 to
give a Higgs mass near the physical value of �125 GeV
and a reasonable lattice spacing. The number of lattice sites
is 203 � 40 (where the longer direction is Euclidean time)
and 243 � 48, and the scale is set with the W mass defined
to be 80.4 GeV. For comparison, separate simulations are
carried out with � ¼ 0:4 and � ¼ 1.

Although �4 theories are trivial, the standard model can
be viewed as an effective field theory up to some finite
cutoff. The calculations presented in this paper are at a
cutoff of approximately 1=a ¼ 400 GeV. Even though the
continuum limit is problematic in a trivial theory, simula-
tions at an appropriately large cutoff are sufficient to
produce phenomenological results.
Standard heatbath and over-relaxation algorithms

[37–42] were used for the Monte Carlo update of the gauge
and scalar fields. Define one sweep to mean an update at all
sites across the lattice. Then our basic update step is one
gauge heatbath sweep followed by two scalar heatbath
sweeps followed by one gauge over-relaxation sweep fol-
lowed by four scalar over-relaxation sweeps. Ten of these
basic update steps are performed between the calculation
of lattice observables. Any remaining autocorrelation is
handled by binning the observable.
Stout link smearing [43] and scalar smearing [44,45] are

used to improve the lattice operators, reduce statistical
fluctuations, and construct a large basis of operators. For
the gauge links, one stout-link iteration is given by

Uðnþ1Þ
� ðxÞ ¼ exp f�rstoutQ

ðnÞ
� ðxÞgUðnÞ

� ðxÞ; � � 4 (3)

QðnÞ
� ðxÞ ¼ 1

2

X

���;��4

fUðnÞ
� ðxÞUðnÞ

� ðxþ �̂ÞUðnÞy
� ðxþ �Þ

�UðnÞy
� ðxÞ þUðnÞ

� ðxÞUðnÞy
� ðxþ �̂� �̂Þ

�UðnÞy
� ðx� �̂ÞUðnÞ

� ðx� �̂Þg � H:c: (4)

where rstout is the stout link smearing parameter. Only the
spatial links are smeared, and only in the spatial direction.
The final stout links ~U are given after a number of succes-
sive smearing iterations

U ¼ Uð0Þ ! Uð1Þ ! Uð2Þ ! � � � ! UðnstoutÞ ¼ ~U: (5)

The smearing for the scalar field uses the lattice Laplacian
�,

�ðnþ1ÞðxÞ ¼ ð1þ rsmear�Þ�ðnÞðxÞ (6)

¼ �ðnÞðxÞ þ rsmear

X3

�¼1

f ~U�ðxÞ�ðnÞðxþ �̂Þ

� 2�ðnÞðxÞ þ ~Uy
�ðx� �̂Þ�ðnÞðx� �̂Þg; (7)

where rsmear is the scalar smearing parameter. Note that the
stout links ~U are used for scalar smearing, and only in

spatial directions. The final smeared scalar fields ~� are
given by

� ¼ �ð0Þ ! �ð1Þ ! �ð2Þ ! � � � ! �ðnsmearÞ ¼ ~�: (8)

III. PRIMARY OPERATORS

This study begins with two basic options for gauge-
invariant operators, the first being two scalar fields
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connected by a string of gauge links, and the second being a
closed loop of gauge links. Use of stout links and smeared
scalar fields within those operators enables many different
possible gauge link paths and scalar field separations to
be included. To obtain information about continuum
angular momentum from a lattice simulation, there is a
well-known correspondence with irreducible representa-
tions (irreps) of the octahedral group of rotations [46,47],
as shown in Table I.

The simplest gauge-invariant operator that can be con-
structed from scalar fields is the Higgs length operator

HðtÞ ¼ 1

2
Tr
X

~x

�yðxÞ�ðxÞ ¼ X

~x

�2ðxÞ; (9)

where the sum includes all spatial sites at a single
Euclidean time. The HðtÞ operator transforms according
to the �P ¼ Aþ

1 irrep and thus couples to the spin-0 Higgs
state. Notice that the Higgs operator is quadratic in the
scalar field �ðxÞ, as is familiar from the earliest SU(2)-
Higgs model lattice simulations [3–16].

The simplest operator that couples to the W particle is
the isovector gauge-invariant link

Wa
�ðtÞ ¼ 1

2
Tr
X

~x

� i�a�yðxÞU�ðxÞ�ðxþ �̂Þ; (10)

which belongs to the �P ¼ T�
1 irrep. Notice that, in gen-

eral, an isovector operator does not have definite charge
conjugation. The operator Wa

�ðtÞ, for example, transforms

under charge conjugation as ðW1
�;W

2
�;W

3
�Þ!ð�W1

�;þ
W2

�;�W3
�Þ. Clearly, if the operatorWa

� is given an arbitrary

isospin rotation it will not be an eigenfunction of charge
conjugation. Therefore charge conjugation is not helpful for
the present work.

Other irreps can be obtained by considering more com-
plicated operators. The gauge-invariant link operator

L�
���ðtÞ ¼

X

~x

�yðxÞU�ðxÞU�ðxþ �̂ÞU�ðxþ 2�̂Þ

�U�ðxþ 2�̂þ �̂Þ�ðxþ 2�̂þ �̂þ �̂Þ; (11)

shown in Fig. 1, has 48 possible orientations and is one of
the simplest two-scalar-field operators that couples to all of
the Ið�PÞ channels. Also considered is the gauge-invariant

link constructed using SU(2)-‘‘angular’’ components of the
scalar field

L	
���ðtÞ ¼

X

~x

	yðxÞU�ðxÞU�ðxþ �̂ÞU�ðxþ 2�̂Þ

�U�ðxþ 2�̂þ �̂Þ	ðxþ 2�̂þ �̂þ �̂Þ; (12)

which has exactly the same rotational symmetries as

L�
���ðtÞ. Useful linear combinations of L���ðtÞ (dropping

the �, 	 and t symbols for brevity) are given by

Aþ
��� ¼ Lþ�þ�þ� þ Lþ�þ��� þ Lþ���þ� þ Lþ�����

þ L��þ�þ� þ L��þ��� þ L����þ�

þ L������ (13)

A�
��� ¼ Lþ�þ�þ� � Lþ�þ��� � Lþ���þ� þ Lþ�����

� L��þ�þ� þ L��þ��� þ L����þ�

� L������ (14)

Bþ
��� ¼ Lþ�þ�þ� � Lþ�þ��� � Lþ���þ� þ Lþ�����

þ L��þ�þ� � L��þ��� � L����þ�

þ L������ (15)

B�
��� ¼ Lþ�þ�þ� þ Lþ�þ��� þ Lþ���þ� þ Lþ�����

� L��þ�þ� � L��þ��� � L����þ�

� L������ (16)

Cþ
��� ¼ Lþ�þ�þ� þ Lþ�þ��� � Lþ���þ� � Lþ�����

� L��þ�þ� � L��þ��� þ L����þ�

þ L������ (17)

C�
��� ¼ Lþ�þ�þ� þ Lþ�þ��� � Lþ���þ� � Lþ�����

þ L��þ�þ� þ L��þ��� � L����þ�

� L������ (18)

Dþ
��� ¼ Lþ�þ�þ� � Lþ�þ��� þ Lþ���þ� � Lþ�����

� L��þ�þ� þ L��þ��� � L����þ�

þ L������ (19)

TABLE I. The number of copies of each irreducible represen-
tation � for each continuum spin J.

J
� 0 1 2 3 4 5 6 . . .

A1 1 0 0 0 1 0 1 . . .
A2 0 0 0 1 0 0 1 . . .
E 0 0 1 0 1 1 1 . . .
T1 0 1 0 1 1 2 1 . . .
T2 0 0 1 1 1 1 2 . . .

µ

ν

ρ

FIG. 1. Sketch of the two-scalar-field operator L���. The two
dots at the ends of L��� represent the scalar fields.
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D�
��� ¼ Lþ�þ�þ� � Lþ�þ��� þ Lþ���þ� � Lþ�����

þ L��þ�þ� � L��þ��� þ L����þ�

� L������ (20)

and Table II shows how to construct operators of any irrep
and parity. Note that operators Aþ

���, B
þ
���, C

þ
��� andD

þ
���

are even under parity, whereas A�
���, B

�
���, C

�
��� andD

�
���

are odd. The operators A�
��� belong to the A1, A2 and E

irreps, whereas B�
���, C

�
��� and D�

��� belong to the T1 and

T2 irreps.
The operator L��� consists of four gauge-invariant real

components: one is an isoscalar,

1

2
TrðL���Þ; (21)

and the other three form an isovector,

1

2
Trð�i�aL���Þ: (22)

In addition to the gauge-invariant link, which contains two
scalar fields, there are operators that contain only gauge
fields. AWilson loop is a gauge-invariant operator in which
the path of gauge links returns to itself to form a closed
loop. A particular Wilson loop that couples to all available
irreps is shown in Fig. 2. Mathematically, it is

W���ðtÞ ¼ 1

2
Tr
X

~x

U�ðxÞU�ðxþ �̂ÞU�ðxþ 2�̂Þ

�Uy
�ðxþ �̂þ �̂ÞU�ðxþ �̂þ �̂Þ

�Uy
�ðxþ �̂þ �̂ÞUy

�ðxþ �̂ÞUy
� ðxÞ (23)

which is operator #4 in Table 3.2 of Ref. [47] and has 48
different orientations. A Polyakov loop is also a gauge-
invariant closed loop, but it wraps around a boundary of the
periodic lattice. All irreps can be obtained from a Polyakov
loop that contains a ‘‘kink,’’ denoted by K���, such as the

one shown in Fig. 3 which is

P���ðtÞ ¼ 1

2
Tr
X

~x

� Y

y�<x�

U�ðxþ ðy� � x�Þ�̂Þ
�
K���ðxÞ

�
� Y

y�>x�

U�ðxþ ðy� � x�Þ�̂Þ
�
; (24)

TABLE II. Linear combinations of operators that give any irrep and parity. The multiplicity, multð�PÞ, is shown for each case.

�P multð�PÞ Operators

Aþ
1 1 Aþ

123 þ Aþ
231 þ Aþ

312 þ Aþ
132 þ Aþ

213 þ Aþ
321

A�
1 1 A�

123 þ A�
231 þ A�

312 � A�
132 � A�

213 � A�
321

Aþ
2 1 Aþ

123 þ Aþ
231 þ Aþ

312 � Aþ
132 � Aþ

213 � Aþ
321

A�
2 1 A�

123 þ A�
231 þ A�

312 þ A�
132 þ A�

213 þ A�
321

Eþ 2 fðAþ
123 � Aþ
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132 � Aþ

213Þ=
ffiffiffi
2

p
; ðAþ

123 þ Aþ
231 � 2Aþ

312 þ Aþ
132 þ Aþ

213 � 2Aþ
321Þ=

ffiffiffi
6

p g
fðAþ

123 � Aþ
231 � Aþ

132 þ Aþ
213Þ=

ffiffiffi
2

p
; ðAþ
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231 � 2Aþ

312 � Aþ
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213 þ 2Aþ
321Þ=

ffiffiffi
6

p g
E� 2 fðA�

123 � A�
231 þ A�

132 � A�
213Þ=

ffiffiffi
2

p
; ðA�

123 þ A�
231 � 2A�

312 þ A�
132 þ A�

213 � 2A�
321Þ=

ffiffiffi
6

p g
fðA�

123 � A�
231 � A�

132 þ A�
213Þ=

ffiffiffi
2

p
; ðA�

123 þ A�
231 � 2A�

312 � A�
132 � A�

213 þ 2A�
321Þ=

ffiffiffi
6

p g
Tþ
1 3 fBþ

123 � Bþ
132; B

þ
231 � Bþ

213; B
þ
312 � Bþ

321g
fCþ

123 � Cþ
213; C

þ
231 � Cþ

321; C
þ
312 � Cþ

132g
fDþ

123 �Dþ
321; D

þ
231 �Dþ

132; D
þ
312 �Dþ

213g
T�
1 3 fB�

123 þ B�
132; B

�
231 þ B�

213; B
�
312 þ B�

321g
fC�

123 þ C�
321; C

�
231 þ C�

132; C
�
312 þ C�

213g
fD�

123 þD�
213; D

�
231 þD�

321; D
�
312 þD�

132g
Tþ
2 3 fBþ

123 þ Bþ
132; B

þ
231 þ Bþ

213; B
þ
312 þ Bþ

321g
fCþ

123 þ Cþ
213; C

þ
231 þ Cþ

321; C
þ
312 þ Cþ

132g
fDþ

123 þDþ
321; D

þ
231 þDþ

132; D
þ
312 þDþ

213g
T�
2 3 fB�

123 � B�
132; B

�
231 � B�

213; B
�
312 � B�

321g
fC�

123 � C�
321; C

�
231 � C�

132; C
�
312 � C�

213g
fD�

123 �D�
213; D

�
231 �D�

321; D
�
312 �D�

132g

µ

ν

ρ

FIG. 2. The Wilson loop operator W��� of Eq. (23).

µ

ν

ρ

FIG. 3. The ‘‘kinked’’ Polyakov loop operatorP��� of Eq. (24).
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K���ðxÞ ¼ U�ðxÞUy
�ðxþ �̂� �̂ÞU�ðxþ �̂� �̂Þ

�U�ðxþ �̂� �̂þ �̂ÞU�ðxþ �̂þ �̂Þ
�Uy

�ðxþ �̂þ �̂ÞUy
� ðxþ �̂Þ; (25)

and has 48 different orientations. The kinkK��� is inserted

to fill the gap between points x and xþ �̂ of an otherwise
normal Polyakov loop. All possible irreps and parities for
W��� and P��� can be obtained from Table II simply by

replacing L��� with W��� or P��� in Eqs. (13) to (20).

Since a Pauli matrix cannot be inserted into the trace of a
closed loop operator made entirely of gauge links without
destroying gauge invariance, there are no isovector Wilson
or Polyakov loop operators.

To illustrate the efficacy of the operators, consider ef-
fective masses1

meffðtÞ ¼ � log

�hOðtþ 1ÞOð0Þi
hOðtÞOð0Þi

�
(26)

where OðtÞ is a gauge-invariant operator with its vacuum
expectation value subtracted,

OðtÞ ¼ OðtÞ � hOðtÞi: (27)

Figures 4 and 5 show effective mass plots for the Ið�PÞ ¼
0ðAþ

1 Þ and 0ðA�
1 Þ channels of four operators: two gauge-

invariant links, a Wilson loop, and a Polyakov loop. The

stout link and smearing parameters are nstout ¼ nsmear ¼
200 and rstout ¼ rsmear ¼ 0:1.
For 0ðAþ

1 Þ, the L	
��� and P��� operators have nearly

identical effective mass plots despite being conceptually
very different operators. The mass is near 0.4 in lattice

units. The L�
��� operator with identical quantum numbers

produces a different effective mass (near 0.3), and the
W��� operator gives another (noisier) result. This is an

indication that the 0ðAþ
1 Þ spectrum (corresponding to

J ¼ 0 in the continuum) contains more than a lone Higgs
boson. A more sophisticated analysis method is presented
in Sec. IV and applied in subsequent sections.
For 0ðA�

1 Þ, Fig. 5 provides four effective mass plots that
collectively indicate a mass near 0.6 in lattice units. Again
this is J ¼ 0 in the continuum, and of course neither a
single Higgs nor a single W has JP ¼ 0�. Our complete
analysis of this and all other channels is discussed below.

IV. CORRELATION MATRIX AND
VARIATIONAL METHOD

Particle energies, En, are extracted from lattice simula-
tions by observing the exponential decay of correlation
functions,

CijðtÞ¼ hOiðtÞOjð0Þi¼
X

n

h0jOijnihnjOjj0iexpð�EntÞ

(28)

¼ X

n

ani a
n
j exp ð�EntÞ; (29)
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m
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L
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µνρ L
α

µνρ

Wµνρ Pµνρ

FIG. 4. Effective masses of the Ið�PÞ ¼ 0ðAþ
1 Þ gauge-invariant link operators L�

��� and L	
���, Wilson loopW��� and Polyakov loop

P��� operators on a 203 � 40 lattice with � ¼ 8, � ¼ 0:131 and � ¼ 0:0033.

1In general one would use Oyð0Þ rather than Oð0Þ, but in our
SU(2) study the ~p ¼ ~0 operators are Hermitian and (as discussed
in Sec. VIII) even the ~p � ~0 correlation functions are statisti-
cally real.
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where OiðtÞ is a Hermitian gauge-invariant operator with
its vacuum expectation value subtracted as in Eq. (27). The
choice of operator determines the quantum numbers Ið�PÞ
of the states jni that are present in the correlation function
and also determines the coupling strength, ani , to each. The
operators are calculated for eight different levels of smear-
ing, nstout ¼ nsmear ¼ 0, 5, 10, 25, 50, 100, 150, and 200.
The smearing parameters are held fixed at rstout ¼ rsmear ¼
0:1. Each of these different smearing levels produces a
unique operator Oi in the correlation matrix CijðtÞ.

The energy spectrum is extracted using the variational
method [48,49]. To begin, the eigenvectors ~vn and eigen-
values �n (n ¼ 1; . . . ;M) of the correlation matrix are
found at a single time step Cijðt0Þ (i; j ¼ 1; . . . ; N), where

N is the number of operators, M is the number of statisti-
cally nonzero eigenvalues, which corresponds to the num-
ber of states that can be resolved, andM 	 N. The value of
t0 is typically chosen to be small, e.g. t0 ¼ 1, where the
signal-to-noise ratio is large. The correlation matrix is
changed from the operator basis to the eigenvector basis by

~CnmðtÞ ¼ ~vT
nCðtÞ ~vmffiffiffiffiffiffiffiffiffiffiffiffi
�n�m

p : (30)

The correlation function for the kth (k ¼ 1; . . . ;M) state is
then given by

CkðtÞ ¼ ~RT
k
~CðtÞ ~Rk; (31)

where ~Rk is a set of orthonormal vectors chosen such
that the energies from CkðtÞ are ordered from smallest to

largest for increasing k. ~Rk is determined recursively by a

variational method as follows: ~R1 maximizes C1ðt1Þ, the
correlation function of the smallest energy at a time step
t1 > t0. The normalization of Eq. (30) ensures that

Ckðt0Þ ¼ 1; thus maximizing C1ðt1Þ ensures that ~R1

projects out the state with smallest energy while minimiz-
ing contamination from higher-energy states. In practice,
the time step t1 is taken to be t0 þ 1. The optimization of
C1ðt1Þ reduces to solving the eigenproblem

~Cðt1Þ ~x1 ¼ �1 ~x1; (32)

where the eigenvalue �1 is the Lagrange multiplier for the

constraint ~RT
1
~R1 ¼ 1, and the solution for ~R1 is given by

the eigenvector ~x1 that maximizes C1ðt1Þ. The correlation
function C2ðtÞ of the next-smallest-energy state can be

found by calculating ~R2 in the same way as above, given

that ~R2 must be orthonormal to ~R1. This is accomplished by

defining ~R2 as the vector

~x2 ¼
XM�1

n¼1

an ~x1;n (33)

that maximizes C2ðt1Þ, where ~R1 ¼ ~x1;M and ~x1;n (n ¼
1; . . . ;M� 1) are the remaining eigenvectors from
Eq. (32). The eigenproblem resulting from the maximiza-
tion of C2ðt1Þ is

XT
1
~Cðt1ÞX1 ~a ¼ �2 ~a; (34)

where the matrix X1 ¼ ð ~x1;1; . . . ; ~x1;M�1Þ, the vector ~aT ¼
ða1; . . . ; aM�1Þ contains the coefficients from Eq. (33) and

the vector ~R2 ¼ X1 ~a is calculated from the eigenvector ~a
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that maximizes C2ðt1Þ. The calculation can continue recur-
sively up to the Mth case, where the eigenproblem be-
comes trivial. The energy can then be extracted by a
�2-minimizing fit to a single exponential using

CkðtÞ ¼ Ak exp ð�EktÞ: (35)

V. SPECTRUM AT THE PHYSICAL POINT

Using the methods described above, an ensemble of
20,000 configurations was created on a 203 � 40 lattice
with � ¼ 8, � ¼ 0:0033, and � ¼ 0:131. Figure 6 shows
the energy levels for isospins 0 and 1 as obtained from the

gauge-invariant link operators L�
��� and L	

���, and Fig. 7

shows the energy levels for isospin 0 as obtained from the
Wilson loop and Polyakov loop operators. (Wilson/
Polyakov loops cannot produce isospin 1, and lattice re-
sults for isospins higher than 1 are not considered in this
work.) As expected, the lightest state in the spectrum has
Ið�PÞ ¼ 1ðT�

1 Þ corresponding to a single W boson. The
mass is near 0.2 in lattice units (with a tiny statistical error)
and identification with the experimentally known W mass
allows us to infer the lattice spacing in physical units.

The next energy level above the single W has an energy
near 0.3 and is observed in the 0ðAþ

1 Þ channel, exactly as
expected for the Higgs boson. Our lattice parameters were
tuned to put this mass near its experimental value; the result
from our simulation is 122� 1 GeV. Notice that neither the
single W nor the single Higgs is observed from the Wilson
loop or Polyakov loop, but both are seen from the gauge-
invariant link operators. Moreover, notice that the Higgs
bosonH has not been created by just a single�ðxÞ but rather
by gauge-invariant operators that can never contain any odd

power of �ðxÞ. Much like QCD, physical particles in the
observed spectrum do not present any obvious linear one-
to-one correspondence with fields in the Lagrangian. For a
recent discussion in the context of a gauge-fixed lattice
study, see Refs. [35,36].
Continuing upward in energy within Figs. 6 and 7, we

see a signal with energy at 2mW in four specific channels.
These are exactly the four channels that correspond to the
allowed quantum numbers of a pair of stationary W bo-
sons. In the continuum, the wave function for such a pair of
spin-1W bosons would be the product of a spin part and an
isospin part. The total wave function must be symmetric
under particle interchange. This permits just two continuum
states with isospin 0 [0ð0þÞ and 0ð2þÞ�, and a single con-
tinuum state with isospin 1 ½1ð1þÞ�. Note that the parity of a
W pair is always positive in the absence of orbital angular
momentum. A glance at Table I reveals that these contin-
uum states match the lattice observations at energy 2mW

perfectly. An energy shift away from 2mW would represent
binding energy or a scattering state, but no shift is visible in
our lattice simulation at this weak coupling value.
The next state in Figs. 6 and 7 has an energy ofmH þmW

and is another pair of stationary bosons. Because the Higgs
boson is 0ð0þÞ, the Higgs-W pair should have the quantum
numbers of the W. The lattice data show that the Higgs-W
pair does indeed appear in exactly the same Ið�PÞ channels
as does the single W.
Two states are expected to appear with an energy near

0.6 because this corresponds to 2mH � 3mW . A pair of
stationary Higgs bosons should have the same quantum
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numbers as a single Higgs, i.e. IðJPÞ ¼ 0ð0þÞ, but no such
signal appears in Figs. 6 and 7. To see this two-Higgs state
we will need a different creation operator; Sec. VIII in-
troduces this operator and uses it to observe the two-Higgs
state within our lattice simulations.

A collection of three stationary W bosons must have a
wave function that is symmetric under interchange of any
pair, and must be built from a spin part and an isospin part.
The I ¼ 0 case has an antisymmetric isospin part and the
only available antisymmetric spin part is J ¼ 0. The I ¼ 1
case is of mixed symmetry and can combine with J ¼ 1, 2,
or 3 (but not J ¼ 0) to form a symmetric wave function.
These continuum options, i.e. 0ð0�Þ, 1ð1�Þ, 1ð2�Þ and
1ð3�Þ, can be converted into lattice channels easily by
using Table I and the result is precisely the list of channels
observed in Figs. 6 and 7, i.e. 0ðA�

1 Þ, 1ðT�
1 Þ, 1ðE�Þ, 1ðT�

2 Þ,
and 1ðA�

2 Þ.
The next energy level is mH þ 2mW which should have

identical Ið�PÞ options to the pair of stationary W bosons
discussed above. Figure 6 verifies this expectation, having
signals for 0ðAþ

1 Þ, 0ðEþÞ, 0ðTþ
2 Þ, and 1ðTþ

1 Þ, although
errors bars are somewhat larger for this high energy state.

The next energy level in Figs. 6 and 7 is a pair of moving
W bosons with vanishing total momentum. Recall that our
operators were defined to have zero total momentum, but
this still permits a two-particle state where the particles
have equal and opposite momenta. Momentum compo-
nents along the x, y or z axes of the lattice can have integer
multiple values of 2
=L, where L is the spatial length of
the lattice. The lattice dispersion relation for a boson with
mass m and momentum ~p is

sinh 2

�
aEð ~pÞ
2

�
¼ sinh 2

�
am

2

�
þX3

i¼1

sin 2

�
api

2

�
(36)

which reduces to the continuum relation, Eð ~pÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ ~p2

p
, as the lattice spacing a goes to zero. Given

the lattice spacing and statistical precision used in this
paper, the difference between Eq. (36) and the continuum
relation is noticeable. The energy of a state of two non-
interacting bosons is simply E1ð ~p1Þ þ E2ð ~p2Þ, with ener-
gies from Eq. (36).

Two particles with relative motion can also have orbital
angular momentum L; the allowed IðJPÞ for Higgs-Higgs,
Higgs-W andW-W states are listed in Table III. There is no
way to specify L with lattice operators because it is not a
conserved quantumnumber; only the totalmomentum J can
be specified, which corresponds to� in a lattice simulation.
For two moving W particles, all quantum numbers with
I ¼ 0 or 1 are possible except 0ð0�Þ and 1ð0þÞ. Therefore a
signal could appear in all Ið�PÞ channels, even 0ðA�

1 Þ and
1ðAþ

1 Þ because of J ¼ 4 states. As evident from Figs. 6
and 7, our lattice simulation produced signals in many
channels, but not in all. Section VIII provides the expla-
nation for why this particular subset of channels did not
show a signal.

Beyond this large energy, we are approaching the limit
of the reach of this set of operators. A few data points are
shown at even higher energies (in the neighborhood of
4mW) in Figs. 6 and 7, but a confident interpretation of
those will require further computational effort that is pre-
sented in Secs. VI and VII.
To conclude this section, it is interesting to notice a clear

qualitative distinction between the Wilson/Polyakov loop
operators and the gauge-invariant link operators: the for-
mer (Fig. 7) found only pure W boson states whereas the
latter (Fig. 6) found additional states containing one Higgs
boson. States containing two Higgs bosons must wait until
Sec. VIII.

VI. SPECTRUM ON A LARGER LATTICE

To confirm that several of the states in Figs. 6 and 7 are
truly multiparticle states with linear momentum, the simu-
lations of the previous section are repeated using a larger
lattice volume. Since momentum on a lattice is given by
integer multiples of 2
=L, where L is the spatial length of
the lattice, increasing the lattice volume should cause the
energies of states with linear momentum to decrease by a
predictable amount. Here the lattice parameters are set to
� ¼ 8, � ¼ 0:0033, � ¼ 0:131, which is the same as the
previous section, but now the lattice volume is 243 � 48.
An ensemble of 20,000 configurations is used.
The energy spectrum, extracted by a variational analysis,

is shown in Figs. 8 and 9. The Higgs andW masses remain
virtually unchanged, with a Higgs mass of 123� 1 GeV.
This stability indicates that finite volume artifacts are
negligible.
The data points that lie at 0.65 in lattice units correspond

perfectly to two W particles with the minimal nonzero
linear momentum. This physics appears in Figs. 6 and 7
at a larger energy, and the energy shift is in numerical
agreement with the change in energy due to changing the
lattice volume. Also, the four data points at 0.8 in Fig. 6
were numerically compatible with (a) a Higgs-W pair
moving back-to-back with the minimal momentum or
(b) a collection of four W bosons all at rest. This physics
has energy 0.73 in Fig. 8 which cannot be a four-W state
but is in good agreement with a back-to-back Higgs-W

TABLE III. IðJPÞ quantum numbers for Higgs-Higgs,
Higgs-W and W-W states with orbital angular momentum
L. Higgs-Higgs states must have positive parity due to Bose
statistics.

Higgs-Higgs Higgs-W W-W

L I ¼ 0 I ¼ 1 I ¼ 0 I ¼ 1

0 0þ 1� 0þ, 2þ 1þ
1 — 0þ, 1þ, 2þ 1�, 2�, 3� 0�, 1�, 2�
2 2þ 1�, 2�, 3� 0þ, 1þ, 2þ, 3þ, 4þ 1þ, 2þ, 3þ
3 — 2þ, 3þ, 4þ 1�, 2�, 3�, 4�, 5� 2�, 3�, 4�
..
. ..

. ..
. ..

. ..
.
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pair. From Table III all JP quantum numbers except 0� are
allowed for a moving Higgs-W pair, but these lattice
operators have found a signal in only a few channels.
Section VIII addresses the issue of missing irreducible
representations for multiparticle states with momentum.

It is noteworthy that some states consisting of three
stationary W particles, 1ðT�

1 Þ in Fig. 8 and 0ðA�
1 Þ in

Fig. 9, as well as the 0ðAþ
1 Þ Higgs-W-W state in Fig. 8,

were not detected in the larger lattice volume. This is
because the variational analysis cannot resolve these states
from the current basis of operators. When the lattice vol-
ume was increased, the spectral density increased as more
multiparticle states became detectable in the correlation
functions. As a result, states with a small overlap with the
basis of operators could not be successfully extracted, even
though they had been observed for the smaller lattice
volume. Of course, these states could be seen again if the

basis of operators was improved, for example, by increas-
ing the number of operators.

VII. SPECTRUM WITH A HEAVY HIGGS

A simple method to confirm which of the multiparticle
states in Figs. 6 and 7 contain a Higgs boson is to change
the Higgs mass and leave everything else unchanged. Here
we choose the extreme case of an infinite quartic coupling,
corresponding to the maximal Higgs mass [14,16,50]. The
lattice parameters are set to � ¼ 8, � ¼ 1, � ¼ 0:40, and
the geometry is 203 � 40. An ensemble of 20,000 configu-
rations is used. With these parameters, the W mass in
lattice units is nearly identical to the value in Fig. 6.
The energy spectrum, extracted by a variational analysis

as usual, is shown in Figs. 10 and 11. The spectrum of
states containing W particles remains essentially the same
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FIG. 9. The same as Fig. 7 but using a 243 � 48 lattice.
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The Higgs mass is off the graph because of its large value.

A
1

A
2

E T
1

T
2 A

1
A

2
E T

1
T

2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

en
er

gy
 (

in
 la

tti
ce

 u
ni

ts
)

I = 0

W-W

W-W-W

W-W

+ + + + + - - - - -

FIG. 11. The same as Fig. 7 but using � ¼ 0:40 and � ¼ 1.

HIGGS AND W BOSON SPECTRUM FROM LATTICE . . . PHYSICAL REVIEW D 88, 054510 (2013)

054510-9



as in Figs. 6 and 7 but all states with Higgs content are no
longer visible. This is consistent with the notion that the
Higgs mass is now so large that all states with Higgs
content have been pushed up to a higher energy scale.

To test this expectation of a large Higgs mass, a simulta-
neous fit of the entire 0ðAþ

1 Þ gauge-invariant-link correlation
matrix was performed. (For a comparison of this method to
the variational analysis in a different lattice context, see
Ref. [51].) A three-state fit to time steps t 
 2 provided a
good description of the lattice data, with a�2=d:o:f: ¼ 0:84.
The smallest energy corresponds to a pair of stationary W
bosons, the next energy is a pair ofW bosons moving back-
to-back with vanishing total momentum, and the third en-
ergy is 1:8� 0:2 in lattice units which is 720� 70 GeV.
This third energy is consistent with the maximal Higgs
energy found in early lattice studies [14,16,50]. Lattice
artifacts will be significant for this Higgs mass, since it is
larger than unity in lattice units. For our purposes it is
sufficient to conclude that the Higgs mass is much larger
than the low-lying spectrumofmultiparticleW-boson states.
This study of the spectrum in a heavy-Higgs world reinfor-
ces our understanding of which states in the spectrum con-
tain a Higgs boson.

VIII. TWO-PARTICLE OPERATORS

The operators used in previous sections of this work
were, at most, quadratic in the field �ðxÞ. They led to
excellent results for several states in the SU(2)-Higgs
spectrum, including multiboson states, but additional op-
erators can accomplish even more. In particular, recall that
the two-Higgs state was not observed in previous sections,
the two-W state with internal linear momentum was miss-
ing from a few Ið�PÞ channels, and the Higgs-W state with
internal linear momentum was similarly missing from
some Ið�PÞ channels.

Presently, multiparticle operators will be constructed
and the allowed irreducible representations will be com-
pared to the results in Figs. 6 and 7. A two-particle operator
OABðtÞ can be obtained by multiplying two operators with
the following vacuum subtractions:

OABðtÞ ¼ OAðtÞOBðtÞ � hOAðtÞOBðtÞi; (37)

OAðtÞ ¼ OAðtÞ � hOAðtÞi; (38)

OBðtÞ ¼ OBðtÞ � hOBðtÞi; (39)

where OAðtÞ and OBðtÞ each couple predominantly to a
single-particle state. The two-particle correlation function
is then simply

CABðtÞ ¼ hOABðtÞOAByð0Þi: (40)

Note that OABðtÞ is not strictly a two-particle operator
because all states with the same quantum numbers as
OABðtÞ can be created by it, including single-particle states.

However, this construction will result in a much stronger
overlap with the two-particle states, such as Higgs-Higgs
which was not found using the operators in Sec. III. A
three-particle operator is defined similarly:

OABCðtÞ ¼ OAðtÞOBðtÞOCðtÞ � hOAðtÞOBðtÞOCðtÞi: (41)

In this section we have written the correlation function
using the Hermitian conjugate because we intend to use
operators with nonzero momentum, whereas in the pre-
vious sections all operators were strictly Hermitian. This
does not affect our variational method because all of our
correlation functions are real; to be precise, the imaginary
component of each correlation function is equal to zero
within statistical fluctuations.
The single-particle operators for the Higgs and W are

given by

Hð ~pÞ ¼ X

~x

1

2
Trf�yðxÞ�ðxÞg exp fi ~p � ~xg; (42)

Wa
�ð ~pÞ ¼

X

~x

1

2
Trf�i�a�yðxÞU�ðxÞ�ðxþ �̂Þg

� exp

�
i ~p �

�
~xþ 1

2
�̂

��
; (43)

where ~p is the momentum and has components given by
integer multiples of 2
=L in the x, y or z directions, with L
being the spatial length of the lattice. Combining the W
operators requires some additional care due to the isospin
indices.W-W eigenstates of I are obtained using the scalar
and vector products

I ¼ 0: ~W� � ~W� ¼ Wa
�W

a
�; (44)

I ¼ 1: ~W� � ~W� ¼ abcWb
�W

c
�; (45)

where the repeated a, b, c indices are summed.
Combinations ofW operators with I > 1 are not considered
in this paper. The irreducible representations of the W-W

operators with ~p ¼ ~0 are given by

0ðAþ
1 Þ: Wa

1W
a
1 þWa

2W
a
2 þWa

3W
a
3 (46)

0ðEþÞ: Wa
1W

a
1 �Wa

2W
a
2ffiffiffi

2
p ;

Wa
1W

a
1 þWa

2W
a
2 � 2Wa

3W
a
3ffiffiffi

6
p

(47)

0ðTþ
2 Þ: Wa

1W
a
2 ; W

a
2W

a
3 ; W

a
3W

a
1 (48)

1ðTþ
1 Þ: abcWb

1W
c
2 ; 

abcWb
2W

c
3 ; 

abcWb
3W

c
1 (49)

which correspond to the allowed continuum spins. The
isospin combinations for threeW’s with I ¼ 0 or 1 are

I ¼ 0: ~W� � ð ~W� � ~W�Þ ¼ abcWa
�W

b
�W

c
�; (50)
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I ¼ 1: ~W�ð ~W� � ~W�Þ ¼ Wa
�W

b
�W

b
�; (51)

I ¼ 1: ~W� � ð ~W� � ~W�Þ ¼ abccdeWb
�W

d
�W

e
�: (52)

(Unnecessary for our purposes is another I ¼ 1
triple-W operator, formed by combining an I ¼ 2 pair
with the thirdW.)

Table IV shows the multiplicities for Higgs-Higgs,
Higgs-W, W-W and W-W-W operators built entirely of

~p ¼ ~0 operators. The energy spectrum obtained from the
two-boson operators by variational analysis is displayed in
Fig. 12. The two-Higgs state, absent until now, is seen quite
precisely. The W-W and Higgs-W signals are also excel-
lent. Even three-boson and four-boson states are observed.
(Readers of Sec. VI might wonder whether the four-W
states in Fig. 12 could instead be a Higgs-W state with
momentum. Recall, though, that a Higgs-W state cannot

have isospin 0.) Another success worth noticing is that the
single Higgs does not appear at all and the single W
couples only weakly; that is a success because the opera-
tors were intended to be multiparticle operators.
The operators Hð ~pÞ and Wa

�ð ~pÞ from Eqs. (42) and (43)

were calculated for momenta given by j ~pj ¼ 2
=L, j ~pj ¼ffiffiffi
2

p ð2
=LÞ and j ~pj ¼ ffiffiffi
3

p ð2
=LÞ. Figure 13 shows the
spectrum obtained from a variational analysis of the single
Higgs andW operators versus momentum. Both Higgs and
W operators contain an excited state which is a two-W
state, where oneW is stationary and the other has momen-
tum. Notice that the two-W energy does not form a straight

line since its continuum relation is E ¼ mþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ ~p2
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errors; horizontal lines are the expectations from Eq. (36).
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TABLE IV. Octahedral group multiplicities of Higgs-Higgs, Higgs-W, W-W and W-W-W operators built of the operators in

Eqs. (42) and (43) with ~p ¼ ~0. Repeated SU(2) indices a, b, c are summed, but Lorentz indices�, �, � are not. The indices�, �, � are
not equal to one another.

Operator I Aþ
1 Aþ

2 Eþ Tþ
1 Tþ

2 A�
1 A�

2 E� T�
1 T�

2

HH 0 1 0 0 0 0 0 0 0 0 0

HWa
� 1 0 0 0 0 0 0 0 0 1 0

Wa
�W

a
� 0 1 0 1 0 0 0 0 0 0 0

Wa
�W

a
� 0 0 0 0 0 1 0 0 0 0 0

abcWb
�W

c
� 1 0 0 0 1 0 0 0 0 0 0

abcWa
�W

b
�W

c
� 0 0 0 0 0 0 1 0 0 0 0

Wa
�W

b
�W

b
� 1 0 0 0 0 0 0 0 0 1 0

Wa
�W

b
�W

b
� 1 0 0 0 0 0 0 0 0 1 1

Wa
�W

b
�W

b
� 1 0 0 0 0 0 0 0 0 1 1

Wa
�W

b
�W

b
� 1 0 0 0 0 0 0 1 1 0 0

abccdeWb
�W

d
�W

e
� 1 0 0 0 0 0 0 0 0 1 1

abccdeWb
�W

d
�W

e
� 1 0 0 0 0 0 0 0 1 0 0
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Tables V, VI, and VII show the multiplicities for Higgs-
Higgs, Higgs-W and W-W operators with the nonzero

internal momentum, j ~pj ¼ 2
=L, j ~pj ¼ ffiffiffi
2

p ð2
=LÞ and

j ~pj ¼ ffiffiffi
3

p ð2
=LÞ, respectively. The list of allowed W-W

representations for j ~pj ¼ 2
=L agrees completely with the
states that were found in Figs. 6 and 7. This shows why the
W-W signal was absent from other channels in those
graphs. In general, the direction of the internal momentum

TABLE VII. Octahedral group multiplicities of Higgs-Higgs, Higgs-W and W-W operators built of the operators in Eqs. (42) and

(43) with ~p � ~0, where ~p123 ¼ 2

L ð1; 1; 1Þ, ~p�123 ¼ 2


L ð�1; 1; 1Þ, ~p1�23 ¼ 2

L ð1;�1; 1Þ and ~p12�3 ¼ 2


L ð1; 1;�1Þ. Repeated SU(2)

indices a, b, c are summed, but Lorentz indices �, �, � are not. The indices �, �, � are not equal to one another.

Operator I Aþ
1 Aþ

2 Eþ Tþ
1 Tþ

2 A�
1 A�

2 E� T�
1 T�

2

Hð ~p���ÞHð� ~p���Þ 0 1 0 0 0 1 0 0 0 0 0

Hð ~p���ÞWa
�ð� ~p���Þ 1 1 0 1 1 2 0 1 1 2 1

Wa
�ð ~p���ÞWa

�ð� ~p���Þ 0 1 0 1 1 2 0 0 0 0 0

Wa
�ð ~p���ÞWa

�ð� ~p���Þ 0 1 0 1 1 2 1 0 1 1 2

abcWb
�ð ~p���ÞWc

�ð� ~p���Þ 1 0 0 0 0 0 0 1 1 2 1

abcWb
�ð ~p���ÞWc

�ð� ~p���Þ 1 0 1 1 2 1 0 1 1 2 1

TABLE VI. Octahedral group multiplicities of Higgs-Higgs, Higgs-W andW-W operators built of the operators in Eqs. (42) and (43)

with ~p � ~0, where ~p12 ¼ 2

L ð1; 1; 0Þ, ~p23 ¼ 2


L ð0; 1; 1Þ, ~p31 ¼ 2

L ð1; 0; 1Þ, ~p1�2 ¼ 2


L ð1;�1; 0Þ, ~p2�3 ¼ 2

L ð0; 1;�1Þ and ~p3�1 ¼ 2


L �
ð�1; 0; 1Þ. Repeated SU(2) indices a, b, c are summed, but Lorentz indices �, �, � are not. The indices �, �, � are not equal to
one another.

Operator I Aþ
1 Aþ

2 Eþ Tþ
1 Tþ

2 A�
1 A�

2 E� T�
1 T�

2

Hð ~p��ÞHð� ~p��Þ 0 1 0 1 0 1 0 0 0 0 0

Hð ~p��ÞWa
�ð� ~p��Þ 1 1 1 2 1 1 0 0 0 2 2

Hð ~p��ÞWa
�ð� ~p��Þ 1 0 0 0 1 1 0 1 1 1 0

Wa
�ð ~p��ÞWa

�ð� ~p��Þ 0 1 1 2 1 1 0 0 0 0 0

Wa
�ð ~p��ÞWa

�ð� ~p��Þ 0 1 0 1 0 1 0 0 0 0 0

Wa
�ð ~p��ÞWa

�ð� ~p��Þ 0 1 0 1 0 1 0 0 0 1 1

Wa
�ð ~p��ÞWa

�ð� ~p��Þ 0 0 0 0 2 2 1 1 2 1 1

abcWb
�ð ~p��ÞWc

�ð� ~p��Þ 1 0 0 0 0 0 0 0 0 1 1

abcWb
�ð ~p��ÞWc

�ð� ~p��Þ 1 0 0 0 0 0 0 0 0 1 1

abcWb
�ð ~p��ÞWc

�ð� ~p��Þ 1 0 1 1 1 0 0 0 0 1 1

abcWb
�ð ~p��ÞWc

�ð� ~p��Þ 1 0 0 0 2 2 1 1 2 1 1

TABLE V. Octahedral group multiplicities of Higgs-Higgs, Higgs-W andW-W operators built of the operators in Eqs. (42) and (43)

with ~p � ~0, where ~p1 ¼ 2

L ð1; 0; 0Þ, ~p2 ¼ 2


L ð0; 1; 0Þ and ~p3 ¼ 2

L ð0; 0; 1Þ. Repeated SU(2) indices a, b, c are summed, but Lorentz

indices �, �, � are not. The indices �, �, � are not equal to one another.

Operator I Aþ
1 Aþ

2 Eþ Tþ
1 Tþ

2 A�
1 A�

2 E� T�
1 T�

2

Hð ~p�ÞHð� ~p�Þ 0 1 0 1 0 0 0 0 0 0 0

Hð ~p�ÞWa
�ð� ~p�Þ 1 1 0 1 0 0 0 0 0 1 0

Hð ~p�ÞWa
�ð� ~p�Þ 1 0 0 0 1 1 0 0 0 1 1

Wa
�ð ~p�ÞWa

�ð� ~p�Þ 0 1 0 1 0 0 0 0 0 0 0

Wa
�ð ~p�ÞWa

� ð� ~p�Þ 0 1 1 2 0 0 0 0 0 0 0

Wa
�ð ~p�ÞWa

�ð� ~p�Þ 0 0 0 0 1 1 0 0 0 1 1

Wa
�ð ~p�ÞWa

�ð� ~p�Þ 0 0 0 0 0 1 1 0 1 0 0

abcWb
�ð ~p�ÞWc

�ð� ~p�Þ 1 0 0 0 0 0 0 0 0 1 0

abcWb
�ð ~p�ÞWc

�ð� ~p�Þ 1 0 0 0 0 0 0 0 0 1 1

abcWb
�ð ~p�ÞWc

�ð� ~p�Þ 1 0 0 0 1 1 0 0 0 1 1

abcWb
�ð ~p�ÞWc

�ð� ~p�Þ 1 0 0 0 1 0 0 1 1 0 0
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on the lattice will affect the allowed irreducible representa-
tions ofmultiparticle states [52,53].Application of thevaria-
tional analysis to the two-Higgs, Higgs-W and two-W

operators with back-to-back momenta j ~pj ¼ 2
=L, j ~pj ¼ffiffiffi
2

p ð2
=LÞ and j ~pj ¼ ffiffiffi
3

p ð2
=LÞ produced Figs. 14 and 15.
The single-W states (near energy 0.2) and two-stationary-W
states (near 0.4) were detected in a few channels but, as

intended, these operators couple strongly to a pair with
internal momentum. Comparison of Tables V, VI, and VII
with Figs. 14 and 15 shows that signals are observed in
precisely the expected subset of Ið�PÞ channels in each case.

IX. CONCLUSIONS

The particle spectrum of the SU(2)-Higgs model has
been computed thoroughly, using lattice simulations with
all parameters tuned to experimental values. Three
conceptually different classes of operators were used to
extract the energy spectrum: gauge-invariant links, Wilson
loops and Polyakov loops. Particular spatial shapes
were chosen for these operators to provide access to all
irreducible representations of angular momentum and par-
ity, for both isospin 0 and 1. Varying levels of stout-link
and scalar smearing were applied to improve the operators
and to generate a basis for a variational analysis of the
correlation matrices. The energies computed from the var-
iational analysis comprise a vast multi-particle spectrum
that is completely consistent with collections of almost-
noninteracting Higgs and W bosons. No states were found
beyond this simple picture.
Of course the interactions between bosons are not ex-

pected to be strictly zero, but such tiny deviations from
zero are not attainable using the lattice studies presented
here. Simulations with a stronger gauge coupling—but still
in the Higgs region of the phase diagram—might provide
information about interactions, and the fact that the SU(2)-
Higgs model is a single phase implies an analytic connec-
tion from strong coupling to the physical point. It also
implies an analytic connection to the confinement region
of the phase diagram with its seemingly very different
spectrum. Therefore future lattice studies, similar to what
we have done but at stronger gauge coupling, could be of
significant value.
Our study, by observingmore than a dozen distinct energy

levels from the singleW up tomultiboson stateswith various
momentumoptions, represents amajor step beyondprevious
simulations of this spectrum. Our work demonstrates that
present-day lattice methods can provide precise quantitative
results for the Higgs-W boson spectrum.
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