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We calculate, for the first time using unquenched lattice QCD, form factors for the rare decay

B ! K‘þ‘� in and beyond the Standard Model. Our lattice QCD calculation utilizes a nonrelativistic

QCD formulation for the b valence quarks and the highly improved staggered quark formulation for the

light valence quarks. We employ the MILC 2þ 1 asqtad ensembles. The form factor results, based on the

z expansion, are valid over the full kinematic range of q2. We construct the ratios f0=fþ and fT=fþ,
which are useful in constraining new physics and verifying effective theory form factor symmetry

relations. We also discuss the calculation of Standard Model observables.
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I. INTRODUCTION

The rare decay B ! K‘þ‘� involves a b ! s flavor-
changing neutral current transition which can proceed
only through loop diagrams in the Standard Model, making
this a particularly sensitive probe for new physics.
Experimentalists have already started to collect more and
more data on this decay and comparisons with accurate
Standard Model predictions have become very important
and timely. Calculations of the branching fraction
BðB ! K‘þ‘�Þ require knowledge of several form factors,
which in turn depend on having control over long distance
QCD phenomena and on being able to evaluate hadronic
matrix elements of vector and tensor currents between theB
and theKmeson states. The only first-principlesmethod for
carrying out such nonperturbative QCD calculations is
lattice QCD. In this article we use lattice QCD to determine
the three relevant form factors fþ, f0 and fT , which can
then be used to obtain branching fraction information both
in and beyond the Standard Model.

There is an active effort [1–5] to constrain new physics
using experimental results for B ! K‘þ‘�, often in com-
bination with other rare B decays. Form factor information
in these works typically comes from light cone sum rule
results (cf. Refs. [6–8]), valid at low q2. Reference [1]
calculates all three form factors in lattice QCD using the
quenched approximation (i.e. neglecting virtual quark
loops in the sea) and extrapolates to low q2 using the
model-dependent Bečirević Kaidalov parametrization [9].
In Ref. [10] the QCDSF Collaboration published results for
f0 and fþ using the quenched approximation. There are
preliminary unquenched results by Liu et al. [11] and the

Fermilab Lattice and MILC collaborations [12].
Measurements related to this decay have been made at
the B-factories BABAR [13] and Belle [14], by CDF [15],
and most recently by LHCb [16,17].
This work reports the first unquenched lattice QCD

calculation of the form factors for this rare decay. In [18]
we explore the phenomenological implications of these
form factors for several Standard Model observables, com-
paring to experiment where possible and making predic-
tions elsewhere. In this article we give details of the lattice
calculations leading to the form factors and also provide
more information on the relation between these form
factors and various Standard Model observables.

II. FORM FACTORS AND MATRIX ELEMENTS

The phenomenologically relevant quantities are the form
factors f0;þ;T . However, the fundamental quantities, and

therefore the quantities directly accessible on the lattice,
are hadronic matrix elements. In this section we summarize
the relations between the form factors and the hadronic
matrix elements.
The vector hadronic matrix element is parametrized by

the scalar and vector form factors f0;þ

hKjV�jBi ¼ fþðq2Þ
�
p�
B þ p�

K �M2
B �M2

K

q2
q�

�

þ f0ðq2ÞM
2
B �M2

K

q2
q�; (1)

where V� ¼ �s��b and q� � p
�
B � p

�
K , the four-

momentum transferred to the final state leptons. At inter-
mediate stages of the calculation we recast f0;þ in terms of

the more convenient form factors fk;?*bouchard.18@osu.edu
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hKjV�jBi ¼ ffiffiffiffiffiffiffiffiffiffi
2MB

p �
p
�
B

MB

fkðq2Þ þ p�
?f?ðq2Þ

�
; (2)

where p
�
? � p

�
K � ðpK � pBÞp�

B=M
2
B. In the B meson rest

frame fk;? are simply related to the temporal and spatial

components of the hadronic vector matrix elements,

hKjV0jBi ¼ ffiffiffiffiffiffiffiffiffiffi
2MB

p
fkðq2Þ; (3)

hKjVkjBi ¼ ffiffiffiffiffiffiffiffiffiffi
2MB

p
pk
Kf?ðq2Þ: (4)

The scalar and vector form factors are related to fk;? by

f0 ¼
ffiffiffiffiffiffiffiffiffiffi
2MB

p
M2

B �M2
K

½ðMB � EKÞfk þ p2
Kf?�; (5)

fþ ¼ 1ffiffiffiffiffiffiffiffiffiffi
2MB

p ½fk þ ðMB � EKÞf?�; (6)

where pK is the kaon three-momentum. The tensor had-
ronic matrix element is parametrized by the tensor form
factor fT

hKjTk0jBi ¼ 2iMBp
k
K

MB þMK

fTðq2Þ; (7)

where T�� ¼ �s���b and ��� ¼ 1
2 ½��; ���. We extract the

hadronic matrix elements from lattice simulations, then use
them to reconstruct the various form factors.

III. GENERATING LATTICE DATA

In this section we discuss how lattice data are generated
in the form of two and three point correlation functions and
how effective lattice currents in the three point data are
matched to physical currents.

A. Two and three point correlators

Ensemble averages are performed using the MILC 2þ 1
asqtad gauge configurations [19] listed in Table I. The
valence quarks in our simulation are nonrelativistic QCD
(NRQCD) [20] b quarks, tuned in Ref. [21], and highly
improved staggered quark (HISQ) [22] light and strange
quarks, propagators for which were generated in
Refs. [23,24]. Valence quark masses for each ensemble
used in the simulations are tabulated in Table I.

Heavy-light B meson bilinears ��
B are built from

NRQCD b and HISQ light quarks (for details see
Ref. [21]) and light-light kaon bilinears �K are built
from HISQ light and strange quarks (for details see
Ref. [23]). The bilinears are used to build two and three
point correlation functions

C��
B ðt0; tÞ ¼ 1

L3

X
x;y

h��
Bðt; yÞ��y

B ðt0;xÞi; (8)

CKðt0; t;pÞ ¼ 1

L3

X
x;y

eip�ðx�yÞh�Kðt; yÞ�y
Kðt0;xÞi; (9)

C�
J ðt0; t; T;pÞ ¼

1

L3

X
x;y;z

eip�ðz�xÞ

� h�Kðt0 þ T;xÞJðt; zÞ��y
B ðt0; yÞi; (10)

where the inserted lattice current Jðt; zÞ is a heavy-light
bilinear described in the next section. The three point
correlator setup is depicted in Fig. 1.
Working in the B meson rest frame, a sequential propa-

gator is built from smeared NRQCD b and spectator HISQ
quarks. The b quark smearing function�ðy0 � yÞ is either a
delta function or Gaussian, as specified by indices �, �

�ðy0 � yÞ ¼
8><
>:
�y0y ; � ¼ lðocalÞ

1ffiffiffiffiffiffiffiffiffi
2	�2

p exp
h
� ðy0�yÞ2

2�2

i
; � ¼ sðmearedÞ;

(11)

TABLE I. Left to right: Labels for the three coarse and two fine ensembles used in this analysis; lattice volume; inverse lattice
spacing in r1 units; light/strange sea quark masses; tadpole improvement factor u0 ¼ hplaquettei1=4; number of configurations; number
of time sources; valence light quark mass; valence strange quark mass; b quark mass; spin-averaged b �b ground state energies used to
relate our B meson simulation energies to the physical MB; and the range of temporal separations between the B meson and the kaon.

Ens. L3 � Nt r1=a au0msea u0 Nconf Ntsrc amval
l amval

s amb aEsim
b �b

T

C1 243 � 64 2.647(3) 0:005=0:05 0.8678 1200 2 0.0070 0.0489 2.650 0.28356(15) 12–15

C2 203 � 64 2.618(3) 0:01=0:05 0.8677 1200 2 0.0123 0.0492 2.688 0.28323(18) 12–15

C3 203 � 64 2.644(3) 0:02=0:05 0.8688 600 2 0.0246 0.0491 2.650 0.27897(20) 12–15

F1 283 � 96 3.699(3) 0:0062=0:031 0.8782 1200 4 0.00674 0.0337 1.832 0.25653(14) 21–24

F2 283 � 96 3.712(4) 0:0124=0:031 0.8788 600 4 0.01350 0.0336 1.826 0.25558(28) 21–24

FIG. 1. Setup for three point correlator data generation.
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with � ¼ 5a on the coarse and � ¼ 7a on the fine
ensembles. The smearing function is introduced by the
replacement

P
y !

P
y;y0�ðy0 � yÞ in Eqs. (8) and (10).

The spectator l quark source includes a U(1) phase 
ðx0Þ.
The daughter s quark, with U(1) phase and momentum
insertion at x, is tied to the sequential quark propagator,
with

P
x in Eqs. (9) and (10) accomplished via randomwall

sources, i.e.
P

x ! P
x;x0
ðxÞ
ðx0Þ.

B meson two point correlator data is generated for all
four combinations of b quark smearing: Cll

B, C
ls
B , C

sl
B , and

Css
B . Kaon two point data are generated for each of the

momenta p22	=L�fð0;0;0Þ;ð1;0;0Þ;ð1;1;0Þ;ð1;1;1Þg.
In three point correlator data the B meson is created at

time slice t0, the kaon is annihilated at t0 þ T, and a flavor-
changing current Jðt; zÞ is inserted at intermediate times
t0 � t � t0 þ T, where t0 is chosen at random to reduce
autocorrelations. Prior to fitting, all data are shifted to a
common t0 ¼ 0. The structure of the current Jðt; zÞ deter-
mines whether generated data is for the vector or tensor
matrix element and whether it is lowest order in NRQCD
or a 1=mb correction. The details of the currents used in
this work are given in the next section. Three point data are
generated over the ranges of B meson and kaon temporal
separations T listed in Table I.

B. Matching lattice currents

We generate data for the lattice effective currents that
contribute through Oð�s;�QCD=mb; �s=ambÞ. Through

this order, the relevant lattice vector (J ¼ V�) and tensor

(J ¼ T ��) currents are

V ð0Þ
� ¼ ��s���b; (12)

V ð1Þ
� ¼ � 1

2amb

��s��� � r�b; (13)

T ð0Þ
�� ¼ ��s����b; (14)

T ð1Þ
�� ¼ � 1

2amb

��s���� � r�b: (15)

For the tensor current we focus on the T k0 component,
where heavy quark symmetry allows us to relate it to the
vector current.

The continuum vector current hV�i is matched to the

lattice vector current by

hV�i ¼ ð1þ �s�
ðV�Þ
0 ÞhV ð0Þ

� i þ hV ð1Þ;sub
� i; (16)

where

hV ð1Þ;sub
� i � hV ð1Þ

� i � �s�
V�

10 hV ð0Þ
� i: (17)

The matching calculation is done to one loop using mass-
less HISQ lattice perturbation theory. Details of the calcu-
lation, and values for the matching coefficients, are given
in [25]. In matching the temporal component of the vector

current we omit Oð�s�QCD=mbÞ contributions specified in
[25]. To justify their omission, we generated data for these
terms and verified that their contributions are subpercent,
consistent with the findings of [26].
The continuum tensor current hTk0i is matched to the

lattice current by

hTk0i ¼ ð1þ �s�
ðTÞ
0 ÞhT ð0Þ

k0 i þ hT ð1Þ;sub
k0 i; (18)

where

hT ð1Þ;sub
k0 i ¼ hT ð1Þ

k0 i � �s�
T
10hT ð0Þ

k0 i: (19)

As mentioned above, heavy quark symmetry of the
NRQCD b quark allows the tensor current renormalization

to be recast in terms of vector current quantities: T ð0Þ
k0 ¼

V ð0Þ
k , T ð1Þ

k0 ¼ �V ð1Þ
k , and �T10 ¼ ��Vk

10 .

IV. EXTRACTING MATRIX ELEMENTS

Hadronic matrix elements are extracted from fits to two
and three point correlator data using Bayesian fitting
techniques [27].

A. B meson two point fits

Two point correlator data for B mesons are fit to the
Ansatz

C��
B ðtÞ ¼ X2N�1

n¼0

b�ðnÞb�ðnÞyð�1Þnte�EsimðnÞ
B t; (20)

where

b�ðnÞ ¼ a3h��
BjBðnÞiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2a3EðnÞ
B

q : (21)

We have studied fits to all possible combinations of local
and smeared data and found a simultaneous fit to all four
combinations yields the smallest errors. Figure 2 shows the

0.503

0.507

0.511

0.515

0.519

0.523

l-l s-s l-l, s-s l-l, l-s, s-l, s-s

FIG. 2 (color online). Ensemble C2 fit results to the ground

state energy aEsimð0Þ
B for various source-sink smearing combina-

tions. There is a factor of roughly four improvement from
simultaneous fits to local (‘‘l’’) and smeared (‘‘s’’) sources and
sinks. The shaded band shows the best-fit result using all
smearing combinations.
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improvement achieved from the simultaneous fit for data
on a coarse ensemble and is indicative of the improvement
seen on all ensembles.

To ensure excited state contributions are adequately
accounted for, we increase the number of exponentials N
in the fit Ansatz until both the central values and errors
stabilize. This increase in N is balanced by the practical
constraint that additional exponentials add to the complex-
ity of the fit Ansatz and increase the time required for
convergence. Figure 3 plots fit results on fine ensemble
F1 as a function of N and suggests that N � 5 is sufficient.
Similar behavior is seen on the other ensembles and we
report results for N ¼ 8.

In addition, we have studied the impact on our fit results
of varying the time slices of data included in the fit. For a
given fit, the time slices of data included are specified by
the range tmin � t � tmax . An exponential decrease in
signal to noise, especially prevalent in B meson data, leads
to greater precision data at smaller values of t, while data at
larger values of t have a greater relative amount of infor-
mation on the ground state—the information we are after.
Data at very large t are redundant, as is evident from Fig. 4,
and omitting them speeds up the fit. In practice, we study
fits on each ensemble to determine values of tmin and tmax

for which the fit results are stable. Figure 4 illustrates the
ranges of tmin and tmax considered on the fine ensembles
and demonstrates that fit results are largely insensitive to
reasonable changes to the data included in the fit.

We choose our B meson best-fit results from simulta-
neous fits to all four combinations of local and smeared
data. On the coarse ensembles (C1, C2, and C3) we fit these
data on time slices 2 � t=a � 19 and with N ¼ 8. On the
fine ensembles (F1 and F2) we fit data on time slices
2 � t=a � 25 and with N ¼ 8. Prior choices and B meson
fit results are given in Appendix B 1.

On each ensemble the fitted B meson energy Esim
B is

related to the physical B meson mass by a shift associated
with the NRQCD shift in the b quark rest mass

MB ¼ Esimð0Þ
B þ 1

2
ðMexpt

b �b
� Esim

b �b
Þ; (22)

whereM
exp t

b �b
¼ 9:450ð4Þ GeV [28] is adjusted from experi-

ment to remove electromagnetic, b annihilation, and
charmed sea effects not present in our simulations, and
Esim
b �b

is the spin-averaged energy of b �b states calculated on

the lattice ensembles used in our simulation.
As a byproduct of this analysis we obtain the leading

order contribution to the B meson decay constant, � ¼
FB

ffiffiffiffiffiffiffiffi
MB

p
. Though not particularly useful by itself, a com-

parison with previous results using the same ensembles
provides a cross-check of our B meson fit results.

Accounting for a numerical factor of
ffiffiffi
2

p
from the HISQ

inversion, the unsmeared amplitude from this analysis is
related to the leading order decay constant by

a3=2�ð0Þ ¼ 2blð0Þ: (23)

We calculated values for �ð0Þ on each ensemble and veri-
fied our results are consistent with previous work [21].

B. Kaon two point fits

For each simulated momentum, two point correlator
data for the kaons are fit to

0.380

0.385

0.390

0.395

0.400

0.405

 2  3  4  5  6  7  8  9  10

FIG. 3 (color online). Ensemble F1 fit results for the ground

state energy aEsimð0Þ
B vs the number of states N with tmin =a ¼ 2

and tmax =a ¼ 25.
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0.384

 2  3  4  5  6  7  8  9  10

0.379

0.380

0.381

0.382

0.383

0.384

 12  14  16  18  20  22  24  26  28  30

FIG. 4 (color online). Ensemble F1 fit results for the ground

state energy aEsimð0Þ
B vs tmin =a with tmax =a ¼ 25 (top) and vs

tmax =a with tmin =a ¼ 2 (bottom). All fits use N ¼ 8.
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CKðt;pÞ ¼
X2N�1

n¼0

jdðnÞp j2ð�1Þntðe�EðnÞ
K t þ e�EðnÞ

K ðNt�tÞÞ; (24)

where

dðnÞp ¼ a3h�KjKðnÞ
p iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2a3EðnÞ
K

q : (25)

As with the B meson, we studied the effect of varying the
number of exponentials N used in the fit Ansatz and the
range of data included in the fits and found qualitatively
similar results to those of Figs. 3 and 4. Coarse ensemble
results are reported for fits using data at time slices
2 � t=a � 30, while on the fine ensembles we fit data at
time slices 3 � t=a � 40. For all fits we use N ¼ 8.

Kaon mass and energy fit results satisfy the dispersion
relation as shown in Fig. 5. We observe an empirical factor
of 3 improvement in the dispersion relation relative to the
expectedOð�sðapÞ2Þ. Prior choices and kaon fit results are
given in Appendix B 2.

As a consistency check, we extract kaon decay constant
values on each ensemble using

aFK ¼ amval
l þ amval

s

ðaMKÞ3=2
ffiffiffi
2

p
dð0Þ000; (26)

and compare with those obtained using the same ensembles
in Ref. [23].

C. Simultaneous two and three point fits

For each momentum, three point correlator data for
current J and b quark smearing � are fit to

C�
JðpÞðt; TÞ ¼

X2N�1

m;n¼0

dðnÞp Aðn;mÞ
JðpÞ b

�ðmÞyð�1ÞmtþnðT�tÞ

� e�EðnÞ
K ðT�tÞe�EsimðmÞ

B t; (27)

where the three point amplitude is related to the lattice
hadronic matrix element by

4ffiffiffi
2

p Aðn;mÞ
JðpÞ ¼ a3hKðnÞ

p jJjBðmÞiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2a3EðmÞ

K

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2a3EðnÞ

B

q : (28)

The factor of 4=
ffiffiffi
2

p
accounts for numerical factors intro-

duced in the simulation associated with taste averaging and
HISQ inversion.
In the fits, we include three point data at time slices tc �

t � T � tc, with tc ¼ 2, and have verified that fit results
are insensitive to small variations, i.e. tc ¼ 3, 4. As with
two point correlator fits, the number of exponentials used
in the fit Ansatz is increased until the central values and
errors stabilize; see Fig. 6. We use N ¼ 8 in all simulta-
neous two and three point correlator fits. Three point data
are generated for local and smeared b quarks and both data
sets are included in the fits.
The leading order and 1=mb correction three point cor-

relator data can be combined, per the matching prescrip-
tion of Sec. III B, before extracting three point amplitudes

0.97

0.98

0.99

1.00

1.01

1.02

1.03

0.0 0.5 1.0 1.5 2.0

(E
K2  -

 M
K2  )

 / 
p

2

(r1 p)2

C1
C2
C3
F1
F2

FIG. 5 (color online). Fit results for EK and MK, combined
with simulated kaon momenta, satisfy the dispersion relation.
Observed discretization errors, over the range of lattice spacings
used in the simulations, are represented by the gray bands and
correspond to 1� 1=3�sðapÞ2.
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FIG. 6 (color online). Ensemble F2 fit results for the ground

state amplitude Að0;0Þ
Vkð111Þ vs the number of states N.
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FIG. 7 (color online). Ensemble C3 fit results for ahVki
(defined in Sec. III B) are shown for combinations of T used
in simultaneous fits. Colored bands correspond to the ‘‘best-fit’’
combination T ¼ 13, 14, 15.
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via correlator fits. The resulting hadronic matrix elements
are then hV�i of Eq. (16) and hTk0i of Eq. (18). We have

verified that results obtained this way are equivalent to
those obtained by separately fitting the leading order and

1=mb correction data, to extract hV ð0;1Þ
� i and hT ð0;1Þ

k0 i, and
then combining these results per the matching prescription.
We adopt the method of first combining the data as fewer
fits are required and correlations between the leading order
and 1=mb correction data are automatically accounted for.

The amplitude AJ is extracted from a simultaneous fit to
two and three point data. Including three point data at
multiple separation times T improves the precision of
extracted matrix elements, as shown in Fig. 7. By studying
fit results for hV0i, hVki, and hTk0i for various T combina-
tions, we select a best-fit combination of T’s to include in
the fit for each ensemble. Our choices, listed in Table II,
strike a balance between improved fit precision and the
complexity of the fits and time required for convergence.

For each ensemble we performed simultaneous fits in-
cluding the four smearing combinations of B meson two
point data, both smearing combinations of three point data,
and the combination of three point data T’s listed in
Table II. We considered three variations of this fit based
on combinations of data for different momenta and cur-
rents. In order of increasing complexity, we performed
fit1: separate fits to each current and each momentum,
fit2: one fit to each current, including all momenta, and
fit3: one fit including all currents and all momenta.

Results for the ground state three point amplitudes for each
fit, and priors used, are listed in Table VIII. The central
values vary between the different fits but the differences
are not statistically significant. Fit results for the more
complicated fits, fit2 and fit3, generally have larger errors.
We take fit1 results, given in Table III, for use in the
subsequent chiral/continuum and kinematic extrapolation.
For each ensemble we extract the full correlation matrix for
all form factors and momenta from fit3 and combine it with
fit1 errors to build the full covariance matrix.
Results for hV�i are converted to fk;? and then to f0;þ

via Eqs. (3)–(6). Results for hTk0i are converted to fT using
Eq. (7). Results for f0, fþ, and fT are listed in Table III.

V. CHIRAL/CONTINUUM AND
KINEMATIC EXTRAPOLATION

We perform the chiral/continuum and kinematic extrap-
olations in separate steps. We use the results of the chiral/
continuum extrapolation to generate a synthetic data set to
guide a subsequent kinematic extrapolation.

A. Chiral/continuum extrapolation

We perform the chiral/continuum extrapolation on the
data for f0, fþ, and fT in Table III. For f0 and fþ this is
accomplished using fit Ansätze for fk and f? based on the

partially quenched staggered chiral perturbation theory of
Ref. [29], with taste-breaking effects turned off, and
Eqs. (5) and (6). Reference [26] studied B semileptonic
decays using NRQCD b and asqtad light valence and sea
quarks. There, the chiral/continuum extrapolation was
performed using ChPT with and without the staggered
taste-breaking terms. Negligible differences were found
in the results from these two approaches. The use of
HISQ valence light quarks is known [30] to reduce the
already small taste-breaking effects seen in [26]. We there-
fore omit the staggered ChPT taste-breaking terms in favor
of generic, light quark mass-dependent discretization ef-
fects as described below. For fT we use the fact that, at
leading order in 1=mb, and for the large values of q2 at
which we simulate and extrapolate in this step, fT 	 fþ.
Furthermore, the shape of fþ at large q2 is driven by f?.
We therefore use a fit Ansatz for fT that has the same form
as that for f? and uses the same chiral logs. The fit Ansätze
for fk, f?, and fT are

TABLE II. Best-fit combinations of T ’s included in simulta-
neous fits on each ensemble.

Ens. T’s

C1 13, 14, 15

C2 13, 14, 15

C3 13, 14, 15

F1 23, 24

F2 21, 22, 24

TABLE III. Fit1 results for the scalar, vector, and tensor form
factors on each ensemble and for each simulated momentum.

Ens. f0ð0; 0; 0Þ f0ð1; 0; 0Þ f0ð1; 1; 0Þ f0ð1; 1; 1Þ
C1 0.8477(74) 0.7449(70) 0.6878(70) 0.6464(98)

C2 0.8518(90) 0.7199(70) 0.6484(49) 0.6027(68)

C3 0.8338(65) 0.7159(59) 0.6513(38) 0.6012(54)

F1 0.8396(51) 0.7158(50) 0.6502(42) 0.582(17)

F2 0.8356(46) 0.7159(44) 0.6397(52) 0.5987(56)

Ens. fþð1; 0; 0Þ fþð1; 1; 0Þ fþð1; 1; 1Þ
C1 1.982(28) 1.626(19) 1.380(17)

C2 1.827(26) 1.423(13) 1.199(19)

C3 1.748(18) 1.416(14) 1.197(15)

F1 1.784(27) 1.427(28) 1.168(29)

F2 1.805(28) 1.138(19) 1.191(29)

Ens. fTð1; 0; 0Þ fTð1; 1; 0Þ fTð1; 1; 1Þ
C1 1.706(25) 1.422(19) 1.220(24)

C2 1.607(29) 1.236(14) 1.053(23)

C3 1.555(22) 1.272(17) 1.083(23)

F1 1.615(31) 1.335(65) 1.046(31)

F2 1.667(32) 1.267(26) 1.090(34)
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fk ¼ �

F	

ð1þ �fk þ Ak þHkÞDk; (29)

f? ¼ �g=F	

EK þ�
 þ �fð1Þ?
ð1þ �fð2Þ? þ A? þH?ÞD?; (30)

fT ¼ �Tg=F	

EK þ�
 þ �fð1Þ?
ð1þ �fð2Þ? þ AT þHTÞDT; (31)

where � and �T are leading order low energy constants; g
is the BB
	 coupling; �
 is the B


s � B splitting; the �f’s
represent next-to-leading order (NLO) chiral logs from
[29]; A is a collection of NLO and next-to-next-to-leading
order (NNLO) chiral analytic terms; H is a polynomial
function of the kaon energy; and D contains discretiza-
tion effects. Explicit expressions for the functions A, H,
and D are

A ¼ a1
ml

mc

þ a2
ms

mc

þ a3
2 ~ml þ ~ms

~mc

þ a4

�
ml

mc

�
2

þ a5

�
ms

mc

�
2 þ a6

�
2 ~ml þ ~ms

~mc

�
2 þ a7

mlms

m2
c

þ a8
mlð2 ~ml þ ~msÞ

mc ~mc

þ a9
msð2 ~ml þ ~msÞ

mc ~mc

þ a10
ml

mc

EK;

(32)

H ¼ h1EK þ h2E
2
K þ h3E

3
K; (33)

D ¼ 1þ d1ða=r1Þ2 þ d2ða=r1Þ4: (34)

Here A, H, D, and the coefficients ai, hi, and di, have
implicit indices k , ? , or T specifying the relevant form
factor. We use powers of bare HISQ (ml;s=mc) and asqtad

( ~ml;s= ~mc) mass ratios for the analytic terms inA, with values
for the HISQ and asqtad charm quark masses taken from
[21]. These quark mass ratios are well defined in the physi-
cal limit. The NLO valence mass coefficients for fk and f?
are related by ak1þa?1 ¼ak2þa?2 [29]. To obtain acceptable
�2 and stable fit results, we found it necessary to include
NNLO terms proportional to mlEK and E3

K. We note these
terms were found to be necessary in chiral/continuum
extrapolations for B ! 	 semileptonic data in [31].
As in [28] we account for heavy quark discretization

effects by making the coefficients di mild functions
of amb,

d1 ! d1ð1þ f1�xb þ f2�x
2
bÞ;

d2 ! d2ð1þ f3�xb þ f4�x
2
bÞ;

(35)

where �xb ¼ amb � 2:26, chosen so that as amb varies
over the coarse and fine ensembles, �0:4 & �xb & 0:4.
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Similarly, we allow for light quark mass-dependent discre-
tization effects by making the di mild functions of ml,

d1 ! d1

�
1þ g1

ml

mc

þ g2

�
ml

mc

�
2
�
;

d2 ! d2

�
1þ g3

ml

mc

þ g4

�
ml

mc

�
2
�
:

(36)

As a result of these modifications, d1 in Eq. (34) is multi-
plied by ð1þf1�xbþf2�x

2
bÞð1þg1

ml

mc
þg2ðml

mc
Þ2Þ, and simi-

larly for d2. For the chiral logs we follow [29] but turn off
taste-breaking effects. To the extent these effects are
present in our data, they should be accommodated by the
light quark mass-dependent discretization terms intro-
duced in Eq. (36). As discussed below, we find negligible
contribution from these effects in our fits. Finite volume
effects are included per [29]. Meson masses entering the
chiral logs are computed using the leading order relation
between constituent quark masses mx, my and the corre-

sponding meson mass Mxy

M2
xy ¼ B0ðmx þmyÞ; (37)

where B0 is a low energy constant. Results of a simulta-
neous fit to data for f0, fþ, and fT , in which the �2=d:o:f:
is 35:1=50, are shown in Fig. 8. Values for priors and fit

results are collected in Tables IX and X. The stability of
these fit results with respect to changes in the fit Ansätze
are discussed at the end of the next section.
Chiral perturbation theory is not well defined for kaon

energies above the chiral scale, ��. Taking the chiral scale

to be �� ¼ 4	F	 suggests simulation data with kaon

energies above �1 GeV may not be described by chiral
perturbation theory. The data in question are 2	=Lð1; 1; 1Þ
data for ensembles C2, C3, F1, and F2. Ensemble C1 has a
larger spatial extent so the physical momentum corre-
sponding to 2	=Lð1; 1; 1Þ is roughly equivalent to the
physical momenta for ensembles C2 and C3 with
2	=Lð1; 1; 0Þ. We first note that, as shown in Fig. 8, our
chiral/continuum fit Ansätze do a good job of fitting all
simulation data, including data at ‘‘large’’ momenta.
Figure 9 shows the results of a chiral/continuum extrapo-
lation omitting the 2	=Lð1; 1; 1Þ data, except for that on
C1. Comparison of the physical bands in Figs. 8 and 9
shows consistent fit results. In Fig. 9 we extend the
ensemble chiral/continuum fit curves to energies beyond
the fitted region to show the level of agreement between the
fit curves and the omitted data. These comparisons dem-
onstrate that our chiral/continuum fit Ansätze adequately
describe all simulation data. Kinematic extrapolation
of synthetic data sets generated with and without the
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2	=Lð1; 1; 1Þ data produces similar extrapolated bands
over the full kinematic range of q2. At q2 ¼ 0, where
agreement is the worst, the results remain consistent at
the level of �1�.

B. Kinematic extrapolation

Using the fit results from the previous section, including
the 2	=Lð1; 1; 1Þ data, we generate a synthetic data set of
physical values for f0, fþ, and fT , restricted to the range of
q2 for which the simulations are performed. These data are
then extrapolated to the full kinematic range of q2 using the
z expansion [32–34]. We varied the number of data points
in the synthetic data set between 6 and 12 and found the fit
results to be largely insensitive to changes in this range,
provided correlations among the synthetic data points are
accounted for. We use six synthetic data points per form
factor in our final fit result. The synthetic data points are
highly correlated and it is necessary to introduce a sizable
singular value decomposition cut (in the range 10�3

to 10�2) when inverting the covariance matrix. The
synthetic data points are shown in Fig. 10.

The z expansion maps the kinematic variable q2 onto
zðq2; t0Þ,

zðq2; t0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ � q2

p � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ � t0

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ � q2

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ � t0

p ; (38)

where t� ¼ ðMB �MKÞ2 and t0 is a free parameter whose
choice determines the values z assumes over the kinematic
range of q2. The size of the interval ðzmin ; zmax Þ is largely
independent of t0 and the optimum choice of t0 results in
zmin 	 �zmax [32]. We considered several possible values
and found t0 	 14:8 GeV2 results in �0:15< z < 0:15.
This is similar to the recommendations of Becher

and Hill [35], t0 ¼ tþ � ðt2þ � tþt�Þ1=2 	 14:65 GeV2,
and Bourrely, Caprini, and Lellouch (BCL) [34], t0 ¼
ðMB þMKÞð

ffiffiffiffiffiffiffiffi
MB

p � ffiffiffiffiffiffiffiffi
MK

p Þ2 	 14:69 GeV2. We use the
BCL parametrization for the z expansion below and also
choose their recommended value of t0.
Based on the BCL [34] parametrization for fþ, we fit the

form factors to

f0ðq2Þ ¼
XK
k¼0

a0kzðq2Þk; (39)

fiðq2Þ¼ 1

Piðq2Þ
XK�1

k¼0

aik

�
zðq2Þk�ð�1Þk�K k

K
zðq2ÞK

�
; (40)

where i ¼ þ, T. The expected scaling behavior of fþ at
large q2 leads to a constraint involving the k ¼ K term in
the sum. For the reasons discussed in Sec. VAwe expect fT
to display q2-scaling behavior similar to that of fþ and we
therefore impose the same K constraint when fitting the
tensor data. We performed fits for fþ and fT with and
without this constraint and found negligible difference. We
also impose the kinematic constraint f0ð0Þ ¼ fþð0Þ by
adding an additional data point at q2 ¼ 0, equal to 0� �,
and defining the fit function at this data point to be fþð0Þ �
f0ð0Þ. The value of � is chosen small, though nonzero to
avoid singularities when inverting the covariance matrix.
In practice, values ranging from 10�3 to 10�14 give indis-
tinguishable fit results.
In Eq. (40) the Blaschke factor Piðq2Þ accounts for poles

above the physical range of q2 but below the BK produc-
tion threshold, i.e. t� < q2 < tþ. The resonances respon-
sible for the poles must have quantum numbers consistent
with the flavor-changing current being considered. Within
this energy range there are no JP ¼ 0þ bound states,
and therefore no Blaschke factor for f0, the only vector
JP ¼ 1� state is the B
, and there are no known tensor
JP ¼ 2� states. However, the tensor current is equivalent
to the vector current at leading order in 1=mb. We therefore
take the pole for the tensor form factor to lie at the same
location as the vector pole, but with a width 100 times
larger. The Blaschke factors are then

Pþðq2Þ ¼ 1� q2=ðMpole
þ Þ2; (41)

PTðq2Þ ¼ 1� q2=ðMpole
T Þ2; (42)
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and we parametrize the pole masses in terms of splittings
above the B meson mass

Mpole
þ ¼ MB þ�
þ; (43)

Mpole
T ¼ MB þ �


T: (44)

We apply Eqs. (39) and (40) separately to f0;þ;T in a

simultaneous, correlated fit to the synthetic data sets gen-
erated from the chiral/continuum extrapolation. We take
as our result the fit using K ¼ 3. The fit has a �2=d:o:f:
of 8:58=11.

We study the stability of the fit results to numerous
modifications to the fit Ansätze. For purposes of compari-
son, we study the effects of these modifications on the
values of f0;Tðq2 ¼ 0Þ. This point is farthest from the

region of q2 for which simulation data exists and exhibits
maximum sensitivity to changes in the fit Ansätze. The
kinematic constraint ensures the fit results for f0;þð0Þ are
equivalent. The modifications studied are

(1) Perform the z expansion through Oðz2Þ.
(2) Perform the z expansion through Oðz4Þ.
(3) Drop the heavy quark mass-dependent discretiza-

tion effects from the di in the chiral/continuum fit
Ansätze.

(4) Drop the light quark mass-dependent discretization
effects from the di in the chiral/continuum fit
Ansätze.

(5) Drop the finite volume effects from the chiral/
continuum fit Ansätze.

(6) Drop the NNLO analytic sea and strange quark mass
terms, i.e. those associated with the coefficients
a5; . . . ; a9 in Eq. (32).

(7) Add a constraint based on the heavy quark, large
recoil (small q2) symmetry relationship among the
form factors [36,37]

fTðq2Þ ¼ MBðMB þMKÞ
q2

½fþðq2Þ � f0ðq2Þ�; (45)

which, in the q2 ! 0 limit, gives

fTð0Þ ¼ MBðMB þMKÞ
�
@fþ
@q2

� @f0
@q2

���������q2¼0
: (46)

To impose this constraint we add to the fit an addi-
tional data point at q2 ¼ 0, given by 0��QCD=mb,

and define the fit function to be lhs–rhs of Eq. (46),
where the slopes of the form factors at q2 ¼ 0
are evaluated numerically. The error for this data
point accommodates higher order effects from
the 1=mb expansion and we conservatively take
�QCD=mb � 0:2.

Figure 11 shows the results of these tests and demon-
strates that our fit results are stable against reasonable
modifications to the fit Ansätze. Tests 1 and 2, together
with the final fit results, show that byOðz3Þ the z expansion

fit results and �2 have stabilized. The fit errors have also
saturated by Oðz3Þ and account for the error associated
with truncating the z expansion. In tests 3 and 4 we drop
heavy and light quark mass-dependent discretization
effects, as introduced in Eqs. (35) and (36), and find
negligible change in our fit results. We drop finite volume
effects from the chiral/continuum extrapolation in test 5
and find a slightly lower �2 but little impact on fit results.
Test 6 demonstrates the insensitivity of our fit results to
NNLO sea and strange quark chiral analytic terms. In test 7
we study the consistency of our fit results with the expected
symmetry relation among the form factors, valid for heavy
quarks and large recoil, and find excellent agreement. In
addition to these tests we have verified the consistency of
our results for f0ð0Þ and fþð0Þ with and without the kine-
matic constraint f0ð0Þ ¼ fþð0Þ. Without the constraint,
f0ð0Þ and fþð0Þ central values shift by ��=2, the errors
increase by �40%, and the constraint remains satisfied
within errors.
In Fig. 12 we plot the extrapolated form factors over the

full kinematic range of q2. The error bands represent errors
associated with the fit and do not include additional sys-
tematic errors discussed in Sec. VI C below.
Lattice calculations of B semileptonic decay form fac-

tors suffer from the need to perform a significant extrapo-
lation in q2; simulation data in this analysis have the largest
momenta of 2	=Lð1; 1; 1Þ, which corresponds to a smallest
simulated q2 of �17 GeV2. An obvious way to improve
lattice form factor calculations is to include data at larger
momenta, thereby reducing the kinematic extrapolation.
Though the ability of chiral perturbation theory to describe
our simulation data at the ‘‘large’’ lattice momenta
2	=Lð1; 1; 1Þ was demonstrated in Sec. VA, its applicabil-
ity to larger momenta is doubtful. Hard pion chiral
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FIG. 11 (color online). Two-step extrapolation results for
f0;Tð0Þ, the left-most points, are stable under various modifica-

tions to the fit Ansatz. Fit quality is represented by the sum of
�2’s from the chiral/continuum and z expansion fits, with a total
of 61 degrees of freedom. The x-axis label corresponds to the
modifications listed in the text.
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perturbation theory [38] may provide a way to handle
larger lattice momenta and we intend to study its effective-
ness in future BðsÞ semileptonic decay analyses. Another

approach that may prove useful in this regard is a simulta-
neous chiral/continuum and kinematic extrapolation via
the modified z expansion, introduced in [23,24]. We apply
this method to our B ! K‘þ‘� data in Appendix A and
verify results consistent with Fig. 12 are obtained.

VI. FORM FACTOR RESULTS

In this section we summarize final results, with complete
error budgets, for the form factors obtained in Sec. V.

An advantage of constrained curve fitting is the ability to
incorporate certain errors directly in the fit. For example,
the uncertainty associated with input parameters is built
into the fit by making these quantities fit parameters with
widths set by their uncertainty. Part of the resulting fit error
is then due to these uncertainties. Using the method out-
lined in Ref. [39], we extract the components of the fit
errors and plot them, as a percentage of the central value, in
Fig. 13. The three plots on the left (Figs. 13(a), 13(c), and
13(e)) show errors for the chiral/continuum extrapolation

and the three plots on the right (Figs. 13(b), 13(d), and
13(f)) show errors for the subsequent kinematic extrapo-
lation. In each plot the sum in quadrature of the listed
errors yields the total fit error in percent, corresponding
to the fit bands in Fig. 12. Listed errors are groupings of
the errors associated with related fit parameters and are
described in detail below.

A. Chiral/continuum extrapolation fit errors

Here we discuss the components of the fit errors from the
chiral/continuum extrapolation of Sec. VA. The compo-
nents of the fit errors are plotted in Figs. 13(a), 13(c), and
13(e) over the region of q2 for which simulation data exists
and for which the chiral/continuum extrapolation is per-
formed. The components of the fit errors are
(i) chiral: The chiral extrapolation error is the sum in

quadrature of the errors due to uncertainty in the ai of
Eq. (32), the hi of Eq. (33), and the appropriate
leading order low energy constant �ðTÞ. The resulting
error describes fit uncertainty due to the extrapolation
in light quark mass, slight interpolation in strange
quark mass due to mistuning, small mass differences
due to themixed action used in the simulation, and the
EK dependence introduced in H and via the NNLO
term with coefficient a10. For fþ;T our simulation

data is restricted to 17 GeV2 & q2 & 21 GeV2.
Extrapolation beyond the region of simulated q2

leads to an increase in their error at large q2.
(ii) disc.: The chiral/continuum extrapolation includes

discretization effects via the di terms of Eq. (34).
These terms are modified to incorporate potential
heavy quark mass-dependent discretization effects
via the fi terms introduced in Eq. (35) and further
modified via Eq. (36) to include possible light quark
mass-dependent discretization effects from the gi
terms. In the reported discretization error we com-
bine these effects by adding in quadrature the form
factor errors due to uncertainty in the di, fi, and gi.

(iii) stat.: The statistical error is the error associated
with the uncertainty in the data being fit, i.e. the
errors from form factor data of Table III.

(iv) inputs: The input error is the sum in quadrature of
the errors associated with the ‘‘Group I’’ priors of
Table IX.

B. Kinematic extrapolation fit errors

Here we discuss the components of the fit errors from
the kinematic extrapolation, performed via z expansion in
Sec. VB. The components are plotted in Figs. 13(b), 13(d),
and 13(f) over the full kinematic range of q2. The region of
q2 for which simulation data exist is indicated in the plots.
The components of the fit errors are
(i) stat.: This is the statistical error associated with the

synthetic data generated from the chiral/continuum
extrapolation. It is composed of components whose
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individual contributions are shown in Figs. 13(a),
13(c), and 13(e), and described above.

(ii) z exp.: This is the error in the form factors due to
uncertainty in the coefficients ak of the z expansion

in Eqs. (39) and (40). A comparison in Fig. 11 of
our final fit results with those from tests 1 and 2
shows that by Oðz3Þ our fit errors have saturated.
Therefore, these errors also include the error
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extrapolation % errors for fþ. (d) Kinematic extrapolation % errors for fþ. (e) Chiral/continuum extrapolation % errors for fT . (f)
Kinematic extrapolation % errors for fT .
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associated with truncating the z expansion at Oðz3Þ.
The error associated with the z expansion grows as
we extrapolate beyond the region of q2 for which
simulation data exist.

(iii) inputs: The input error is the sum in quadrature of
the errors from the parameters labeled ‘‘Group I’’
priors in Table XI.

C. Additional systematic errors

In addition to the errors accounted for directly in the fit,
several other systematic errors must be addressed:

(1) matching:With the matching coefficients calculated
in [25], we find the Oð�s;�QCD=mb; �s=ambÞ con-
tributions to hV0i to be �4%, of which �3:5%
comes from the one loop Oð�sÞ correction and

<1% from the NRQCD matching via hJð1Þ;sub0 i. For
hVki we find the leading order corrections to be
�2% with �1% coming from the Oð�sÞ correction
and <1% from the NRQCD matching. We estimate
higher order corrections based on observed leading
order effects and conservatively use the larger 4%.
We consider the following options for estimating the
size of higher order terms.
(a) It can be argued that higher order corrections

should be suppressed by a factor of �s relative
to the observed 4% leading order corrections,
resulting in an estimated matching error of
Oð�s � 0:04Þ, or �1%. We can alternatively
characterize the higher order corrections by
the size of the higher order matching coeffi-
cients. If we were to multiply the rhs of
Eq. (16) by 1þ �2 loop�

2
s and assume that the

matching coefficient for the Oð�2
sÞ correction is

approximately the same size as the coefficient of
the Oð�sÞ correction, �0:1, then the Oð�2

sÞ
correction would be �1%.

(b) More conservatively, we could argue that higher
order corrections should be no larger than the
observed leading order corrections and therefore
estimate the matching error at 4%. This
is equivalent to taking the Oð�2

sÞ matching
coefficient to be four times larger than the

Oð�sÞmatching coefficient�ðV0Þ
0 [13 times larger

than �ðVkÞ
0 ].

(c) Alternatively, and following the approach taken
in [26], we could argue that higher order correc-
tions are Oð�2

sÞ, giving an estimated matching
error of 9%. This is equivalent to assuming an
Oð�2

sÞmatching coefficient that is 10 times larger

than �
ðV0Þ
0 [29 times larger than �ðVkÞ

0 ]. We note

that, absent knowledge of the Oð�sÞ matching
coefficients, this approach suggests a leading
order contribution of Oð�sÞ 	 30%, nearly an
order of magnitude larger than what is observed.

Given that approach (iii) significantly overestimates the
leading order contribution and approach (i) does not
allow for the possibility of a moderate increase in the
Oð�2

sÞ matching coefficients relative to the Oð�sÞ
matching coefficient, we choose approach (ii) and esti-
mate the matching error to be 4%.
(2) electromagnetic and isospin breaking effects: Our

lattice simulation uses degenerate light quarks and
omits electromagnetic effects. The hadronic matrix
elements calculated on the lattice are therefore iso-
spin symmetric. By adjusting the meson masses
used in the subsequent chiral/continuum and kine-
matic extrapolations, we estimate the ‘‘kinematic’’
effects of omitting electromagnetic and isospin sym-
metry breaking in our simulation to be &1%. It is
more difficult to determine the size of the full effects
though, in general, electromagnetic and isospin
effects are expected to be subpercent. We assume
the error in our form factor calculation due to these
effects is negligible when added in quadrature to the
errors discussed above.

(3) charm sea quarks: Our simulations include
up, down, and strange sea quarks and we assume
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FIG. 14 (color online). Final results for the form factors,
including all sources of error. The shaded gray band indicates
the region of q2 for which simulation data exist.
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omitted charm sea quark effects are negligible.
This has been the case for processes in which
it has been possible and appropriate to perturba-
tively estimate effects of charm quarks in the
sea [40].

Of the additional systematic errors, only the matching
error is non-negligible. We propagate the 4% matching
error on the matrix elements to an error on the form
factors. We obtain the total error on our form factors by
adding in quadrature, at each value of q2, the propagated
4% matching error to the error obtained from the covari-
ance matrix of Table XII. Our form factors, with full error
bands, are shown in Fig. 14, and their values at q2 ¼ 0 are
given in Table IV where they are compared with results
from a quenched lattice calculation [1] and light cone sum
rules [7].

In the works of Bobeth et al. [5,41] the ratios of
form factors f0=fþ and fT=fþ play an important role in
constraining new physics. The ratio f0=fþ controls
m‘-suppressed Standard Model contributions, important
for future B ! K�þ�� studies and beyond the Standard
Model scalar and pseudoscalar contributions. This ratio
also provides a test of large q2 operator product expansion
and Isgur-Wise relations (cf. Ref. [5]) and low q2 symme-
try relations based on QCD factorization (cf. Ref. [41]).
The ratio fT=fþ controls beyond the Standard Model
tensor contributions and provides a check of the
low q2 symmetry relations. These ratios are shown in
Fig. 15.

D. Reconstructing the form factors

To reconstruct the form factors, one should use the fit

result central values for the coefficients a0;þ;T
k of the z

expansion in Table XI, together with Eqs. (39) and (40);
values for z obtained from Eq. (38) and surrounding text;
and Blaschke factors Pi defined in Eqs. (41)–(44), with
values for the pole mass splittings �


i from Table XI. To
obtain correct results for the errors, the full covariance
matrix of Table XII must be used and the resulting errors
increased by 4% to account for the additional systematic
errors discussed in Sec. VI C.

Note the dominant additional systematic error comes
from matching, and is therefore an error associated with
the hadronic matrix elements of Eqs. (3), (4), and (7). We
have verified that propagating a 4% error, applied to the
matrix elements, to the form factors f0;þ;T is equivalent to

applying the error directly to the form factors.

VII. PHENOMENOLOGY

In Ref. [18], we use the form factor results to calcu-
late several Standard Model observables that either
allow comparison with experiment or make predictions.
Here we provide, for completeness, the necessary rela-
tions between the various observables and the form
factors.
As discussed in Sec. VIC, our form factor results are,

within errors, equivalent for B0 ! K0‘þ‘�, �B0 !
�K0‘þ‘�, and B� ! K�‘þ‘�. The observables we calcu-
late from the form factors introduce additional dependence
onMB,MK, and �B. Here, and in [18], we calculate isospin
averaged values for all reported observables. Additional
input parameters are required and values used are provided
in Table V. Errors associated with each input parameter are
propagated to the error reported for each observable [47].
We begin with the differential decay rate. Following the
notation of Ref. [1] and restricting ourselves to the
Standard Model we write

d�‘

dq2
¼ 2a‘ þ 2

3
c‘; (47)

where a‘ and c‘ are given by

TABLE IV. Comparison of form factor results at q2 ¼ 0.

f0ð0Þ ¼ fþð0Þ fTð0Þ
This work 0:319� 0:066 0:270� 0:095
Bečirević et al. [1] 0:33� 0:04 0:31� 0:04
Khodjamirian et al. [7] 0:34þ0:05

�0:02 0:39þ0:05
�0:03
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FIG. 15. Ratios of form factors with (gray) error band calcu-
lated using correlations between the form factors.
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a‘ ¼ C
�
q2jFPj2 þ �

4
ðjFAj2 þ jFVj2Þ þ 4m2

‘M
2
BjFAj2

þ 2m‘ðM2
B �M2

K þ q2ÞReðFPF


AÞ
�
; (48)

c‘ ¼ � C��2
‘

4
ðjFAj2 þ jFV j2Þ; (49)

with

C ¼ G2
F�

2
EWjVtbV



tsj2

29	5M3
B

�‘

ffiffiffiffi
�

p
; (50)

�¼ q4þM4
BþM4

K � 2ðM2
BM

2
K þM2

Bq
2þM2

Kq
2Þ; (51)

�‘ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4m2

‘=q
2

q
: (52)

The Standard Model expressions for FP;V;A are

FP ¼ �m‘C
eff
10

�
fþ �M2

B �M2
K

q2
ðf0 � fþÞ

�
; (53)

FV ¼ Ceff
9 fþ þ 2mb

MB þMK

Ceff
7 fT; (54)

FA ¼ Ceff
10 fþ: (55)

We take values for the Wilson coefficients from Ref. [45]
with estimated errors of 2% [46]. The Wilson coefficient
Ceff
9 is a function of q2 through

Yðq2Þ¼4

3
C3þ64

9
C5þ64

27
C6�1

2
hðq2;0Þ

�
�
C3þ4

3
C4þ16C5þ64

3
C6

�

þhðq2;mcÞ
�
4

3
C1þC2þ6C3þ60C5

�

�1

2
hðq2;mbÞ

�
7C3þ4

3
C4þ76C5þ64

3
C6

�
; (56)

where

hðq2; mÞ ¼ � 4

9

�
ln
m2

q2
� 2

3
� x

�

� 4

9
ð2þ xÞ

8><
>:

ffiffiffiffiffiffiffiffiffiffiffiffi
x� 1

p
arctan 1ffiffiffiffiffiffiffi

x�1
p ; x > 1

ffiffiffiffiffiffiffiffiffiffiffiffi
1� x

p �
ln 1þ ffiffiffiffiffiffiffi

1�x
pffiffi
x

p � i	
2

�
; x � 1;

(57)

and x ¼ 4m2=q2. To compare with experiment, calculated
decay rates are converted to branching fractions using the
Bmeson’s mean lifetime,B‘ ¼ �‘�B. In [18] we calculate
Standard Model differential branching fractions, branching
fractions integrated over experimentally motivated q2 bins,
and ratios of branching fractions. Where possible, we
compare with experimental results from BABAR [13],
Belle [14], CDF [15], and LHCb [16,17].
The angular distribution of the differential decay rate is

given by

1

�‘

d�‘

d cos �‘
¼ 1

2
F‘
H þ A‘

FB cos�‘

þ 3

4
ð1� F‘

HÞð1� cos 2�‘Þ; (58)

where �‘ is the angle between the B and ‘� as measured in
the dilepton rest frame. The ‘‘flat term’’ F‘

H, introduced by
Bobeth et al. in Ref. [41], is suppressed by m2

‘ in the

Standard Model and potentially sensitive to new physics
[1,5]. The ‘‘forward-backward asymmetry’’ A‘

FB is zero in
the Standard Model (up to negligible QED contributions
[41,48]) so is also a sensitive probe of new physics. The flat
term in the angular distribution is given by [41]

F‘
Hðq2low; q2highÞ ¼

Rq2
high

q2
low

dq2ða‘ þ c‘Þ
Rq2

high

q2
low

dq2ða‘ þ 1
3 c‘Þ

: (59)

This observable is constructed as a ratio to reduce uncer-
tainties. In [18] we evaluate F

e;�;�
H in experimentally

motivated q2 bins. Taking a‘ and c‘ as average values for
a bin centered at q2 ¼ 1=2ðq2low þ q2highÞ, the q2 depen-

dence of F‘
H is given by

F‘
Hðq2Þ ¼

a‘ þ c‘
a‘ þ 1

3 c‘
: (60)

Standard Model predictions are shown in Fig. 16 for each
of the dilepton final states.

TABLE V. Input parameters used to calculate Standard Model
observables. Parameters not listed here are unambiguously
specified in the PDG [42].

Parameter Value Ref.

mc 1.275(25) GeV [42]

mb 4.18(3) GeV [42]

MB0 5.27958(17) GeV [42]

�B0 1.519(7) ps [42]

MK0 0.497614(24) GeV [42]

MB� 5.27925(17) GeV [42]

�B� 1.641(8) ps [42]

MK� 0.497677(16) GeV [42]

1=�EW 128.957(20) [43]

jVtbV


tsj 0.0405(8) [44]

C1ðmbÞ �0:257ð5Þ [45,46]

C2ðmbÞ 1.009(20) [45,46]

C3ðmbÞ �0:0050ð1Þ [45,46]

C4ðmbÞ �0:078ð2Þ [45,46]

C5ðmbÞ 0.000(0) [45,46]

C6ðmbÞ 0.001(0) [45,46]

Ceff
7 ðmbÞ �0:304ð6Þ [45,46]

Ceff
9 ðmbÞ 4:211ð84Þ þ Yðq2Þ [45,46]

Ceff
10 ðmbÞ �4:103ð82Þ [45,46]
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VIII. SUMMARYAND OUTLOOK

Using NRQCD b and HISQ light valence quarks with
the MILC 2þ 1 dynamical asqtad configurations, we
report on the first unquenched lattice QCD calculation of
the form factors for the rare decay B ! K‘þ‘�. We ex-
trapolate our form factor results over the full kinematic
range of q2 using the model-independent z expansion.

Using our form factor results we determine ratios of form
factors, useful both in constraining new physics and verify-
ing effective field theory relations, discuss the calculation of
Standard Model differential branching fractions, and calcu-
late the flat term in the angular distribution of the differential
decay rate. In [18] we present a detailed study of the
phenomenological implications of these form factors on
several Standard Model observables, including comparison
with experiments and previous calculations.
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APPENDIX A: MODIFIED z EXPANSION

In recent D ! Kð	Þ semileptonic decay analyses we
developed the modified z expansion [23,24] in which the
chiral/continuum and kinematic extrapolations are per-
formed in a single step. These works, and our more recent
D ! K analysis [49], demonstrate the utility of the modi-
fied z expansion in semileptonic D decays. The kinematic
extrapolations required for semileptonic D decays are,
however, mild compared to those needed for semileptonic
B decays. In addition to the two-step chiral/continuum and
kinematic extrapolation of Sec. V, we perform the extrap-
olations simultaneously via the modified z expansion. This
allows us to test the modified z expansion for semileptonic
decays requiring sizable kinematic extrapolation and pro-
vides a consistency check of our final results. We modify
the BCL parametrized z expansion [34] and fit the form
factor data to

f0ðq2Þ ¼ B0

XK
k¼0

a0kD
0
kzðq2Þk; (A1)

fiðq2Þ ¼ Bi

Piðq2Þ
XK�1

k¼0

aikD
i
k

�
zðq2Þk � ð�1Þk�K k

K
zðq2ÞK

�
;

(A2)

where i ¼ þ, T and

B ¼ 1þ b1ðaEKÞ2 þ b2ðaEKÞ4; (A3)

Dk ¼ 1þ cðkÞ1 xlþ cðkÞ2 xlðlogxlþ�Þþ cðkÞ3 �xsþdðkÞ1 ða=r1Þ2

þdðkÞ2 ða=r1Þ4þ eðkÞ
�
1

2
�M2

	þ�M2
K

�
; (A4)

xl ¼ ðMHISQ
	 Þ2

ð4	F	Þ2
; (A5)

�xs ¼
ðMHISQ

s
Þ2 �M2

phys
s

ð4	F	Þ2
; (A6)

�M2
	;K ¼ ðMasqtad

	;K Þ2 � ðMHISQ
	;K Þ2

ð4	F	Þ2
: (A7)

Indices specifying the form factor ð0;þ; TÞ are implicitly
assumed in Eqs. (A3) and (A4) above.
In the modified z expansion P and z are calculated

separately for each ensemble using simulation masses
and momenta. We include the function B to account for
momentum-dependent discretization effects. The function
Dk contains the NLO chiral analytic terms with coeffi-
cients ci, e, and d1 and the NNLO d2 term. The c1 and
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FIG. 16 (color online). The flat term in the angular distribution
of the differential decay rate for (top) a light dilepton final state
and (bottom) a ditau final state.
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c2 terms extrapolate in light quark mass and accommodate
finite volume effects via a shift in the chiral log [50]. We
calculate the shift � for each ensemble using

� ¼ 4

M	L

X
r�0

K1ðrM	LÞ
r

; (A8)

where r is a three-vector whose integer components run
over all lattice sites (r ¼ jrj) andK1 is the order 1 modified
Bessel function of the second kind. To take the infinite
volume limit, we set � ¼ 0. The c3 term absorbs strange
quark mass mistuning by comparing the s meson mass
obtained from simulation strange quark masses [23] to the
‘‘physical’’ s mass from [51]. The e term absorbs slight
differences between the valence and sea quark masses due
to our mixed (HISQ and asqtad) action. The di terms
account for discretization effects. As in Eq. (35) we
account for heavy quark mass-dependent discretization

effects by making the dðkÞi mild functions of amb

dðkÞ1 ! dðkÞ1 ð1þ fðkÞ1 �xb þ fðkÞ2 �x2bÞ;
dðkÞ2 ! dðkÞ2 ð1þ fðkÞ3 �xb þ fðkÞ4 �x2bÞ;

(A9)

with �xb as defined in Sec. VA. Light quark mass-
dependent discretization effects are similarly accounted for:

dðkÞ1 ! dðkÞ1 ð1þ gðkÞ1 xl þ gðkÞ2 x2l Þ;
dðkÞ2 ! dðkÞ2 ð1þ gðkÞ3 xl þ gðkÞ4 x2l Þ:

(A10)

As a result of these two modifications, dðkÞ1 in Eq. (A4) is

multiplied by ð1þfðkÞ1 �xbþfðkÞ2 �x2bÞð1þgðkÞ1 xlþgðkÞ2 x2l Þ,
and similarly for dðkÞ2 .

We impose the kinematic constraint f0ð0Þ ¼ fþð0Þ
ensemble by ensemble using the method outlined in
Sec. VB. The selection of priors for the simultaneous,
modified z expansion is discussed in Sec. B 5, where prior
values and fit results are listed in Tables XIII and XIV.
Fit results for each ensemble, along with the physical

extrapolated band, are shown in Fig. 17. A comparison of
these plots to those of the chiral/continuum extrapolation
in Fig. 8 demonstrates the consistency of the two
approaches in the region of q2 for which we simulate.
The �2=d:o:f: for this fit is 35:7=60.
Note that no synthetic data points are needed in the

modified z expansion approach and the results are relevant
over the full range of q2. Extrapolated physical results from
the modified z expansion are shown over the full kinematic
range of q2 in Fig. 18.

0.5

 1

1.5

 2

2.5

-0.14 -0.1 -0.06 -0.02

z

f+

f0

physical
C1
C2
C3

 1

 1.5

 2

-0.11 -0.08 -0.05 -0.02

z

fT

physical
C1
C2
C3

 0.5

 1

 1.5

 2

 2.5

-0.14 -0.1 -0.06 -0.02

z

f+

f0

f+

f0

physical
F1
F2

 1

 1.5

 2

-0.1 -0.08 -0.06 -0.04 -0.02

z

fT

physical
F1
F2

FIG. 17 (color online). Results of the simultaneous, modified z expansion fit to the data for f0, fþ, and fT . In each plot, curves
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ensembles. (b) Fit to data for fT on the coarse ensembles. (c) Fit to data for f0;þ on the fine ensembles. (d) Fit to data for fT on the fine
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We study the stability of these fit results under variations
of the fit Ansätze. As in Sec. VB we consider how fit
variations impact �2 and the values of extrapolated fit
results at q2 ¼ 0. We take as our standard fit Ansätze
Eqs. (A1) and (A2) with K ¼ 3 and Dk as in Eq. (A4)
with the modifications of Eqs. (35) and (36). We test the
stability of modified z expansion fits with respect to the
following modifications:

(1) Perform z expansion through Oðz2Þ.
(2) Perform z expansion through Oðz4Þ.
(3) Drop the NLO analytic sea quark mass term eðkÞ

( 12�M
2
	 þ �M2

K) from Dk.

(4) Drop the NLO analytic strange valence quark mass

term cðkÞ3 �xs from Dk.

(5) Drop the NLO analytic light valence quark mass

term cðkÞ1 xl from Dk.

(6) Drop the discretization term dðkÞ2 ða=r1Þ4 from Dk.
(7) Drop the momentum-dependent discretization term

b2ðaEKÞ4 from Eq. (A3).
(8) Drop the amb-dependent discretization effects from

the dðkÞi .
(9) Drop the light quark mass-dependent discretization

effects from the dðkÞi .
(10) Drop the finite volume effects.
(11) Add all possible NNLO analytic terms:

Dk¼Eq:ðA4ÞþhðkÞx21þiðkÞ
�
1

2
�M2

	þ�M2
K

�
2

þjðkÞ�x2sþkðkÞxl�xsþlðkÞxl
�
1

2
�M2

	þ�M2
K

�

þmðkÞ�xs
�
1

2
�M2

	þ�M2
K

�
þnðkÞ�xsða=r1Þ2

þoðkÞxlða=r1Þ2þpðkÞ
�
1

2
�M2

	þ�M2
K

�
ða=r1Þ2:
(A11)

(12) Add the static limit constraint as in test 8 of
Sec. VB.

Figure 19 shows the results of these tests for f0ð0Þ and
fTð0Þ; the kinematic constraint ensures fþð0Þ is equivalent
to f0ð0Þ. Tests 1 and 2 show that by Oðz3Þ the fit central
values have stabilized and the errors have saturated.
Adding additional terms of higher order in z has no effect
on the fit. This suggests our fit errors include an adequate
estimate of the error associated with truncating the z
expansion. Tests 3 and 4 have no noticeable effect on the
fit and indicate effects due to mixed action mass differ-
ences and strange quark mass mistunings are negligible.
Test 5 results in a slight increase in �2. To ensure errors
associated with truncating the perturbative chiral expan-
sion are accounted for in our fit, we include this term. Tests
6, 7, and 8 show consistent fit central values. We include
the tested terms to ensure the error associated with these
discretization effects is accommodated in our fit result.
Test 9 shows no noticeable change in fit central values or
errors and indicates that, to the extent they are present in
our data, light quark mass-dependent discretization effects
such as taste violations are adequately accounted for by
other discretization terms in the fit Ansatz. Test 10 shows
finite volume effects to be negligible. Test 11 includes all
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NNLO chiral analytic terms and shows negligible change
in fit central values, errors, or �2 relative to our final result.
This indicates our final result adequately accounts for fit
errors associated with truncating the chiral expansion. Test
12 adds the fit constraint derived from Hill’s [37] static
limit relation in Eq. (45) and demonstrates excellent con-
sistency of the fit results with the symmetry relation. In
addition to these tests we have verified the consistency
of fit results for f0ð0Þ and fþð0Þ with and without the

kinematic constraint f0ð0Þ ¼ fþð0Þ. With the constraint
removed, fit result central values for f0ð0Þ and fþð0Þ shift
by �0:1� and fit errors increase by �25%. The constraint
remains satisfied within errors.
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FIG. 20 (color online). Comparison of form factors obtained
from the two-step chiral/continuum and kinematic extrapolation
(darker shade) and those obtained from the modified z expansion
(lighter shade).
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FIG. 21 (color online). B meson effective mass (top) and
amplitude (bottom) plots for ensemble C3. Shaded bands

indicate the choice of priors for aEsimð0Þ
B , blð0Þ, and bsð0Þ.

(a) Meff
B ðtÞ vs t=a: (b) Cls;eff

B ðtÞ vs t=a:

TABLE VI. B meson ground state priors and fit results.

Ens. aEsimð0Þ
B blð0Þ bsð0Þ

C1 Prior 0.49(21) 0.114(26) 0.78(16)

Fit 0.4997(14) 0.12011(99) 0.8194(31)

C2 Prior 0.51(15) 0.130(20) 0.84(18)

Fit 0.5084(19) 0.1242(13) 0.8191(52)

C3 Prior 0.51(15) 0.130(20) 0.78(13)

Fit 0.5118(23) 0.1269(20) 0.8379(73)

F1 Prior 0.38(13) 0.071(13) 0.73(11)

Fit 0.3820(16) 0.0733(12) 0.7705(65)

F2 Prior 0.39(9) 0.079(13) 0.80(11)

Fit 0.3863(16) 0.0752(14) 0.7828(78)
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Results of the two-step chiral/continuum and kinematic
extrapolation presented in Sec. V are compared to those
of the modified z expansion in Fig. 20. The modified z
expansion is shown to be consistent with the two-step

analysis in semileptonic decays requiring significant
extrapolation in q2.

APPENDIX B: PRIOR SELECTION
AND FIT RESULTS

In this section of the appendix we discuss the selection
of priors for each of the fits performed in this work.We also
provide comparison of fit results with the priors.

1. B meson correlators

Priors for the ground state masses and amplitudes are
obtained from the long time behavior of the effective mass

Meff
B ðtÞ ¼ 1

2
log

�
C��
B ðtÞ

C��
B ðtþ 2Þ

�
; (B1)

prior½aEsimð0Þ
B � �Meff

B ðlong tÞ; (B2)

and amplitude

C��;eff
B ðtÞ ¼ C��

B ðtÞeMeff
B t; (B3)
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FIG. 22 (color online). Kaon, with momentum 2	=Lð1; 1; 0Þ,
effective mass (top) and amplitude (bottom) plots for ensemble

F2. Shaded bands indicate the choice of priors for aMð0Þ
K and

dð0Þ110. (a) M
eff
Kð110ÞðtÞ vs t=a: (b) Ceff

Kð110ÞðtÞ vs t=a:

TABLE VII. Kaon ground state priors and fit results.

Ens. aMð0Þ
K dð0Þ000 aEð0Þ

100 dð0Þ100 aEð0Þ
110 dð0Þ110 aEð0Þ

111 dð0Þ111

C1 Prior 0.312(17) 0.2225(10) 0.41(11) 0.1936(52) 0.48(23) 0.178(13) 0.55(28) 0.173(23)

Fit 0.31211(15) 0.22283(25) 0.40657(58) 0.19455(70) 0.48461(76) 0.18005(81) 0.5511(16) 0.1693(15)

C2 Prior 0.329(24) 0.2262(8) 0.45(15) 0.190(10) 0.55(15) 0.176(14) 0.61(31) 0.141(35)

Fit 0.32863(18) 0.22630(29) 0.45406(85) 0.19265(93) 0.5511(16) 0.1741(18) 0.6261(75) 0.1537(88)

C3 Prior 0.356(25) 0.220(1) 0.475(75) 0.190(5) 0.58(20) 0.187(13) 0.65(30) 0.158(28)

Fit 0.35717(22) 0.22083(34) 0.47521(85) 0.19129(98) 0.5723(11) 0.1780(10) 0.6524(30) 0.1667(27)

F1 Prior 0.229(60) 0.138(1) 0.32(24) 0.116(6) 0.39(34) 0.105(22) 0.43(40) 0.077(26)

Fit 0.22865(11) 0.13786(13) 0.32024(66) 0.11618(65) 0.39229(86) 0.10636(71) 0.4515(25) 0.0987(21)

F2 Prior 0.246(36) 0.137(1) 0.33(23) 0.117(6) 0.40(30) 0.105(10) 0.47(37) 0.105(24)

Fit 0.24577(13) 0.13664(17) 0.33322(52) 0.11764(48) 0.40214(73) 0.10760(61) 0.4623(14) 0.10241(94)
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FIG. 23 (color online). Effective amplitude Aeff
Tð100ÞðtÞ for the

three point correlation function, with tensor current and momen-
tum 2	=Lð1; 0; 0Þ, plotted vs t=a on ensemble C1.
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prior½b�ð0Þb�ð0Þ� ¼ C��;eff
B ðlong tÞ: (B4)

Representative effective mass and amplitude plots are shown
in Fig. 21. Values for ground state priors, and fit results, are
given in Table VI. Excited state mass and amplitude priors
are based on the PDG [42] and set according to

b�ðn>0Þ ¼ 0:1� 1:0;

Esimð1Þ
B � Esimð0Þ

B ¼ ð400� 200Þ MeV;

Esimðnþ2Þ
B � EsimðnÞ

B ¼ ð600� 600Þ MeV:

(B5)

Positive parity oscillating states are represented by EsimðoddÞ
B

and negative parity even states by EsimðevenÞ
B . Positive energy

splittings are guaranteed by parametrizing them as � ¼
log ð�EÞ and fitting �, then reconstructing the towers of
states using exp ð�Þ.

2. Kaon correlators

Priors for the ground state energies and amplitudes are
obtained from the long time behavior of the effective mass

2Meff
KðpÞðtÞ ¼ cosh�1

�
CKðtþ 2;pÞ þ CKðt� 2;pÞ

2CKðt;pÞ
�
; (B6)

prior½aEð0Þ
KðpÞ� �Meff

KðpÞðlong tÞ; (B7)

and effective amplitude

TABLE VIII. Three point ground state amplitude priors and fit results. Fit1 results are from separate fits to each current and each
momenta. Fit2 results are from three separate fits, one to each current, but each including all momenta. Fit3 results are from a single
simultaneous fit to all three currents and including data at all momenta.

Ens. Að0;0Þ
Vtð000Þ Að0;0Þ

Vtð100Þ Að0;0Þ
Vtð110Þ Að0;0Þ

Vtð111Þ Að0;0Þ
Vkð100Þ Að0;0Þ

Vkð110Þ Að0;0Þ
Vkð111Þ Að0;0Þ

Tð100Þ Að0;0Þ
Tð110Þ Að0;0Þ

Tð111Þ
C1 Prior 0.88(88) 0.71(71) 0.60(60) 0.54(54) 0.17(14) 0.14(11) 0.12(10) 0.14(11) 0.12(10) 0.12(10)

Fit1 0.5261(46) 0.4051(39) 0.3431(37) 0.3034(50) 0.1464(26) 0.1095(17) 0.0863(13) 0.1263(18) 0.0964(13) 0.0776(15)

Fit2 0.5290(46) 0.4007(44) 0.3426(39) 0.3030(39) 0.1451(30) 0.1089(19) 0.0866(16) 0.1280(29) 0.0971(18) 0.0777(16)

Fit3 0.5276(40) 0.3982(50) 0.3448(44) 0.3044(41) 0.1439(39) 0.1062(26) 0.0853(20) 0.1282(33) 0.0954(21) 0.0771(16)

C2 Prior 0.98(80) 0.75(67) 0.60(51) 0.45(40) 0.21(17) 0.18(14) 0.12(11) 0.19(15) 0.13(10) 0.12(10)

Fit1 0.5202(55) 0.3738(38) 0.3062(25) 0.2660(32) 0.1526(27) 0.1068(13) 0.0835(18) 0.1337(24) 0.0933(11) 0.0741(16)

Fit2 0.5234(48) 0.3762(33) 0.3096(35) 0.2666(53) 0.1575(74) 0.1052(44) 0.0774(49) 0.1291(32) 0.0916(20) 0.0717(24)

Fit3 0.5243(41) 0.3692(72) 0.3040(66) 0.2387(219) 0.1468(53) 0.1030(35) 0.0728(88) 0.1265(51) 0.0921(32) 0.0683(74)

C3 Prior 0.93(79) 0.83(62) 0.67(53) 0.48(43) 0.18(14) 0.16(11) 0.13(11) 0.17(13) 0.13(10) 0.11(9)

Fit1 0.4910(38) 0.3650(31) 0.3024(18) 0.2612(25) 0.1426(19) 0.1052(13) 0.0832(14) 0.1259(18) 0.0938(13) 0.0748(16)

Fit2 0.4926(36) 0.3604(48) 0.3017(38) 0.2585(70) 0.1460(34) 0.1063(13) 0.0847(16) 0.1273(26) 0.0941(12) 0.0752(13)

Fit3 0.4850(32) 0.3605(56) 0.2992(53) 0.2630(37) 0.1460(41) 0.1074(30) 0.0860(20) 0.1254(34) 0.0953(30) 0.0766(18)

F1 Prior 0.69(59) 0.59(47) 0.42(35) 0.31(25) 0.16(14) 0.13(10) 0.12(10) 0.16(14) 0.12(9) 0.09(8)

Fit1 0.5157(39) 0.3713(41) 0.3070(25) 0.2598(88) 0.1529(28) 0.1065(15) 0.0821(23) 0.1393(24) 0.0975(14) 0.0743(22)

Fit2 0.5188(25) 0.3705(42) 0.2999(96) 0.2565(100) 0.1495(38) 0.1043(22) 0.0796(25) 0.1371(34) 0.0967(19) 0.0743(23)

Fit3 0.5142(34) 0.3585(82) 0.2839(208) 0.2316(228) 0.1491(44) 0.1007(70) 0.0763(63) 0.1376(40) 0.0898(72) 0.0658(69)

F2 Prior 0.68(58) 0.57(45) 0.46(40) 0.46(39) 0.20(17) 0.17(14) 0.15(12) 0.17(15) 0.15(12) 0.13(10)

Fit1 0.4984(26) 0.3656(22) 0.2988(25) 0.2602(25) 0.1503(30) 0.1035(19) 0.0834(28) 0.1369(26) 0.0949(19) 0.0761(23)

Fit2 0.5046(23) 0.3725(33) 0.3055(56) 0.2586(72) 0.1442(112) 0.1003(45) 0.0848(116) 0.1491(82) 0.0949(57) 0.0800(77)

Fit3 0.5029(19) 0.3640(131) 0.3071(93) 0.2537(69) 0.1076(184) 0.0948(48) 0.0795(27) 0.0945(183) 0.0887(42) 0.0762(26)

TABLE IX. Group I priors and fit results for the chiral/
continuum fit. Quantities appearing in five consecutive rows
have ensemble-dependent values. The ordering of the listed
values corresponds to C1, C2, C3, F1, and F2.

Group I Prior Fit

r1 [fm] 0.3133(23) 0.3137(23)

F	 [GeV] 0.144(14) 0.162(13)

g 0.51(20) 0.46(13)

B0 [GeV] 2.4(1) 2.4(1)

r1=a 2.647(3) 2.647(3)

r1=a 2.618(3) 2.618(3)

r1=a 2.644(3) 2.644(3)

r1=a 3.699(3) 3.699(3)

r1=a 3.712(4) 3.712(4)

aMB 3.1891(18) 3.1891(18)

aMB 3.2320(73) 3.2327(71)

aMB 3.2095(77) 3.2091(77)

aMB 2.2817(64) 2.2817(64)

aMB 2.2799(87) 2.2802(87)

aMK 0.31210(15) 0.31210(15)

aMK 0.32864(17) 0.32864(17)

aMK 0.35718(22) 0.35718(22)

aMK 0.22865(11) 0.22865(11)

aMK 0.24577(13) 0.24577(13)

r1�



0.1802(51) 0.1802(51)

r1�



0.1689(47) 0.1690(47)

r1�



0.1429(48) 0.1432(48)

r1�



0.1748(49) 0.1747(49)

r1�



0.1532(42) 0.1531(42)
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TABLE X. Group II priors and fit results for the chiral/
continuum fit.

Fit

Group II Prior fk f? fT

r3=21 � 0(3) 0.55(14) � � �
r21�T 0(3) � � � � � � 0.84(57)

d1 0(0.3) 0.18(20) �0:14ð22Þ �0:27ð22Þ
d2 0(1) 0.32(91) �0:26ð91Þ �0:40ð95Þ
f1 0(1) 0.34(0.92) 0.19(0.95) 0.60(0.91)

f2 0(1) 0.08(1.00) �0:03ð1:00Þ 0.17(0.99)

f3 0(1) 0.08(1.00) 0.04(1.00) 0.12(1.00)

f4 0(1) 0.03(1.00) 0.00(1.00) 0.04(1.00)

g1 0(1) 0.00(1.00) 0.02(1.00) 0.00(1.00)

g2 0(1) 0.00(1.00) 0.00(1.00) 0.00(1.00)

g3 0(1) 0.00(1.00) 0.01(1.00) 0.00(1.00)

g4 0(1) 0.00(1.00) 0.00(1.00) 0.00(1.00)

h1 0(4) �3:11ð50Þ 1.19(1.18) �2:04ð2:42Þ
h2 0(4) 0.42(28) �1:22ð96Þ �1:82ð1:93Þ
h3 0(4) 0.182(79) 0.29(24) 0.40(45)

a1 0(5) 5.21(1.38) 1.09(2.30) 1.88(3.09)

a2 0(12) 11.76(3.91) � � � �6:24ð7:12Þ
a3 0(2) �1:34ð61Þ �0:43ð81Þ �0:25ð1:16Þ
a4 0(2) �0:06ð2:00Þ �0:12ð2:00Þ 0.07(2.00)

a5 0(2) 0.13(2.00) 0.10(2.00) �0:01ð2:00Þ
a6 0(2) �0:59ð1:92Þ �0:47ð1:94Þ 0.19(1.95)

a7 0(2) 0.01(2.00) �0:04ð2:00Þ 0.02(2.00)

a8 0(2) �0:14ð1:98Þ �0:26ð1:99Þ 0.15(1.99)

a9 0(2) 0.00(2.00) 0.00(2.00) 0.00(2.00)

a10 0(5) �4:12ð81Þ �0:38ð1:48Þ �0:19ð2:04Þ

TABLE XI. Priors and fit results for the simultaneous, stan-
dard z expansion for f0, fþ, and fT .

Group I Prior Fit

r1 [fm] 0.3133(23) 0.3133(23)

�
þ [GeV] 0.04578(35) 0.04578(35)

�

T [GeV] 0.046(35) 0.052(34)

r1MB 8.38197(27) 8.38197(27)

r1MK 0.783821(21) 0.783821(21)

Group II Prior Fit

a00 0(2) 0.550(20)

a01 0(2) �1:89ð23Þ
a02 0(2) 1.98(1.24)

a03 0(2) �0:02ð2:00Þ
aþ0 0(2) 0.432(15)

aþ1 0(2) �0:65ð23Þ
aþ2 0(2) �0:97ð1:24Þ
aT0 0(2) 0.388(23)

aT1 0(2) �0:67ð34Þ
aT2 0(2) �1:05ð1:70Þ
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Ceff
KðpÞðtÞ ¼

CKðt;pÞ
e
�Meff

KðpÞt þ e
�Meff

KðpÞðT�tÞ ; (B8)

prior½ðdð0Þp Þ2� � Ceff
KðpÞðlong tÞ: (B9)

Representative effective mass and amplitude plots are shown
in Fig. 22. Values for ground state priors and fit results are
given in Table VII. Excited state mass and amplitude priors
are based on the PDG [42] and set according to

dðn>1Þ
p ¼ 0:01� 0:5;

Eð1Þ
KðpÞ � Eð0Þ

KðpÞ ¼ ð600� 300Þ MeV;

Eð2Þ
KðpÞ � Eð0Þ

KðpÞ ¼ ð1000� 500Þ MeV;

Eðnþ2Þ
KðpÞ � Eðn>0Þ

KðpÞ ¼ ð600� 600Þ MeV:

(B10)

As with the B meson fits, positive energy splittings are
parametrically enforced.

3. Three point correlators

Priors for ground state three point amplitudes are
obtained from the long time (t 	 T=2) behavior of the
effective amplitude

Aeff
JðpÞðtÞ ¼

C�
J ðt; T;pÞffiffiffiffiffiffiffiffiffiffiffi

Ceff
KðpÞ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C��;eff
B

q eM
eff
K ðT�tÞeMeff

B t; (B11)

prior½Að0;0Þ
JðpÞ � � Aeff

JðpÞðlong tÞ: (B12)

A representative plot of the three point effective amplitude
is shown in Fig. 23. Values for ground state amplitude
priors and fit results are given in Table VIII. Excited state
amplitude priors are set to

Aðn;mÞ
JðpÞ ¼ 0:01ð1:0Þ: (B13)

4. Chiral/continuum extrapolation

We separate the priors into two groups. Group I priors,
shown with fit results in Table IX, allow us to incorporate
uncertainty associated with input parameters. We set the
prior for r1 based on the value obtained in [51]. For F	 we
tried values ranging from 131 to 156 MeV (the value of
FK) and found negligible change in the fit results. For the
final result we use 144 MeV with an error of 10%. We set
the BB
	 coupling g based on the recent works [52]. The
constant B0 is set based on quark and meson masses from
the PDG [42]. Values for r1=a are taken from [19]. Values

of aMB are obtained using our best-fit results for aEsimð0Þ
B in

TABLE XIII. Group I priors for the simultaneous modified z expansion for f0, fþ, and fT . Quantities listed in five rows have
ensemble-dependent values corresponding to C1, C2, C3, F1, and F2.

Group I Prior Fit Group I Prior Fit

r1 [fm] 0.3133(23) 0.3132(23) aM
asqtad
K 0.36530(29) 0.36530(29)

F	 [GeV] 0.144(14) 0.135(14) aM
asqtad
K 0.38331(24) 0.38331(24)

�
þ [GeV] 0.04578(35) 0.04578(35) aM
asqtad
K 0.40984(21) 0.40984(21)

�

T [GeV] 0.046(35) 0.050(34) aM

asqtad
K 0.25318(19) 0.25318(19)

M
phys
s

[GeV] 0.6858(40) 0.6858(40) aM
asqtad
K 0.27217(21) 0.27217(21)

r1=a 2.647(3) 2.647(3) aMHISQ
	 0.15988(12) 0.15988(12)

r1=a 2.618(3) 2.618(3) aMHISQ
	 0.21097(16) 0.21096(16)

r1=a 2.644(3) 2.644(3) aMHISQ
	 0.29309(22) 0.29309(22)

r1=a 3.699(3) 3.699(3) aMHISQ
	 0.13453(11) 0.13453(11)

r1=a 3.712(4) 3.712(4) aMHISQ
	 0.18737(13) 0.18737(13)

aMB 3.1891(18) 3.1891(18) aM
asqtad
	 0.15971(20) 0.15971(20)

aMB 3.2322(73) 3.2318(62) aM
asqtad
	 0.22447(17) 0.22447(17)

aMB 3.2096(77) 3.2110(72) aM
asqtad
	 0.31125(16) 0.31125(16)

aMB 2.2818(64) 2.2824(55) aM
asqtad
	 0.14789(18) 0.14789(18)

aMB 2.2796(88) 2.2790(60) aMasqtad
	 0.20635(18) 0.20365(18)

aMHISQ
K 0.31210(15) 0.31210(15) aMHISQ

s
0.41111(12) 0.41111(12)

aMHISQ
K 0.32864(17) 0.32864(17) aMHISQ

s
0.41445(17) 0.41445(17)

aMHISQ
K 0.35718(22) 0.35717(22) aMHISQ

s
0.41180(23) 0.41180(23)

aMHISQ
K 0.22865(11) 0.22865(11) aMHISQ

s
0.294109(93) 0.294109(93)

aMHISQ
K 0.24577(13) 0.24576(13) aMHISQ

s
0.29315(12) 0.29315(12)
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Table VI and Eq. (22). Priors for aMK are taken as our

best-fit results for aMð0Þ
K in Table VII. The priors for �
 ¼

MB

s
�MB are fixed based on the B


s � Bs splitting from

the PDG [42] and ensemble-dependent values for the
Bs � B splitting taken from [21].

Group II priors, shown with fit results in Table X, are
associated with fit parameters. All group II priors are zero
with widths chosen based on the typical size of the
associated term in the extrapolation. Prior widths for �

and �T are chosen based on values of the data for fk, f?,
and fT and the leading order terms in Eqs. (29)–(31). The
prior widths for d1 include a factor of �s based on the
known Oð�sa

2Þ discretization effects in the HISQ action.
For higher order discretization effects we take a prior
width of 1. We take prior widths for the fi and gi to be
1. We express the coefficient a?2 in terms of other NLO

valence quark analytic term coefficients using a?2 ¼ ak1 þ
ak2 � a?1 [29].

TABLE XIV. Group II priors and fit results for the simultaneous modified z expansion for f0, fþ, and fT . The momentum-dependent
discretization term coefficients bi are common to each form factor. Note that the fit Ansätze for fþ and fT , Eq. (A2), have one fewer
term in the sum than the fit Ansatz for f0, Eq. (A1).

Fit Fit

Group II Prior f0 fþ fT Group II Prior f0 fþ fT

a0 0(2) 0.521(20) 0.422(19) 0.379(27) fð0Þ1 0(1) 0.00(1.00) 0.01(1.00) 0.56(92)

a1 0(2) �1:57ð21Þ �0:57ð22Þ �0:84ð32Þ fð1Þ1 0(1) 0.03(1.00) 0.00(1.00) 0.04(1.00)

a2 0(2) 3.91(91) 1.52(1.14) �1:12ð1:69Þ fð2Þ1 0(1) 0.03(1.00) 0.00(1.00) 0.00(1.00)

a3 0(2) �0:23ð1:92Þ � � � � � � fð3Þ1 0(1) 0.00(1.00) � � � � � �
b1 0(0.3) �0:03ð16Þ �0:03ð16Þ �0:14ð24Þ fð0Þ2 0(1) 0.00(1.00) 0.01(1.00) 0.16(99)

b2 0(1) 0.02(20) 0.02(19) 0.31(32) fð1Þ2 0(1) 0.00(1.00) 0.00(1.00) 0.01(1.00)

cð0Þ1 0(1) 0.06(65) �0:10ð73Þ 0.50(84) fð2Þ2 0(1) 0.00(1.00) 0.00(1.00) 0.00(1.00)

cð1Þ1 0(1) 0.34(85) 0.25(96) 0.17(98) fð3Þ2 0(1) 0.00(1.00) � � � � � �
cð2Þ1 0(1) 0.81(0.95) �0:10ð99Þ �0:02ð1:00Þ fð0Þ3 0(1) 0.00(1.00) 0.01(1.00) 0.11(1.00)

cð3Þ1 0(1) 0.00(1.00) � � � � � � fð1Þ3 0(1) 0.01(1.00) 0.00(1.00) 0.01(1.00)

cð0Þ2 0(1) �0:13ð35Þ �0:46ð39Þ �0:42ð48Þ fð2Þ3 0(1) 0.00(1.00) 0.00(1.00) 0.00(1.00)

cð1Þ2 0(1) �0:46ð51Þ �0:61ð87Þ �0:34ð90Þ fð3Þ3 0(1) 0.00(1.00) � � � � � �
cð2Þ2 0(1) �1:68ð82Þ 0.19(98) 0.03(1.00) fð0Þ4 0(1) 0.00(1.00) 0.00(1.00) 0.04(1.00)

cð3Þ2 0(1) �0:01ð1:00Þ � � � � � � fð1Þ4 0(1) 0.00(1.00) 0.00(1.00) 0.00(1.00)

cð0Þ3 0(1) �0:02ð98Þ �0:08ð98Þ 0.08(1.00) fð2Þ4 0(1) 0.00(1.00) 0.00(1.00) 0.00(1.00)

cð1Þ3 0(1) 0.03(1.00) �0:02ð1:00Þ 0.01(1.00) fð3Þ4 0(1) 0.00(1.00) � � � � � �
cð2Þ3 0(1) �0:01ð1:00Þ 0.00(1.00) 0.00(1.00) gð0Þ1 0(1) 0.00(1.00) 0.00(1.00) 0.04(1.00)

cð3Þ3 0(1) 0.00(1.00) � � � � � � gð1Þ1 0(1) 0.00(1.00) 0.00(1.00) 0.00(1.00)

dð0Þ1 0(0.3) 0.01(24) 0.02(25) �0:26ð23Þ gð2Þ1 0(1) 0.00(1.00) 0.00(1.00) 0.00(1.00)

dð1Þ1 0(0.3) 0.05(27) 0.01(30) �0:06ð30Þ gð3Þ1 0(1) 0.00(1.00) � � � � � �
dð2Þ1 0(0.3) 0.01(29) 0.01(30) 0.01(30) gð0Þ2 0(1) 0.00(1.00) 0.00(1.00) 0.00(1.00)

dð3Þ1 0(0.3) 0.00(30) � � � � � � gð1Þ2 0(1) 0.00(1.00) 0.00(1.00) 0.00(1.00)

dð0Þ2 0(1) 0.02(90) 0.07(91) �0:39ð96Þ gð2Þ2 0(1) 0.00(1.00) 0.00(1.00) 0.00(1.00)

dð1Þ2 0(1) 0.10(96) 0.02(99) �0:13ð1:00Þ gð3Þ2 0(1) 0.00(1.00) � � � � � �
dð2Þ2 0(1) 0.01(99) 0.03(1.00) 0.02(1.00) gð0Þ3 0(1) 0.00(1.00) 0.00(1.00) 0.01(1.00)

dð3Þ2 0(1) 0.00(1.00) � � � � � � gð1Þ3 0(1) 0.00(1.00) 0.00(1.00) 0.00(1.00)

eð0Þ 0(0.3) �0:02ð29Þ 0.02(29) �0:02ð30Þ gð2Þ3 0(1) 0.00(1.00) 0.00(1.00) 0.00(1.00)

eð1Þ 0(0.3) 0.01(30) 0.01(30) �0:01ð30Þ gð3Þ3 0(1) 0.00(1.00) � � � � � �
eð2Þ 0(0.3) 0.01(30) 0.00(30) 0.00(30) gð0Þ4 0(1) 0.00(1.00) 0.00(1.00) 0.00(1.00)

eð3Þ 0(0.3) 0.00(30) � � � � � � gð1Þ4 0(1) 0.00(1.00) 0.00(1.00) 0.00(1.00)

gð2Þ4 0(1) 0.00(1.00) 0.00(1.00) 0.00(1.00)

gð3Þ4 0(1) 0.00(1.00) � � � � � �
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5. Standard z expansion

Table XI lists groups I and II priors and fit results for the
standard z expansion. We set the prior for r1 based on the
value obtained in [51]. Priors for theMB andMK are taken
from the PDG [42]. For �
þ we use the B meson hyperfine
splitting [42] and for �


T we use the same central value but
a width 100 times larger than that for �
þ. For purposes of
reconstructing the form factors, including the correlations,
the covariance matrix associated with the coefficients of
the z expansion are given in Table XII.

6. Modified z expansion

Table XIII lists group I priors with widths that incorpo-
rate errors associated with various input parameters. We
take the scale r1 from [51]. For F	 we tried values ranging
from 131 to 156 MeV (the value of FK) and found negli-
gible change in the fit results. For the final result we use
144 MeV with an error of 10%. We define the vector and
tensor bound state masses of the Blaschke factors Pþ;T in

terms of the splittings of Eqs. (43) and (44) and use values
based on the PDG [42]. We take the central value and width
of �
þ and the central value for �


T from the MB
 �MB

splitting. For the �

T width we use 100� the MB
 �MB

splitting error. To absorb strange quark mistuning effects,
we use a target value Mphys

s
from [51] and simulation

values of aMs
from ongoing analyses of Bs ! K‘� and

Bs ! s. Values for r1=a are taken from [19]. Values of

aMB are obtained using our best-fit results for aEsimð0Þ
B in

Table VI and Eq. (22). Priors for aMK are taken as our best-

fit results for aMð0Þ
K in Table VII.

Table XIV lists group II priors associated with output fit

parameters. We use common bi for all three form factors

with priors for b1 of zerowith width 0.3 to reflect a factor�s

for the ðaEKÞ2 term. For b2 we use a prior of zerowith width
1. We express the analytic terms as functions of dimension-

less quantities, e.g. xl and �xs, which are ratios of meson

masses and the chiral scale �� ¼ 4	F	. As a result, these

terms are naturally Oð1Þ. We therefore choose priors for ci
to be zero with width 1. We know from previous works

using the same ensembles that the sea quark contributions

are smaller than the valence quark contributions. We there-

fore take the coefficients eðkÞ to have prior zero with width

0.3. The amb- and ml-dependent discretization effects are

written in terms of quantities that are naturally Oð1Þ so we
choose priors of zero with width 1 for the fðkÞ and gðkÞ.
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