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The pion mass dependence of the nucleon mass within the covariant SUð2Þ baryon chiral perturbation

theory both without and with explicit �ð1232Þ degrees of freedom up to order p4 is investigated. By fitting

to a comprehensive set of lattice QCD data in 2 and 2þ 1 flavors from several collaborations, for pion

masses M� < 420 MeV, we obtain low energy constants of natural size that are compatible with pion-

nucleon scattering data. Our results are consistent with the rather linear pion mass dependence showed by

lattice QCD. In the 2 flavor case we have also performed simultaneous fits to nucleon mass and ��N data.

As a result of our analysis, which encompasses the study of finite volume corrections and discretization

effects, we report a value of ��N ¼ 41ð5Þð4Þ MeV in the 2 flavor case and ��N ¼ 52ð3Þð8Þ MeV for

2þ 1 flavors, where the inclusion of the �ð1232Þ resonance changes the results by around 9 MeV. In the 2

flavor case we are able to set independently the scale for lattice QCD data, given by a Sommer scale of

r0 ¼ 0:493ð23Þ fm.
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I. INTRODUCTION

The nucleon massMN is one of the fundamental observ-
ables in nature. It arises from the complex and not well
understood quark-gluon dynamics in the nonperturbative
regime of quantum chromodynamics (QCD). Nevertheless,
important progress arises from the interplay of chiral per-
turbation theory (�PT), the effective theory of QCD at low
energies [1–4] and lattice QCD (lQCD) [5], in spite of the
technical difficulties to perform lQCD simulation for light-
quark masses close to the physical values. This strategy
allows us to extract some of the parameters of �PT that
may not be easily accessible in experiments, clarify the
role of baryon resonances in the nucleon self-energy and
unravel its strangeness content [6,7].

A measure of the contribution from explicit chiral
symmetry breaking to the nucleon mass is provided by
the so-called sigma terms. In particular, the pion-nucleon
��N term is defined as

��N ¼ �mhNj �uuþ �ddjNi; (1)

in the isospin limit mu ¼ md ¼ �m � 4 MeV. Using the
Hellmann-Feynman (HF) theorem, ��N can be related to
MN [8–10]:

��N ¼ �m
@

@ �m
MNð �mÞ: (2)

Additionally,��N is the nucleon scalar form factor coming
from light quarks at zero four-momentum transfer squared.
As such, it enters quadratically in the scattering cross

section of supersymmetric dark-matter particles with nu-
cleons. Uncertainties in the determination of sigma terms,
including ��N , currently represent the largest source of
error in direct dark-matter searches [11–13].
Traditionally, the pion-nucleon sigma term has been

isolated by extrapolating �N scattering data to the (un-
physical) Cheng-Dashen point (t ¼ 2M2

�, s ¼ u ¼ M2
N,

where s, t and u are the standard Mandelstam variables)
[14] using dispersive techniques. The results over the past
three decades, ��N ¼ 49� 8 [15], ’ 45 [16], 56� 9 [17],
64� 7 [18], 66� 6 [19], and 43� 12 MeV [20],1 depend
on the data used as input and on the extrapolation proce-
dure. The lack of consistency among the data sets as well
as discrepancies between the parametrizations of the
experimental data are a sizable source of systematic
uncertainties.
In order to sort the systematic effects out, much effort

has been made in the context of baryon �PT (B�PT). At a
given order in the chiral expansion, B�PT allows us to
express both the nucleon mass (and ��N) and the �N
scattering amplitude in terms of the same unknown low
energy constants (LECs). The available experimental in-
formation on �N scattering can be used to obtain these
LECs. Such a program has encountered a number of diffi-
culties. Unlike in the meson sector, in B�PT the power
counting (PC) is violated by the presence ofMN as a heavy
scale that does not vanish in the chiral limit. As a conse-
quence, the loop diagrams do not fulfill the naive chiral
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1In the case of Refs. [15,17–19], from the published value of
the sigma term at the Cheng-Dashen point ��Nðt ¼ 2M2

�Þ we
have subtracted �� ¼ ��Nðt ¼ 2M2

�Þ � ��N ¼ 15:2� 0:4 ac-
cording to the dispersive analysis of Ref. [21]. Additionally, see
Ref. [22] for the ��N status before 1981.

PHYSICAL REVIEW D 88, 054507 (2013)

1550-7998=2013=88(5)=054507(20) 054507-1 � 2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.88.054507


order dictated by their topology [3]. The solution to this
problem follows from noticing that the genuine nonana-
lytic chiral corrections indeed verify the PC, while the
breaking pieces are analytic and can be renormalized into
the LECs. Different approaches have been developed, in-
cluding nonrelativistic heavy-baryon (HB) [6], the fully
covariant infrared (IR) [23] and extended-on-mass-shell
(EOMS) [24,25] schemes. In HB�PT, it was found that
the convergence problems in some kinematic regions ren-
der the fits insensitive to the leading-order contribution to
��N . The poor convergence can be traced back to the fact
that the HB limit modifies the analytic structure of the �N
amplitude [26]. To overcome the problems of HB�PT, the
covariant formulations were developed. In the IR ap-
proach, loop functions are split into an infrared singular
part which fulfills the PC and a regular part, containing the
PC-breaking terms and higher order ones, which is
dropped. An important drawback is that the IR scheme
introduces unphysical cuts [23] which can have disruptive
effects in low energy phenomenology [27,28]. After apply-
ing this method toOðp4Þ, Becher and Leutwyler concluded
that the IR chiral representation of the �N scattering
amplitude is a good approximation only in the subthres-
hold region so that no reliable determination of the sigma
term could be performed from data in the physical region
[29]. In the EOMS, the PC is restored by renormalizing the
finite number of PC-breaking terms. In this way, the ana-
lytic structure of the theory is preserved. Two recent
EOMS studies of �N scattering at order p3 [30] and p4

[31] have achieved a good description of the data and
improved convergence.

A different complication concerns the treatment of the
�ð1232Þ3=2þ resonance which is only �300 MeV heav-
ier than the nucleon and couples strongly to the �N
system. In B�PT, the �ð1232Þ is often treated as a heavy
state whose influence in the observables is encoded in
some of the LECs but, aiming at a more realistic descrip-
tion, it has often been taken explicitly into account. In
order to include the �ð1232Þ as a degree of freedom one
needs to define a suitable PC for the new scale � ¼
M� �MN [32–34], and to treat the so-called consistency
problem afflicting interacting spin-3=2 fields (see
Refs. [35–37] and references therein). The importance
of explicitly including the �ð1232Þ in B�PT has been
stressed by a recent analysis of the �N scattering ampli-
tude performed in the EOMS scheme [30,31,38]. It was
shown that the inclusion of the � resonance in a covariant
framework is essential for a reliable extrapolation to the
Cheng-Dashen point [30]. The resulting values of ��N are
in the 40–60 MeV interval, depending on the partial-wave
analysis used as input and in agreement with those ob-
tained by dispersive techniques [38]. Although a value of
��N ¼ 59� 7 MeV [38] becomes eventually favored on
the grounds of consistency with �N phenomenology, an
important conclusion of these works is that further efforts

are required to understand the possible systematic errors
in the �N scattering data.
Another way towards the determination of the�N sigma

term is provided by lQCD studies. Two different proce-
dures have been used. In the first one, the matrix element in
Eq. (1) is directly obtained and extrapolated to the physical
values of the quark masses. The second procedure consists
of using Eq. (2), after a suitable extrapolation of lQCD
results forMN down to the chiral limit. The latter has been
favored because of the technical difficulties that arise in the
direct determination of disconnected contributions to ��N.
The last decade has witnessed an impressive develop-

ment of lQCD simulations. Results with two fully dynami-
cal light (as light as possible) degenerate fermions
(Nf ¼ 2) or with two degenerated light and one heavy

(close to the physical strange-quark mass) flavor (Nf ¼
2þ 1) have become standard. Even a direct determination
of ��N for Nf ¼ 2þ 1þ 1 (including dynamical

c-quarks) has been reported [39]. Baryon �PT provides a
natural framework to extrapolate lattice data for MN with
heavy quarks down to the physical and chiral limits, pro-
vided that the quark masses are small enough to warrant its
applicability. In the context of HB�PT with a cutoff regu-
larization it was already realized that nonanalytic terms
were important [40–42]. The quark-mass dependence of
MN has also been investigated with SUð2Þ IR�PT toOðp4Þ
without explicit � [43] and using phenomenological infor-
mation to constrain the input parameters. Baryon �PT also
allows us to take finite lattice volume corrections into
account, as it was done for MN in Ref. [44]. A more
complete Oðp4Þ IR�PT study [45] included the leading
Oðp3Þ contribution of the� resonance with the small-scale
expansion and HB approximation. According to this work,
the introduction of �ð1232Þ as a propagating degree of
freedom is not crucial for MN . This is in contrast with
the findings of Ref. [46] made with the EOMS scheme up
to Oðp3Þ.
More recently, the M� dependence of new Nf ¼ 2

lQCD data for MN has been investigated with HB�PT
[47] and IR�PT without explicit � degrees of freedom
[48–50]. The results for ��N range from 37 to 67 MeV. In
the case of Ref. [49], a direct measurement of ��N [51]
was incorporated to the fit, which allowed them to increase
the precision. Furthermore, three new direct determina-
tions of ��N have also been performed applying noise
reduction techniques for a better determination of the
disconnected contribution [52].
Several collaborations have pursued lQCD simulations

of the masses and ��N using Nf ¼ 2þ 1 configurations

[53–64]. The extrapolation to the physical point allows us
to determine ��N together with other sigma terms and
strangeness content of baryons. The difficulties encoun-
tered in HB�PT [58,65] to accomplish this program were
overcome applying cutoff regularization schemes [66,67],
using covariant formalisms up toOðp3Þ [68–70] andOðp4Þ
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[71–75], or complementing HB�PT with an expansion in
the inverse number of colors (large NC) [74,76,77].
Although SUð3Þ-flavor calculations have reached a
considerable degree of maturity, the large number of un-
known LECs at Oðp4Þ and the size of the current lQCD
data set limits, at present, on the accuracy attainable in the
sigma terms.

Alternatively, SUð2Þ B�PT can be used to perform ex-
trapolations ofMN and ��N in the light-quark masses with
the implicit assumption that the influence of the strange
quark is embedded in the LECs and that its mass in the
simulations is close enough to the physical one. The chiral
expansion is expected to converge faster than in SUð3Þ
B�PT and the different LECs appearing at Oðp4Þ can be
independently determined using �N scattering. On the
other hand, in comparison with the Nf ¼ 2 simulations

in which the strange quark is quenched, the extrapolated
quantities fromNf ¼ 2þ 1 should be closer to those in the

physical world. Analyses of Nf ¼ 2þ 1 simulations with

SUð2Þ-HB�PT Ansätze at Oðp3Þ and without �ð1232Þ
have become standard [65,78,79]. In particular, with
HB�PT up to Oðp4Þ it was found that ��N ¼ 84� 17�
20 MeV with explicit inclusion of the � resonance, and
��N ¼ 42� 14� 9 MeV without it [78]. While the in-
clusion of the � had little impact on the value of nucleon
mass in the chiral limit, the central value of the sigma term
changed by a factor of 2. It was also pointed out that the
lattice data exhibited a surprisingly linear dependence on
M�, a feature also shown by other lQCD data [58]. The
importance of the �ð1232Þ in extrapolations of lQCD data
on MN has also been recently stressed in an analysis
combining B�PT and the large-Nc expansion. [80].
Finally, a different strategy was adopted in Ref. [31], ac-
cording to which the LECs in SUð2Þ B�PT up to Oðp4Þ
were determined in simultaneous fits to �N scattering data
and lQCD results.

Here we present our study of the pion mass dependence
of the nucleon mass in covariant SUð2Þ B�PT up toOðp4Þ,
using the EOMS schemewith explicit inclusion of�ð1232Þ
intermediate states. We perform global fits to recent deter-
minations of MN in lQCD simulations with Nf ¼ 2 and

Nf ¼ 2þ 1 dynamical quarks, taking into account finite

lattice volume corrections. By extrapolating the fits we
determine the nucleon mass in the chiral limit and the
pion-nucleon sigma term, paying attention to the different
sources of systematic errors: the extrapolation to the con-
tinuum of lQCD data with finite lattice spacing, normal-
ization errors, the uncertainties in the LECs fixed in the fits
and the range of applicability of the chiral expansion.

The article is organized as follows. In Sec. II we describe
the formalism, derive the formula for the nucleon mass and
discuss the origin of the different coupling constants and
LECs that are constrained in the fits. Finite volume cor-
rections and continuum extrapolations are also discussed.
The fit strategies and the results are presented in Sec. III.

We conclude and summarize our work in Sec. IV. Further
details about the calculation can be found in the
appendixes.

II. NUCLEON MASS IN THE B�PT

Our aim is to study the pion mass (M�) dependence of
the nucleon mass (MN) and obtain the value of the ��N

term by means of the HF theorem. For this we employ the
Oðp4Þ covariant SUð2Þ B�PT with and without explicit
�-isobar degrees of freedom, �B�PT and 6�B�PT. The
resulting function MNðM�Þ depends on several LECs
whose values we fix by fitting lQCD nucleon mass data
for unphysical quark masses. The required ingredients are
established in this section. We derive the perturbative
nucleon mass and show the explicit fit formulas together
with a discussion of lQCD discretization effects.
To define the nucleon mass in terms of an expansion in

the light scales m2
� � 2B �m, p and � � M� �MN , we

have to choose a counting scheme.2 If �-isobars appear
explicitly, the common assumptions are the small-scale
expansion [32,33] that counts �� p�m� and the �

counting [34], which takes �� p1=2 to preserve the hier-
archy p�m� � �. As the latter is not the case for most
of the lQCD simulations, we adopt the small-scale count-
ing. The order n of a self-energy contribution is then
defined by

n ¼ 4L� 2N� � NN � N� þX
k

kVk; (3)

for a graph with L loops, N� internal pions, NN internal
nucleons, N� internal �-isobars and Vk vertices from a

LðkÞ Lagrangian. In Fig. 1 we collect all one-particle
irreducible diagrams that fulfill, after a suitable renormal-
ization, Eq. (3) up to n ¼ 4 [Oðp4Þ] and list in Appendix A
all relevant B�PT Lagrangians. Among the �-isobar con-
tributions, the graphs �N�4a and �N�4b originate from the

Lð2Þ
�N� Lagrangian [30]. It was shown in Ref. [81] for the

HB�PT case that these couplings are redundant and can be

absorbed in the LECs of Lð2Þ
�N and Lð1Þ

�N�. The HB�PT
expressions are the leading-order contributions to cova-
riant B�PT results which implies that these two diagrams
start to contribute atOðp5Þ. We do not include them in our
Oðp4Þ calculation. Additionally, the�N scattering analysis
[30] performed explicitly fits with and without these terms,
and strong arguments were found to support that these
redundancies also carry over to the covariant case.
To calculate the remaining diagrams we apply the

EOMS renormalization scheme [24,25] which uses the
analyticity of the power-counting breaking terms to over-
come the power-counting problem found in [3]. Explicitly,
we calculate these diagrams in the dimensional regulariza-
tion for D ¼ 4� 2� dimensions and renormalize terms

2The constant B is proportional to the chiral quark condensate.
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proportional to L ¼ � 1
" þ �E � ln 4� (MS scheme).

Subsequently, we renormalize the appearing LECs in
such a way that power-counting breaking terms are
canceled.

A. Nucleon self-energy and the perturbative
nucleon mass

The nucleon physical mass MN is defined by the pole
position at 6p ¼ MN of its full propagator

1

6p�M0 � �ð6pÞ ; (4)

where �ð6pÞ and M0 are the nucleon self-energy and the
(chiral limit) bare mass. In order to define a perturbative
nucleon mass, we expand �ð6pÞ around 6p ¼ M0:

�ð6pÞ ¼ �ðM0Þ þ ð6p�M0Þ @

@ 6p
�������� 6p¼M0

�ð6pÞ

þ 1

2
ð6p�M0Þ2 @2

@ 6p2

�������� 6p¼M0

�ð6pÞ þ . . . (5)

¼ �ðM0Þ þ ð6p�M0Þ�0ðM0Þ þ Rð6pÞ; (6)

and write the propagator as

1

6p�M0��ð6pÞ
¼ 1

6p�M0� �ðM0Þ
1��0ðM0Þ�

Rð6pÞ
1��0ðM0Þ

1

1��0ðM0Þ : (7)

Equation (7) defines now the nucleon mass by the pole at
6p ¼ MN

MN ¼ M0 þ Z�ðM0Þ þ ZRðMNÞ; (8)

together with its residue

Z ¼ 1

1� �0ðM0Þ : (9)

Using the B�PT self-energies up to order p4 of
Appendix B gives

�p4ð6pÞ ¼ �ð2Þ þ�ð3Þð6pÞ þ �ð4Þð6pÞ (10)

¼ �ð2Þ þ�ð3ÞðM0Þ þ �ð4ÞðM0Þ þ ð6p�M0Þ½�ð3Þ0ðM0Þ
þ �ð4Þ0ðM0Þ� þ Rð6pÞ; (11)

Z ¼ 1þ�ð3Þ0ðM0Þ þOðp3Þ; (12)

where the upper indices denote the chiral order. Only the

contact term �C2 ¼ �4c1m
2
� enters in �ð2Þ so it does not

depend on 6p. Inserting Eq. (11) in Eq. (8) one gets the
nucleon mass up to order p4:

Mð4Þ
N ðm2

�Þ ¼ M0 þ �C2ðm2
�Þ þ�N3ðm2

�Þ þ �N�3ðm2
�Þ

þ�N4ðm2
�Þ þ�T4ðm2

�Þ þ �C4ðm2
�Þ

þ�C2ðm2
�Þ�0

N3ðm2
�Þ þ �N�4ðm2

�Þ
þ�C2ðm2

�Þ�0
N�3ðm2

�Þ þOðp5Þ; (13)

where all loops are evaluated at 6p ¼ M0. The term RðMNÞ
contributes only at Oðp5Þ. The first line of Eq. (13) corre-
sponds to the p3 nucleon mass while the second and third
lines are the additional p4 contributions; the notation of the
different terms matches the one of the diagrams in Fig. 1.
All �i are obtained from the Lagrangians in Appendix A
and are explicitly given in Appendix B. There are ten low
energy constants, namely, f�0, gA0, c1, c2, c3, hA0, M0,
M�0, c1�, and �. Most of them are constrained by experi-
mental data. More details about their treatment are given
below.

B. Nucleon mass, ��N term and fit formula

Applying the HF theorem

��Nðm2
�Þ ¼ �m

@

@ �m
MNð �mÞ ¼ m2

�

@

@m2
�

MNðm2
�Þ (14)

to Eq. (13) one obtains

Mð4Þ
N ðm2

�Þ ¼ M0 � c14m
2
� þ 1

2
�m4

�

þ�ð3Þþð4Þ
loops ðm2

�;M0;M�0; f�0; gA0; hA0; ciÞ;
(15)

FIG. 1. One-particle irreducible contributions to the nucleon self-energy up to Oðp4Þ. Single solid lines denote nucleons, double
solid lines, �-isobars and dashed lines, pions. Boxes represent the pion-nucleon and contact vertices where the number specifies the
chiral order.
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�ð4Þ
�Nðm2

�Þ
¼�4c1m

2
�þ�m4

�

þm2
�

@

@m2
�

�ð3Þþð4Þ
loops ðm2

�;M0;M�0;f�0;gA0;hA0;ciÞ;

(16)

with ci ¼ c1, c2, c3, c1�. The �ð4Þ
�N can also be obtained

from a direct calculation of the nucleon scalar form factor
Eq. (1) at zero four-momentum transfer squared. We have
checked that Eq. (16) can be mapped term by term to such a
calculation, i.e. that our formulas with full, nonexpanded
loops fulfill the HF theorem.

To apply Eqs. (15) and (16) with a p4 accuracy, we
cannot identify the physical (or lattice) pion mass M�

with the lowest order m� (M2
� ¼ m2

� ¼ 2B �m) but must
take the next order into account. According to the well
known expansion [2]:

M2
�ðm2

�Þ¼m2
�þ2lr3ð�2Þ

f2�0
m4

�þ 1

32�2f2�0
m4

� ln
m2

�

�2
þOðp6Þ;

(17)

where lr3ð�2Þ is a renormalized scale-dependent LEC

coming from the meson �PT Lagrangian. Therefore

Mð4Þ
N ðM2

�Þ¼M0�c14M
2
�þ1

2
��M4

�þ c1
8�2f2�

M4
� ln

M2
�

M2
0

þ�ð3Þþð4Þ
loops ðM2

�;M0;M�0;f�;gA;hA;ciÞþOðp5Þ;
(18)

�ð4Þ
�NðM2

�Þ

¼�4c1M
2
�þ ��M4

��c1
8

f2�
lr3ðM2

0ÞM4
�þ c1

8�2f2�
M4

� ln
M2

�

M2
0

þM2
�

@

@M2
�

�ð3Þþð4Þ
loops ðM2

�;M0;M�0;f�;gA;hA;ciÞþOðp5Þ

(19)

with �� ¼ �þ c1
16

f2�
lr3ðM2

0Þ: (20)

Equation (18) is our final formula for Oðp4Þ B�PT fits to
lQCD data. The effect of Eq. (17) is an additional Oðp4Þ
term proportional to c1 and a redefinition of � ! �� which
will be a fit parameter. Furthermore, we adopt the physical
values of f� ¼ 92:4 MeV and gA ¼ 1:267 instead of the
chiral limit ones and set the renormalization scale to � ¼
M0. The differences between the chiral limit and physical
values are of order p2 so that they start to contribute at

Oðp5Þ. In the case of �ð4Þ
�NðM2

�Þ we cannot absorb all terms
proportional to lr3ðM2

0Þ in the LECs and shall need a nu-

merical value for it. From the latest estimate of �l3ðM�Þ ¼
ln�2

3=M
2
� at the physical point �l3ð139 MeVÞ ¼ 3:2ð8Þ

[2,82] one has

lr3ð�2Þ ¼ � 1

64�2

�
�l3ðM�Þ þ ln

M2
�

�2

�

¼ � 1

64�2

�
3:2ð8Þ þ ln

M2
�ðphysÞ
�2

�
; (21)

where we set M�ðphysÞ ¼ 139 MeV.

C. Low energy constants, finite volume
and lattice spacing effects

After fixing f�0 and gA0, we discuss our treatment of the
remaining eight LECs, c1, c2, c3,M0, ��,M�0, hA0, and c1�.
Generally, our fits depend very mildly on variations in c2,
c3, M�0 and hA. Furthermore, we observe that changes in
c1� are compensated by changes in ��. Our strategy is,
therefore, to fit M0, c1 and �� while keeping c2, c3, M�0,
hA and c1� fixed. The nucleon-related LECs c2 and c3 are
taken from the �N scattering analysis of Ref. [38], per-
formed with the same B�PT framework employed here.
More specifically, we take as central values the average of
the results of fits to the phase shifts from the Karlsruhe-
Helsinki group (KA85) and the George Washington
University group (WI08), accepting errors defined by their
uncertainties and also by the result of the fit to Matsinos
phase shifts (EM06) (see Tables 1 and 2 of Ref. [30]).3 The
specific figures for both the 6�-B�PT and �-B�PT cases
are given in Table I.
In order to fix the �-related LECs,M�0, c1� and hA, we

consider the pion mass dependence of the �-isobar mass.
Up to Oðp3Þ it reads [46]
Mð3Þ

� ðM�Þ ¼M�0� 4c1�M
2
�þ��N3ðM�;hA;f�;MN;M�Þ

þ���3ðM�;HA;f�;M�Þ; (22)

where the loop contributions ��N3 and ���3 stand for
diagrams like �N3 and �N�3 in Fig. 1 but with external
nucleon lines replaced by �ð1232Þ ones. The explicit
expressions are given in Appendix B. As stated above,
we are allowed to take phenomenological values for the
LECs in these loops. In this way, one uses the phenome-
nological value of the �-isobar decay width ��!N� ¼
�2 Im��N3 ¼ 115 MeV to fix hA ¼ 2:87. Furthermore,
we adopt HA ¼ 9

5 gA obtained in the large-Nc limit.

Finally, we use lQCD data for the �ð1232Þ [53,54,83]

TABLE I. Values of the LECs appearing in the p4 nucleon
mass. For the LECs f�0 and gA0 we take their physical values
f� ¼ 92:4 MeV and gA ¼ 1:267.

Theory c2 [GeV�1] c3 [GeV�1] c1� [GeV�1] hA M�0 [MeV]

6�-B�PT 3:9� 0:4 �6:7� 0:4
�-B�PT 1:1þ0:2

�0:5 �3:0þ0:6
�0:1 �0:90� 40 2.87 1170� 30

3Further justification for this choice is given in the Results
section.
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mass to determine the remaining two LECs M�0 and c1�.
As the available lattice results are rather scattered, we do
not perform a rigorous fit to them but, instead, adopt the
conservative attitude of setting a band that englobes all the
lQCD points with their error bars (see Fig. 2). The central
values for the parameters result from the average of those
defining the band’s boundaries and are listed in Table I.

We now turn to two discretization artifacts: finite vol-
ume (FV) and finite spacing effects, appearing in lQCD
studies, as a consequence of the finite grid with volume L3

and spacing a in which simulations are performed.
All loop graphs of Fig. 1 are subject to FV corrections.

We calculate them in Appendix B 3 by applying the
standard techniques of Ref. [44]. The FV corrections to
�N3 and �T4 are equivalent to those in Ref. [44]. In
addition, we correct the combination �N4 þ �c2�

0
N3 and

the �-isobar graphs �N�3, �N�4 and �C2�
0
N�3 which

contribute at order p4 in the continuum [24,25] in the
EOMS renormalization scheme. Reference [44] employs
IR, for which the combination of �N4 þ �c2�

0
N3 appears

only at order p5. Our FV corrections are therefore

�p4ðM2
�; LÞ ¼ �N3ðM2

�; LÞ þ�N�3ðM2
�; LÞ

þ�N4ðM2
�; LÞ þ �N�4ðM2

�; LÞ
þ�T4ðM2

�; LÞ þ �C2ðM2
�Þ�0

N3ðM2
�; LÞ

þ�C2ðM2
�Þ�0

N�3ðM2
�; LÞ: (23)

All these terms are given in Appendix B 3. In Fig. 3 we test
our FV correction against lQCD data with approximately
the same pion mass but different L. We found four points
from the QCDSF Collaboration [49], four points from the

NPLQCD Collaboration [62] and two points from the
ETMC [84] at pion masses approximately of 265, 300,
390 and 440 MeV, respectively. Reasonable values of the
LECsM0 ¼ 890 MeV and c1 ¼ c1� ¼ �0:9 GeV�1 have
been chosen for this exercise. We observe that our FV
corrections describe very well the L dependence for lattice
sizes larger than�2:2 fm and that they have a size of up to
45 MeV. In our fits we shall include only data points with
LM� > 3:8 for all of which L > 2:2 fm.
In general, we will use lQCD data that are not extrapo-

lated to the continuum limit a ! 0. Originally, discretized
QCD actions break chiral symmetry even in the chiral limit
by terms proportional to a [85–87] but modern lattice
calculations use OðaÞ improved actions for which discre-
tization effects in baryon masses start at order a2. However,
there exists a whole variety of lQCD actions, each with its
own discretization effects. For the specific Symanzik lQCD
action an effective field theory investigation has been
performed in Ref. [88] on a HB�PT basis but a general
approach, similar to the treatment of FV corrections, does
not exist. Therefore, we parametrize this effect for each
action individually by writing the nucleon mass in an a
expansion to the lowest order as

MN ¼ Ma¼0 þ caa
2 þOða3; a2m2

�Þ; (24)

with an action-specific constant ca. By using the ETMC
points at M� ¼ 260 and 262 MeV, and QCDSF points at
r0M� ¼ 0:658 and 0.660 [49,84] we can roughly estimate
the size of this effect. By taking the linear a2 extrapolation
of Eq. (24) we obtain cETMC ¼ 0:17 GeV3 and cQCDSF ¼
0:33 GeV3, which correspond to nucleon mass shifts of
10–50 MeV. We obtain that lattice spacing corrections can

FIG. 3 (color online). Finite volume corrections �MN ¼
MNðLÞ �MNðL ! 1Þ as a function of the lattice size for pion
masses of 265, 300, 390 and 440 MeV. Lattice data from
Refs. [49] (triangles), [62] (red diamonds) and [84] (squares)
with approximately the same pion masses are also displayed.
We normalize each curve to the point with the largest volume
and shift them by multiples of 50 MeV to avoid overlaps.
At L ¼ 4:0 fm �MN � 0 for all curves.

FIG. 2 (color online). Pion mass dependence of the �-isobar
mass. Green squares are from [53,54], black triangles are
quenched data from [83] and red diamonds are unquenched
data from [83]. The blue circle is the physical point. The band
defines the uncertainty range adopted (see the text) while the
blue line is the preferred result.
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have similar sizes to the FV ones. Therefore, we incorpo-
rate this effect in specific fits by including the caa

2 term in
the �2 for each collaboration/action reporting results for
different values of a.

III. RESULTS

We study the pion mass dependence of the nucleon mass
by using the covariant B�PT expression of Eqs. (13) and
(18), which is accurate up to the chiral order p4 and
includes explicit �-isobar degrees of freedom. We perform
global fits to lQCD ensembles for Nf ¼ 2 and Nf ¼ 2þ 1

numbers of flavors. Generally, lQCD uses a discretized
QCD action to simulate the quark-gluon interaction in a
finite box of size L3 � T with finite spatial and time spac-
ings of a and at. The nucleon mass data are given in terms
of the dimensionless quantities aM� and aMN with un-
certainties in a, aM� and aMN . An actual value of a sets
the overall scale to convert the lQCD data into physical
units. No universal scale-setting method exists and differ-
ent collaborations use different approaches. Furthermore,
the statistical uncertainty in a turns into a normalization
uncertainty in MN for data points belonging to the same a
set. It is therefore preferable to fit the ðaM�; aMNÞ data
directly whenever this is possible or, otherwise, to include
these correlated uncertainties in the fit. As explained
below, we are able to perform the former in the case of
the Nf ¼ 2 ensembles and rely on the latter for the Nf ¼
2þ 1 ones. We also include FV corrections and lattice
spacing effects as described in the previous section. We
fit the LECsM0, c1 and ��while keeping c2, c3, c1�, hA and
M�0 fixed to the values listed in Table I. Afterwards, we
quantify the effect of varying the fixed LECs within their
ranges. The fit uncertainties are determined at a 68%
confidence level.

For Nf ¼ 2 we include data from the BGR [89], ETMC

[84], Mainz [90] and QCDSF [49] collaborations, and for
Nf ¼ 2þ 1 from the BMW [60], HSC [59], LHPC [91],

MILC [92], NPLQCD [62], PACS [57] and RBCUK-QCD
[64] collaborations. In both cases we extract the LECs and
obtain the ��N value by using the HF theorem.

A. Nucleon mass up to order Oðp4Þ:
Fits to Nf ¼ 2 lattice QCD data

We use Eq. (18) to fit the lQCD data for the Nf ¼ 2

ensembles of the BGR, ETMC, Mainz and QCDSF collab-
orations [49,84,89,90]. The lQCD data are given in terms
of the dimensionless products aM� and aMN where the
scale is fixed in different ways: with the experimental ��
mass in Ref. [90] and with HB�PT or IR-�PT chiral
extrapolations of MN in Refs. [49,84]. The available infor-
mation for these data sets is such that we can perform our
own scale setting. By doing this we compensate for the
different scales of the various sets and avoid manipulating
them with two different B�PT versions.

Explicitly, we fit the lQCD data in terms of
ðr0M�; r0MNÞ by using the Sommer scale r0 [93] and the
ratios r0=a in the chiral limit, as reported by each collabo-
ration. The uncertainties in aM�, aMN and r0=a are
assumed to be uncorrelated. The value of r0 is a priori
unknown and we determine it recursively inside the fit.
This is the same strategy used in Ref. [49], now employed
to analyze Nf ¼ 2 data globally. The �2 function that we

minimize is

�2 ¼X
i

� ~MðnÞ
N ð ~M2

�Þ þ ~�ðnÞ
N ð ~M2

�;LÞ þ ~ca~a
2 � dið ~M2

�;LÞ
�i

�
2
;

(25)

with ~MðnÞ
N ¼ r0M

ðnÞ
N ; ~M2

� ¼ ðr0M�Þ2; ~�ðnÞ
N ¼ r0�

ðnÞ
N ;

(26)

where dið ~M2
�; LÞ are the lQCD data points with uncertain-

ties �i, each of them generated in a lattice of size L and

spacing a. The continuum expressions MðnÞ
N ðM2

�Þ and the

finite volume corrections �ðnÞðM2
�; LÞ for the chiral order n

are listed in Appendix B 4. As discussed above, the terms
~ca~a

2 ¼ r30caða=r0Þ2 parametrize discretization effects,

with ca being common constants for points obtained by
the same lQCD collaboration/action. The Sommer scale is
calculated in each minimization step recursively using
the constraint imposed by the experimental value of the
nucleon mass at the physical point:

rk0 ¼
~MðnÞ
N ðrk�1

0 M�ðphysÞÞ
MNðphysÞ

until jrk0 � rk�1
0 j< 0:001 fm:

(27)

The explicit fit parameters in Eq. (25) are M0, c1, �� and
two ca constants, one for ETMC and one for both Mainz
and QCDSF which employ the same action. The single
data point of BGR does not allow us to perform any lattice
spacing correction. As the term ~ca~a

2 does not stand on the
same firm ground, from the perspective of effective field
theory, as the rest of our mass formula, we perform fit with
and without it and treat the differences as systematic errors.
We restrict the data sets by imposing the following con-
ditions: r0M� < 1:11, M�L> 3:8, which englobe points
of M� < ð429; 476Þ MeV for Sommer scale values in
the range r0 ¼ ð0:51; 0:46Þ fm. We then consider the
following data sets:
(i) BGR [89]: A Sommer scale of r0 ¼ 0:48 fm is

assumed and three data points are provided, only
one below r0MN ¼ 1:11.

(ii) ETMC [84]: Eleven data points are provided in the
form ðaM�; aMNÞ; for each setting a value of r0=a
is computed. After converting ðaM�; aMNÞ into
ðr0M�; r0MNÞ we find that seven data points fulfill
our conditions and enter the fit.
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(iii) Mainz [90]: Eleven data points are provided in the
form ðaM�; aMNÞ. The lattice spacings as well as
the ratios r0=a are determined by the �� mass
[94,95]. We convert ðaM�; aMNÞ to ðr0M�; r0MNÞ
and six data points enter the fit.

(iv) QCDSF [49]: This work provides 27 data points,
directly in terms of ðr0M�; r0MNÞ, but only two of
them fulfill our restrictions. In addition, there is a
single data point for the ��N obtained by direct
determination at M� � 285 MeV [51].

We study the following variations of the fits:
(1) MNðM�Þ to order p2, p3 and p4 in the chiral

expansion
(2) without ( 6�B�PT) and with (�B�PT) �-isobar
(3) including and excluding the single direct ��N

measurement of Ref. [51]
(4) without and with lattice spacing corrections

(caa
2 term)

(5) variations of the input LECs according to the errors
quoted in Table I

Finite volume corrections are always included.

The output of our fits for cases 1–3, with the LECs
fixed to the values in Table I and without lattice spacing
corrections, are presented in Table II and Fig. 4. Bear in
mind that changes in the fit conditions 1 and 2 yield
different r0 (see Table II) so lQCD data are scaled differ-
ently. From Table II we observe that the inclusion of
Oðp4Þ does not lead to a better description of present
nucleon mass data than the Oðp3Þ one. However, for fits
including the ��Nð285Þ point, a good �2=d:o:f: emerges
only at Oðp4Þ. In this situation, �B�PT gives a slightly
better �2=d:o:f: than 6�B�PT but both approaches give
the same ��N value. The overall rather high �2=d:o:f: is
caused by two points from the Mainz Collaboration. By
excluding them we obtain �2=d:o:f: �1:6 but the results
change only within the quoted uncertainties. The FV
corrections shift the data points by ð�6Þ–ð�50Þ MeV.
In contrast to the 6�B�PT case, the �B�PT p4 results
are not significantly altered by the inclusion of ��Nð285Þ
in the fits and exhibit a softer M� dependence. This might
be interpreted as an indication that the theory with
explicit �ð1232Þ is more realistic.

FIG. 4 (color online). Fits to the Nf ¼ 2 nucleon mass data of Refs. [49,84,89,90]. Filled (open) symbols are for data points included
in (excluded from) the fits. The left (right) picture shows fits without (with) explicit �-isobar. The fit including the ��Nð285 MeVÞ of
Ref. [51] is given by the blue solid line while the plain nucleon mass fit is given by the green dashed one. The dark blue and light green
shaded regions represent the corresponding statistical uncertainties. The lQCD data are scaled by r0 and FV corrected according to the
simultaneous fit. Hence, the green dashed line does not correspond to the shown data points.

TABLE II. Results for B�PT fits to Nf ¼ 2 nucleon mass data from Refs. [49,84,89,90]. The ‘‘�’’ index denotes the inclusion of
explicit �-isobar (�B�PT), while its omission corresponds to 6�B�PT; FV corrections are included but finite-spacing effects are
excluded. The results on the left come from a fit to solely nucleon mass data while in the ones on the right the ��N point at M� ¼
285 MeV of Ref. [51] was also taken into account.

Excluding ��Nð285 MeVÞ Including ��Nð285 MeVÞ
M0 [MeV] c1 [GeV�1] �� [GeV�3] �2

d:o:f: r0 [fm] �� [MeV] M0 [MeV] c1 [GeV�1] �� [GeV�3] �2

d:o:f: r0 [fm] �� [MeV]

p2 906(11) �0:43ð2Þ 2.1 0.509 34(2) 913(6) �0:33ð1Þ 6.3 0.539 26(1)

p3 880(13) �0:93ð3Þ 1.9 0.480 53(2) 892(6) �0:78ð1Þ 8.5 0.527 41(1)

p3
� 863(16) �1:19ð4Þ 2.1 0.456 68(3) 878(5) �1:00ð1Þ 9.5 0.517 52(1)

p4 866(40) �1:18ð14Þ 23(3) 2.5 0.470 62(13) 888(9) �0:91ð4Þ 38(2) 2.9 0.507 41(3)

p4
� 893(29) �0:77ð9Þ 35(2) 2.4 0.494 38(10) 890(7) �0:80ð1Þ 33(2) 2.5 0.489 41(2)
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Figure 5 shows the relative contributions, jp3=p2j and
jp4=p3j, of different chiral orders to the nucleon mass for
fits including ��Nð285Þ. One observes that the Oðp4Þ term
has a relatively small contribution over a large M� range.
The same is true for the 6�B�PT Oðp3Þ term. In the
�B�PT case, however, the relative impact of the Oðp3Þ
contribution steadily rises, becoming more than 80%
of the p2 one at M� > 450 MeV. From this we deduce
that M� � 450 MeV is at the upper border of the �B�PT
applicability. We have also performed fits with relaxed
conditions LM� 	 3:5 and r0M� 
 1:00 which, however,
yield equivalent results to those already presented in
Table II. The present data do not allow us to go below
r0M� 
 1:00.

In Table III we summarize our results including finite
lattice spacing corrections in the fit, namely the cEa

2 and
cMQa

2 terms for ETMC and Mainz/QCDSF respectively.

We obtain corrections of ðþ6Þ � ðþ20Þ MeV, which have
an opposite sign with respect to the FV corrections. By
comparing to Table II we notice that all changes are within
the already given uncertainties. A noticeable qualitative
effect is that changes in the Sommer scale counterbalance
finite lattice spacing corrections so that the results are close
to the former ones. A more elaborated EFT background is

required to calculate and interpret finite lattice spacing
corrections more reliably.
We have tested the fits for variations of c2, c3 within the

errors given in Table I. In all cases the results are compat-
ible within uncertainties with those of Table II. We con-
clude that the p4 B�PT fits are not able to constrain these
LECs effectively.
Furthermore, by varying c1� we find it to be correlated

with ��. The inclusion of c1� as a free parameter does not
produce sensible fits unless the ��Nð285Þ point is taken
into account. The fit is driven to unreasonable high c1�
with rather large �� values. However, in fits including the
��Nð285Þ point we recover c1� ¼ �0:87ð16Þ GeV�1 to-
gether with results compatible with those in Table II. A
scan over a range of c1� shows that reasonable fits can only
be obtained for the interval c1� ¼ ð�0:8Þ–ð�1:0Þ GeV�1,
resulting in ��N values in the range 37–45 MeV. We
observe that the correlation between c1� and �� is relaxed
by the addition of the ��Nð285Þ point.
As a final ��N value for the Nf ¼ 2 lQCD fits we quote

��N ¼ 41ð5Þð4Þ MeV;

which corresponds to our p4 6� and �B�PT fits of Table II
including ��Nð285Þ and FV corrections. The first uncer-
tainty is statistical and can be taken, as a first approximation,
to be 3 MeV, which is the largest error from the fits under
consideration. However, one should note that we obtain
�2=d:o:f: >1, that we interpret as an indication of under-
estimated uncertainties in the data. To correct for this, we
repeat the fits multiplying the statistical errors of all points

by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2=d:o:f:

p
, in analogy to the procedure adopted by the

Particle Data Group [96] for unconstrained averages.
The new error of 5 MeV is the largest one, corresponding
to the 6�B�PT case. The systematic uncertainty, second
figure, is determined by adding in quadratures the variation
induced by changes in c1� in the range given above to the
finite spacing effects (Table III). In an attempt to identify any
additional bias in the data samples, we have performed new
fits using the delete-1 jackknife technique. The resulting fit
values and errors did not differ significantly from the quoted
ones. Note that the single ��Nð285Þ measurement has a
strong influence on our Nf ¼ 2 result. Indeed by excluding

this point and averaging over the �B�PT and 6�B�PT
results we get a ��N ¼ 52ð13Þð11Þ MeV, albeit with large
error bars. In view of this, new direct ��N measurements at
low pion masses will be important to establish the actual
value of this quantity.

FIG. 5 (color online). The B�PT results for MNðM�Þ decom-
posed into their chiral order relative contributions jp3=p2j and
jp4=p3j. The blue solid line denotes jp3=p2j and the purple-
dashed line, jp4=p3j, both for �B�PT. The red dashed-dotted
and orange dotted lines are the jp3=p2j and jp4=p3j results for
6�B�PT. The shaded region is excluded from the fit.

TABLE III. Results for p4 ��B�PT fits to Nf ¼ 2 nucleon mass data from Refs. [49,84,90] with lattice spacing effects accounted
for by the cEa

2 and cMQa
2 terms for the ETMC and Mainz/QCDSF data respectively.

p4
� M0 [MeV] c1 [GeV�1] �� [GeV�3] cE [GeV�3] cMQ [GeV�3] �2

d:o:f: r0 [fm] �� [MeV]

Excluding ��Nð285 MeVÞ 894(28) �0:76ð10Þ 36(5) �0:06ð7Þ �0:05ð13Þ 2.8 0.501 37(10)

Including ��Nð285 MeVÞ 892(21) �0:79ð2Þ 34(3) �0:08ð6Þ �0:08ð12Þ 2.8 0.499 40(3)
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Figure 6 summarizes our results for the pion mass
dependence of the ��N term. The results for the �B�PT
and 6�B�PT fits are compatible within errors but exhibit a
different M� dependence.

For our final values of the LECs M0, c1 and �� we quote
those of the p4-�B�PT fit of Table II including �ð285Þ. In
particular, in the present work we set the Sommer scale to
r0 ¼ 0:493ð23Þ fm, which is the average of all our p4

results and where the uncertainty is chosen such as to cover
all our p4 fits.

B. Nucleon mass up to order Oðp4Þ: Fits to
Nf ¼ 2 þ 1 lattice QCD data

We use our B�PT nucleon mass formula of Eq. (18) to
fit the lQCD data for the Nf ¼ 2þ 1 ensembles of differ-

ent collaborations with M�L> 3:8 and M� & 415 MeV.
Thus, we include nine points from the BMWCollaboration
[60], one point from HSC [59], one from LHPC [78,91],
four fine and four superfine fromMILC [54,92], three from
NPLQCD [62], two from PACS-CS [57] and six from
RBC-UKQCD [64]. The selected data have already been
corrected to the physical strange quark mass (BMW) or
come from configurations for which the strange quark mass

(in theMS scheme at 2 GeV) has been reported to be close
enough to the physical limit, to make the corresponding
correction negligible.4 The approach of the QCDSF-
UKQCD Collaboration [61,63] is conceptually different

as it generates points along the SUð3Þ singlet line, 2 �mþ
ms ¼ const. Therefore in these simulations both the light
and strange quark masses remain unphysical, making our
SUð2Þ approach not applicable.
Most of the data are provided in terms of ðaM�; aMNÞ,

together with the individual lattice spacings a and the
statistical uncertainties for all three quantities. Unlike the
Nf ¼ 2 case, the available information does not allow us to

perform our own scale setting. Therefore, we treat the a
uncertainties as correlated normalization errors for all MN

points from the same set. Our treatment of normalization
uncertainties follows from Ref. [98]. We perform three
types of fits: (1) neglecting correlated normalization errors,
(2) including the normalization error in scale factors fi,
and (3) including the normalization uncertainty in a corre-
lation matrix V. For the case (3) we also consider lattice
spacing effects. The �2 functions for types (2) and (3) fits
read

�2
2 ¼

X
i

�
MðnÞ

N ðM2
�Þ þ �ðnÞ

N ðM2
�; LÞ � fidiðM2

�; LÞ
fi�i

�
2

þ
�
fi � 1

�fi

�
2
; (28)

�2
3 ¼ ~�

T
V�1 ~� with

�i ¼ ½MðnÞ
N ðM2

�;iÞ þ cia
2
i þ�ðnÞ

N ðM2
�;i; LiÞ � diðM2

�;i; LiÞ�;
(29)

whereMðnÞ
N ðM2

�Þ and �ðnÞ
N ðM2

�; LÞ are the B�PT continuum
and finite volume expressions given in Appendix B 4;
diðM2

�; LÞ are the lQCD data, each point for a given
lattice size L and spacing a. We denote the statistical
uncertainty for MN coming from aMN as �i and the
normalization uncertainty coming from a as �fi . Case

(1) is recovered from Eq. (28) by taking all fi ¼ 1 and

replacing �i !
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

i þ �2
fi

q
corresponding to the assump-

tion that �i and �fi are uncorrelated errors. In case (2) the

fi are additional fit parameters; �i and �fi are treated

separately. In case (3) �i and �fi are incorporated in the

correlation matrix V. The BMW Collaboration [60] does
not provide enough information to disentangle the uncer-
tainties from aMN and a so that we always include this data
set with uncorrelated uncertainties.
In our fits, the LECs c2, c3 and c1� are fixed to the values

given in Table I. There are two points withM� � 390 MeV
from Refs. [59,62] with very small reported �i and slightly
smallerMN values compared to the neighboring points (see
Fig. 7). The inclusion of these points shifts the results to
lower masses, yielding a slightly worse �2=d:o:f: Although
these points were obtained by different NPLQCD and HSC
collaborations, they are not entirely independent because
NPLQCD uses the scale of the HSC Collaboration, which
actually expresses some concern about the quality of their

FIG. 6 (color online). Pion mass dependence of the ��N term.
The blue solid line and the green dashed lines stand for the
�B�PT and 6�B�PT fits respectively, both including ��Nð285Þ
of Ref. [51] (red diamond). The dark blue and light green shaded
areas represent the corresponding uncertainties. The red square
is our final result at the physical point.

4Notice that the small strange quark mass found in Ref. [57],
mMS

s � 72 MeV, has been attributed to the perturbative
approach employed in that paper to relate lattice- and the
MS-renormalized values [97].
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lattice spacing determination. In view of the situation, we
exclude these two points from our main results but con-
sider their influence in the systematic uncertainties.

In Table IV we display our results for the fit types (1) and
(3). The results obtained with option (2) are similar to those
obtained with (3) so we do not show them. The considera-
tion of normalization uncertainties slightly enhances the
�2=d:o:f: but causes a noticeable reduction of c1 and ��N.
The quality of the fits in terms of �2=d:o:f: is essentially the
same for p3 and p4 fits. As in the Nf ¼ 2 case, we expect

the advantage of the p4 formula to be tangible as soon as
direct ��N data for low pion masses become available for
Nf ¼ 2þ 1.

The left panel of Fig. 7 shows the pion mass dependence
of our Oðp4Þ nucleon mass results for both 6�B�PT and
�B�PT. There is a large overlap of the corresponding
error bands, which are addressed below in more detail.
By decomposing the fits into their chiral order relative
contributions (right panel of Fig. 7), we observe a similar

situation to the Nf ¼ 2 case. Namely, the Oðp4Þ relative
contributions are small over a large range of M� but the
Oðp3Þ in�B�PT increases, making the applicability of our
perturbative expression questionable for high M� values.
We have checked that a fit constrained to M� < 360 MeV
produces results compatible with those of the M� <
415 MeV fit but with larger uncertainties.
The results of the fits taking into account lattice spacing

effects are given in Table V. These are considered for data
sets with enough points with the same L and different a
values. Explicitly, we introduced two terms cMa

2 and cRa
2

for the MILC and RBCUK collaborations, respectively. In
the case of BMW, we assume that lattice spacing uncer-
tainties are included in the error bars. We find nucleon
mass shifts of ð�7Þ–ð�46Þ MeV, which are small but
comparable in size with the FV corrections. With this
correction, the �2=d:o:f: is slightly better and ��N gets
smaller by several MeV. The uncertainties for the constants
cMa

2 and cRa
2 are now slightly smaller than in the 2 flavor

FIG. 7 (color online). Combined fits to lQCD data of the Nf ¼ 2þ 1 ensembles [57,59,60,62,64,91,92]. Left: Fits to nucleon mass
data up toM� ¼ 415 MeV. The blue solid (green dashed) line shows theOðp4Þ �B�PT ( 6�B�PT) fit of type (3). The red dotted line is
also for Oðp4Þ �B�PT but including the two points of M� � 390 MeV, excluded from the main fits as discussed in the text. Filled
(open) symbols represent points included in (excluded from) the fits. Right: Decomposition of the fit results in their chiral order
contributions. The blue solid line corresponds to the jp3=p2j ratio and the purple dashed one to jp4=p3j, both for �B�PT. The red
dashed-dotted and orange-dotted lines are the jp3=p2j and jp4=p3j results obtained with 6�B�PT.

TABLE IV. Combined fits to the Nf ¼ 2þ 1 lQCD ensembles [57,59,60,62,64,91,92] for pion masses M� 
 415 MeV and
LM� 	 3:8. The LECs c2, c3 and c1� are set to the central values given in Table I; FV effects are included while a2 effects are
excluded. The last two rows correspond to fits of type (1) neglecting correlated normalization errors. The fit of the last row takes into
account the two points of Refs. [59,62] with M� � 390 MeV, excluded from the main fits as discussed in the text.

6�B�PT �B�PT

M0 [MeV] c1 [GeV�1] �� [GeV�3] �2

d:o:f: �� [MeV] M0 [MeV] c1 [GeV�1] �� [GeV�3] �2

d:o:f: �� [MeV]

p2 904(2) �0:47ð1Þ 3.1 36(1)

p3 883(2) �0:90ð1Þ 1.3 51(1) 870(2) �1:10ð1Þ 1.2 60(1)

p4 870(3) �1:15ð3Þ 24(2) 1.3 58(3) 883(3) �0:89ð3Þ 26(2) 1.4 49(2)

No correl. p4 865(5) �1:22ð5Þ 19(4) 1.0 63(3) 878(4) �0:96ð4Þ 20(4) 1.1 54(3)

No correl. (390) p4 863(5) �1:25ð5Þ 15(4) 1.4 64(3) 876(4) �0:99ð4Þ 15(3) 1.6 56(3)
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case although all values of Tables III and Vagree within the
individual errors.

We tested our results for changes by varying c2, c3 and
c1� within the errors quoted in Table I. All changes are
within the above quoted uncertainties. In particular,
changes in c1� are compensated by changes in �� and
reasonable results are only obtained for the range of
c1� ¼ ð�0:5Þ–ð�1:3Þ GeV�1 estimated above.

As a final value for ��N in the Nf ¼ 2þ 1 case we give

��N ¼ 52ð3Þð8Þ MeV;

obtained in the following way. The central value is the
average of the four Oðp4Þ �B�PT and 6�B�PT results
without Table IV and with Table V lattice spacing correc-
tions, all including correlated normalization uncertainties.
The first error corresponds to the largest statistical uncer-
tainty of the values under consideration and the second is
the largest difference among them.

Further conclusions can be extracted from Fig. 8 where
the pion mass dependence of MN and ��N is shown for
various p4 fit strategies. We can see that the small slope
variations in MNðM�Þ (left plot) translate into changes in
��N of less than 10 MeVat the physical point (right plot).
One also notices that the uncertainties of the individual
lQCD data points (see Fig. 5) tend to be larger than these
variations. We do not expect that with more low-M�

nucleon mass data points one would be able to reduce the

��N uncertainty much further, although simulations using
one lattice action and different lattice spacings would be
very important for a systematic treatment of discretization
uncertainties. On the other hand, Nf ¼ 2þ 1 direct mea-

surements of ��N at low M� & 300 MeV would probably
lead to better constrained fits as it happens for Nf ¼ 2,

reducing uncertainties significantly.
Another outcome of our analysis is a slight disagreement

between the determinations of ��N using either Nf ¼ 2 or

2þ 1 data. The lQCD data available at present do not
allow us to establish unambiguously the origin of this
discrepancy. First of all, it is instructive to compare the
�B�PT p4 fits given in Tables II and IV (also shown in
Fig. 9). The corresponding ��N values decomposed in
their chiral p2, p3 and p4 contributions are 41 MeV ¼
62� 27þ 6 MeV and 49 MeV ¼ 69� 26þ 6 MeV, re-
spectively. Most of the difference comes from the p2 term,
which is more effectively constrained by data points in the
low-M� region. New Nf ¼ 2 measurements in this region

might help to understand the origin of the difference. On
the other hand, a closer look at Tables III and V reveals that
the Nf ¼ 2 and 2þ 1 �B�PT p4 results become consis-

tent once finite spacing corrections are considered.
However, while the differences between 6� and �B�PT
disappear in Nf ¼ 2 after the ��Nð285Þ point is included
in the fits, they remain in the Nf ¼ 2þ 1 case, where

such a direct measurement is not available. Future direct

TABLE V. Combined fits to the Nf ¼ 2þ 1 lQCD ensembles [60,64,92] including caa
2 corrections for the MILC (cM) and RBCUK

(cR) collaborations. The LECs c2, c3 and c1� are set to the central values in Table I.

M0 [MeV] c1 [GeV�1] �� [GeV�3] cM [GeV�3] cR [GeV�3] �2

d:o:f: �� [MeV]

6�B�PT 873(4) �1:10ð5Þ 27(3) 0.18(8) 0.03(2) 1.2 55(3)

�B�PT 887(3) �0:84ð4Þ 29(3) 0.21(8) 0.04(2) 1.2 44(3)

FIG. 8 (color online). Pion mass dependence ofMN and ��N given by different Oðp4Þ B�PT fits to Nf ¼ 2þ 1 data. The blue solid
and green dashed lines stand for �B�PT and 6�B�PT. The red dotted line is the �B�PT solution with data points only up to 360 MeV.
The black dashed-dotted line does not take correlated normalization uncertainties into account. The blue circle is the phenomeno-
logical nucleon mass and the red square is our ��N result at the physical point.
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determinations of ��N at low pion masses for both Nf ¼ 2

or 2þ 1 data will be crucial to discriminate between
different theoretical descriptions and to establish the value
of ��N at the physical point with high precision. Finally,
we cannot exclude that part of the observed discrepancy
arises from the different role played by strange quarks in
Nf ¼ 2 simulations where they are quenched, and in

Nf ¼ 2þ 1 ones, where they are dynamical and more

realistic. In conclusion, we think our analysis exploits the
considerable size of the current data set on MN in a way
that it is possible to become sensitive to unexpected
systematic effects. However, more lQCD data will be
required to settle this issue and interpret possible discre-
pancies of this type.

IV. SUMMARYAND CONCLUSION

We have studied the nucleon mass and the ��N term in
the SUð2Þ covariant B�PT up to the chiral order p4. We
have performed fits, using B�PT with and without explicit
�-isobar degrees of freedom, to combined lQCD data from
various collaborations for Nf ¼ 2 and Nf ¼ 2þ 1 num-

bers of flavors. Special attention has been paid to the
different sources of uncertainties in the input data. This
study is the first application of the p4 SUð2Þ covariant
B�PT with the EOMS renormalization scheme and con-
sistent treatment of the �-isobar to lQCD data. We have
included finite volume corrections and also discussed finite
spacing effects. In the Nf ¼ 2 case we were able to set the

lQCD data normalization via the Sommer scale r0 and also
performed simultaneous fits to nucleon mass data and
one available low-M� ��N data point. In the Nf ¼ 2þ 1

case we took into account correlated normalization
uncertainties for points belonging to the same data set. In
the following we summarize our findings.
(1) Our formula for the nucleon mass depends on

several low energy constants, some of which have
been fitted to the lQCD data. Explicitly, the LECs
are M0, c1, c2, c3, c1�, M�0, gA, f�, hA and ��; the
latter is a linear combination of several couplings
that appear in the chiral Lagrangian at Oðp4Þ. We
adopted the phenomenological values for gA, f�
and hA. Our fits are insensitive to the chosen values
of c2, c3, c1� and M�0 so that we are not able to
constrain c2 and c3 and fix them to phenomeno-
logical values extracted from �N scattering.
Furthermore, we observe that c1� and �� are corre-
lated, which hinders a better determination of c1�
than the range c1� ¼ ð�0:5Þ–ð�1:3Þ GeV�1 based
on rather scarce lQCD data for the �ð1232Þ mass.
The LECs M0, c1 and �� are better determined, and
their values are listed in Tables II and IV for the
Nf ¼ 2 and Nf ¼ 2þ 1 fits. For the Nf ¼ 2 en-

sembles we were able to extract the Sommer scale,
finding r0 ¼ 0:493ð23Þ fm. By performing fits to
nucleon mass data alone as well as including a ��N

lQCD data point at M� ¼ 285 MeV from the
QCDSF collaboration we have obtained that the
inclusion of the p4 order improves the quality of
the simultaneous fits.

(2) For both Nf ¼ 2 and 2þ 1 ensembles we have

investigated the effects coming from finite lattice
spacings a and volumes employed in lQCD. We
parametrized lattice spacing effects by linear a2

terms and applied the standard B�PT FV correc-
tions. We have obtained that both effects yield com-
parable numerical corrections to the nucleon mass.
However, we also found that the simple parametri-
zation of the finite lattice spacing effects does not
allow us to disentangle it in a quantitative manner
from other effects. Fit results with and without finite
a2 effects are compatible within the statistical
uncertainty. In contrast to the a2 effects, the FV
corrections are much better under control due to
the established B�PT techniques for the presently
available lQCD volumes.

(3) We have extracted the ��N term for the Nf ¼ 2 and

Nf ¼ 2þ 1 lQCD ensembles obtaining ��N ¼
41ð5Þð4Þ MeV and ��N ¼ 52ð3Þð8Þ, respectively.
The inclusion of the Nf ¼ 2 ��N data point greatly

reduces the ��N uncertainty as well as brings the
two approaches, �B�PT and 6�B�PT, closer. In the
case of the Nf ¼ 2þ 1 ensembles, where we fitted

solely nucleon mass data, the two approaches give
��N values that differ by 9 MeV. This is a novel
feature with respect to HB�PT fits where the inclu-
sion of the �-isobar alters the result by more than

FIG. 9 (color online). Pion mass dependence of the nucleon
mass. The blue solid line and blue squares correspond to our fits
to Nf ¼ 2þ 1 lQCD data. The red-dashed line and red-triangles

correspond to our fits to Nf ¼ 2 lQCD data including the

��Nð285Þ point. The error bands for our fit results have been
removed for the sake of clarity.
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40 MeV [58]. The inclusion of finite lattice spacing
correction to the Nf ¼ 2þ 1 data tends to reduce

��N. Furthermore, we want to call the attention to
the fact that our result in Nf ¼ 2 is only compatible

with the experimental determination based on the
KA85 �N scattering partial wave analyses of
Refs. [16,38]. Our Nf ¼ 2þ 1 value is also com-

patible with the latest determination from the WI08
and EM06 analyses, ��N ¼ 59ð7Þ, which is phe-
nomenologically favored on the grounds of consis-
tency with �N phenomenology [38]. Finally, this
Nf ¼ 2þ 1 result would lead, according to the

traditional arguments linking sigma terms to the
baryon-octet mass splittings [7,10], to a large
strangeness content in the nucleon. However, the
uncertainties in these arguments have been recently
revisited [99] with the conclusion that a ��N of this
size is not at odds with, but favored by a negligible
strangeness in the nucleon.

(4) With both the �B�PT and 6�B�PT approaches we
obtain consistent descriptions of the pion mass de-
pendence of the nucleon mass, as can be seen in
Figs. 8 and 9. Moreover, for the current lQCD data,
all our results are compatible within uncertainties
and exhibit only small slope variations. However,
these small variations translate into differences in
the value of ��N at the physical point. For the 2 and
2þ 1 flavor ensembles the M� distribution of the
data points is different. To further reduce the uncer-
tainty in the ��N value, lQCD data points with
smaller uncertainties and less spread would be
required. In the Nf ¼ 2þ 1 case a considerable

improvement could be achieved with a direct mea-
surement of ��N for M� < 300 MeV. It will be
interesting to see how the Nf¼2 and Nf ¼ 2þ 1

values for ��N will change when both data sets
become more homogeneous.
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Séneca No. 11871/PI/09.

APPENDIX A: B�PT LAGRANGIANS

The counting scheme of Eq. (3) defines the nucleon p4

self-energy by the sum of the graphs shown in Fig. 1. The
relevant SUð2Þ covariant B�PT Lagrangians with explicit
�-isobar degrees of freedom are

LN ¼Lð1Þ
N� þLð1Þ

N�� þLð2Þ
� þLð2Þ

N� þLð2Þ
� þLð4Þ

N�; (A1)

L� ¼ Lð1Þ
�� þLð1Þ

N�� þLð2Þ
� ; (A2)

where the upper indices denote the chiral order. Explicitly,
the individual isospin symmetric Lagrangians in absence
of external fields and expanded in pion fields � are

Lð1Þ
N� ¼ �N

�
i6@�M0 þ 1

4f2�0
�abcð6@�aÞ�b�c

� gA0
2f�0

�	�5ð@	�aÞ�a
�
N; (A3)

Lð1Þ
�� ¼ ��	ð�	
�i@� �M�0�

	
Þ�


þ HA

2f�0M�0

"	
�� ��	T að@��
Þ@��a; (A4)

Lð1Þ
�N� ¼ i

hA
2f�0M�0

�NTa�	
�ð@	�
Þ@��a þ H:c:; (A5)

Lð2Þ
� ¼ 1

2
ð@	�aÞð@	�aÞ � 1

2
M2�a�a; (A6)

Lð2Þ
N� ¼ c12m

2
�

�
2� 1

f2�0
�a�a

�
�NN

� c2
M2

0f
2
�0

�Nð@	�aÞð@
�aÞ@	@
N

þ c3
f2�0

ð@	�aÞð@	�aÞ �NN

� c4
4f2�0

�N�	�
½@	�a; @
�
a�N

þ c5
m2

�

f2�0
�N½�a�a � ð�a � �aÞ2�N; (A7)

Lð2Þ
� ¼ 4c1�m

2
�
��	�

	
�
; (A8)

Lð4Þ
N� ¼ � 1

2
�m4

�
�NN; (A9)

where m2
� is theOðp2Þ pion mass m2

� ¼ 2B �m proportional
to the chiral condensate B and the current-quark mass

average �m. The Lagrangians Lð1;2;4Þ
N� for the nucleon field

N are those of [100] with � ¼ �4½8e38 þ e115 þ e116� a
combination of Lð4Þ

N� low energy constants; the Lð3Þ
N� does

not produce any nucleon self-energy vertices. The cou-
plings of the �-isobar are chosen to be consistent with
the covariant construct of the free Rarita-Schwinger theory
and hence do not contain the unphysical degrees of free-
dom of vector-spinor fields. The �-isobar Lagrangians and
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further details can be found in [35–37,46,101]. There are
13 low energy constants f�0, gA0, c1, c2, c3, c4, c5, HA0,
hA0,M0,M�0, c1�, and�where c4 and c5 do not contribute
to the nucleon mass.

The loop graphs in Fig. 1 are divergent in four dimen-
sions and need to be regularized. For that we use the
dimensional regularization with D ¼ 4� 2� dimensions
and renormalize contributions proportional to

L ¼ � 1

"
þ �E � ln 4�:

For the D-dimensional spin-3=2 propagator we use

S��� ðpÞ ¼ 6pþM�

p2 �M2
� þ i"

�
�g�� þ 1

D� 1
����

þ 1

ðD� 1ÞM�

ð��p� � ��p�Þ

þ D� 2

ðD� 1ÞM2
�

p�p�

�
:

The appearing totally antisymmetric � matrices are

�	
 ¼ 1

2
½�	; �
�;

�	
 ¼ 1

2
f�	
; �g ¼ i"	
��5�� ¼ �	
���;

�	
� ¼ 1

2
½�	
; ��� ¼ i"	
��5:

APPENDIX B: SELF-ENERGY FORMULAS

1. Nucleon self-energies

For the nucleon mass we need the self-energy expres-
sions corresponding to the Feynman graphs in Fig. 1. The
contributions listed in increasing chiral order are

�ð2Þðm2
�Þ ¼ �C2ðm2

�Þ;
�ð3Þðm2

�; 6pÞ ¼ �N3ðm2
�; 6pÞ þ �N�3ðm2

�; 6pÞ;
�ð4Þðm2

�; 6pÞ ¼ �N4ðm2
�; 6pÞ þ �T4ðm2

�Þ þ�C4ðm2
�Þ

þ�N�4ðm2
�; 6pÞ;

where we keep the 6p dependence explicit and a ‘‘�’’ in the
index denotes contributions from loop-internal �-isobars.
The individual unregularized self-energies read

�C2ðm2
�Þ ¼ �c14m

2
� (B1)

�N3ðm2
�; 6pÞ¼3

�
gA0
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¼c1m
2
�12

�
gA

8F��

�
2Z 1

0
dz2ð1�zÞ

�
3M2

N

�
L�1þ ln

M2
N

�2

�

þ3M2
0ð2�2zþz2Þ

�
Lþ ln

M2
N

�2

�

þðð1�zÞ2þ2ÞM2
0þ

5

2
M2

Nþ
ð1�zÞ4
2M2

N

�
(B4)
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with the expressions

M 2
N ¼ zm2

� � zð1� zÞp2 þ ð1� zÞM2
0; (B9)

M 2
� ¼ zm2

� � zð1� zÞp2 þ ð1� zÞM2
�0: (B10)

2. �ð1232Þ self-energies
In Sec. II B we use the pion mass dependence of the

�-isobar to constrain the LEC c1�. The �-isobar mass to
order p3 is

Mð3Þ
� ðm2

�Þ ¼ M�0 þ��2ðm2
�Þ þ��N3ðm2

�Þ þ ���3ðm2
�Þ;

(B11)

where the self-energies are defined as

���
� ð6pÞ ¼ �g��½6p�A

�ðM�0Þ þ �B
�ðM�0Þ�; (B12)

with the unregularized expressions

�C�2ðm2
�Þ ¼ �c1�4m

2
�; (B13)
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��N3ðm2
�Þ ¼ � 1
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dz
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M2
�N ¼ zm2

� � zð1� zÞM2
�0 þ ð1� zÞM2

0; (B15)

���3ðm2
�Þ ¼ � 5
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M�0ð1þ zÞ

�M2
��

�
L� 1þ ln

M2
��

�2

�

þ 13

9
M�0ð1þ zÞM2

��

�
; (B16)

M2
�� ¼ zm2

� � zð1� zÞM2
�0 þ ð1� zÞM2

�0: (B17)

These contributions are the �-isobar versions of the nu-
cleon graphs�C2,�N3 and �N�3 of Fig. 1. The �C�2 is the
�-isobar contact graph and the��N3 and ���3 are p

3 loop
with external �-isobars and an internal nucleon and
�-isobar, respectively.

3. Finite volume corrections to the nucleon self-energies

The loop graphs �N3, �N4, �T4 and �N�3, �N�4 of
Fig. 1 are subject to FVeffects when the nucleon is placed
in a discretized box. We calculate these effects by the
standard techniques of [44]. In the following we summa-
rize the calculation of the loop integral with a single
propagator and list afterwards all appearing FV corrections
for the nucleon mass to order p4.

For the FV calculation we chose the nucleon rest frame
6p ¼ �0p0 ¼ �0MN . As a consequence all appearing loop
integrals can be brought into the form of

Z dl4

ð2�Þ4
l:Al:B � � �
l2 �m2

!
Z dl4

ð2�Þ4
la0

l2 �m2
; (B18)

where no Lorentz decomposition has to be used, A and B
are given 4-vectors and a is a power of the zeroth-loop
momentum component. The loop momentum l is now
discretized with respect to the box size L by

Z d4l

ð4�Þ4 ¼
Z dl0

2�

d~l

ð2�Þ3 !
Z dl0

2�

1

L3

X
~n

with

~l ¼ 2�

L
~n ~n 2 Z3;

(B19)

such that after Wick-rotating and the use of Poisson’s
formula we get

Z dl0
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X
~n

la0
l20 � 2�

L
~n2 �m2

¼ �i�þ1
Z 1

�1
dl4
2�

Z 1

�1
d~l

ð2�Þ3
la4

l24 þ ~l2 þm2

ð2�Þ3
L3

�X
~n

�ð3Þ
�
~l� 2�

L
~n2
�

(B20)

¼�i�þ1
Z 1

�1
dl4
2�

Z 1

�1
d~l

ð2�Þ3
la4

l24þ ~l2þm2

X
~j

eiL
~j�~l; (B21)

with ~j 2 Z3. The case ~j ¼ 0 corresponds to the usual

continuum result whereas the cases ~j � 0 are the finite
volume corrections. All remaining integrals can be solved
analytically. For our nucleon mass expression we need the
following solutions:

Z dl4

ð2�Þ4
1

l2 �m2
¼ �i

ð4�Þ2
X
~j�0

4

ffiffiffiffiffiffi
m2

p

Lj
K1ðFÞ;

Z dl4

ð2�Þ4
l20

l2 �m2
¼ �i

ð4�Þ2
X
~j�0

ð�4Þm2

ðLjÞ2 K2ðFÞ;
(B22)

Z dl4

ð2�Þ4
1

½l2 �m2�2 ¼
�i

ð4�Þ2
X
~j�0

ð�2ÞK0ðFÞ;

Z dl4

ð2�Þ4
l20

½l2 �m2�2 ¼
�i

ð4�Þ2
X
~j�0

2

ffiffiffiffiffiffi
m2

p

Lj
K1ðFÞ;

(B23)

Z dl4

ð2�Þ4
1

½l2 �m2�3 ¼
�i

ð4�Þ2
X
~j�0

1

2

Ljffiffiffiffiffiffi
m2

p K1ðFÞ;

Z dl4

ð2�Þ4
l20

½l2 �m2�3 ¼
�i

ð4�Þ2
X
~j�0

�
� 1

2

�
K0ðFÞ;

(B24)

where the K
ðxÞ are modified Bessel functions of the

second kind with F ¼ Lj
ffiffiffiffiffiffi
m2

p
and j ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jx þ jy þ jz
p

with ji 2 Z.
To collect our final results we use the notations

FN ¼ Lj
ffiffiffiffiffiffiffiffiffiffi
M2

N

q
;

�0
N3ðm2

�; LÞ ¼ @

@p0

�N3ðp0; m
2
�; LÞjp0¼M0

;
(B25)

F� ¼ Lj
ffiffiffiffiffiffiffiffiffiffi
M2

�

q
;

�0
N�3ðm2

�; LÞ ¼ @

@p0

�N�3ðp0; m
2
�; LÞjp0¼M0

;
(B26)

where the arguments of the self-energies distinguish them
from their continuum counterparts.
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The individual finite volume contributions corresponding to the loop graphs in Fig. 1 are
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�; LÞ ¼ 3
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8f��
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Z 1

0
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2
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N

q
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3
5 (B27)
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4. Fit formulas

In Secs. III A and III B we use in the �2 fits the following nucleon mass expressions:

Mð2Þ
N ðM2

�Þ ¼ M0 þ �C2ðM2
�Þ; (B34)

Mð3Þ
N ðM2

�Þ ¼ M0 þ�C2ðM2
�Þ þ �N3ðM2

�Þ; (B35)

Mð3�Þ
N ðM2

�Þ ¼ M0 þ �C2ðM2
�Þ þ�N3ðM2

�Þ þ�N�3ðM2
�Þ; (B36)
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Mð4Þ
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where all loops are evaluated at 6p ¼ M0. The additional terms proportional to c1, as compared to Eq. (13), come from the
discussion in Sec. III B. In the case of fits with finite volume corrections, we add the following expressions:
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�; LÞ (B39)
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