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We apply nonperturbative renormalization to bilinears composed of improved staggered fermions.

We explain how to generalize the method to staggered fermions in a way that is consistent with the lattice

symmetries and introduce a new type of lattice bilinear that transforms covariantly and avoids mixing.

We derive the consequences of lattice symmetries for the propagator and vertices. We implement the

method numerically for hypercubic-smeared (HYP-smeared) and asqtad valence fermion actions, using

lattices with asqtad sea quarks generated by the MILC Collaboration. We compare the nonperturbative

results so obtained to those from perturbation theory, using both scale-independent ratios of bilinears (of

which we calculate 26) and the scale-dependent bilinears themselves. Overall, we find that one-loop

perturbation theory provides a successful description of the results for HYP-smeared fermions if we

allow for a truncation error of roughly the size of the square of the one-loop term (for ratios) or of size

Oð1Þ � �2 (for the bilinears themselves). Perturbation theory is, however, less successful at describing the

nonperturbative asqtad results.
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I. INTRODUCTION

Precise knowledge of matching factors (Z factors)
between lattice operators and their continuum counterparts
is necessary for many phenomenological applications of
lattice QCD. Nonperturbative renormalization (NPR) [1] is
a widely used method for determining these matching
factors, and has been applied successfully to many types
of lattice fermion.1 Compared to perturbative matching,
which is necessarily carried out at fixed order, NPR has
the great advantage of avoiding truncation errors. While
the size of such errors can be estimated, the estimates are
necessarily approximate.

In this paper we apply NPR to improved staggered
fermions, focusing on matching factors for quark bilinears.
There have been relatively few applications of NPR to
staggered fermions. Most relevant for our work is a
quenched calculation of Zm, the renormalization factor
for the quark mass, using unimproved staggered fermions
[3]. This calculation found large discretization errors,
which is typical for unimproved staggered fermions.
Such errors should be significantly reduced by using
improved actions as we do here.

Generalizing NPR to staggered fermions is relatively
straightforward, although there are a number of technical
details that do not arise withWilson-like fermions and have
not been discussed in previous work. We apply the method
to the quark propagator and to quark bilinears having
arbitrary spin and taste (but no derivatives). We use two
types of improved staggered quarks: ‘‘asqtad’’ [4–6]

and hypercubic-smeared (HYP-smeared) improved stag-
gered quarks [7]. A complication arising with staggered
quarks is the presence of the taste degree of freedom,
which has the consequence that each bilinear comes in
16 possible tastes. In this study we turn the presence of
multiple tastes into an advantage. Ratios of matching
factors having the same spin but different tastes become
unity in the continuum limit, but differ at finite lattice
spacing.2 The differences are proportional to both Oð�sÞ
(with the coupling evaluated at a scale �1=a) and a2p2

(where p is the scale at which NPR is implemented). Such
ratios are akin to ZA=ZV with Wilson fermions. Comparing
them to the results from one-loop perturbation theory (PT),
and studying their p dependence gives information on the
accuracy of truncated PT and may allow discretization
effects and perturbative contributions to be disentangled.
The multiple tastes of staggered fermions allow us to form
many such ratios.We also make the comparison with PT for
the Z factors themselves.3

Our work was initially motivated by the need for match-
ing factors in two ongoing calculations—that of quark
masses by the MILC Collaboration and of electroweak
matrix elements by the SWME Collaboration. The former
work has determined the light quark masses using first the
asqtad action [4–6] (with results reviewed in Ref. [8]) and
more recently the HISQ action [9] (with results exemplified
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1For a review see Ref. [2].

2That all ratios (including those containing the taste singlet)
become unity in the continuum limit holds only because we
consider flavor nonsinglet bilinears, for which there are no
quark-disconnected Wick contractions.

3We do not present results for the (spin) pseudoscalar in this
paper, since for these quantities the chiral limit is complicated
by the presence of pion poles. This is discussed further in
Sec. II C.
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by those of Ref. [10]). These determinations use two-loop
matching factors, and the concomitant truncation error is
the largest source of error. A nonperturbative determination
of the matching factor could firm up and reduce this error. It
would also allow check of the consistency of different
lattice approaches by comparing with the more precise
results for light quark masses obtained in Ref. [11] using
a combination of results for ms=mc and mc.

First results using NPR for the matching factor Zm with
asqtad quarks were presented by one of us in Ref. [12] and
extended in Ref. [13]. Using the MILC coarse (a �
0:12 fm) and fine (a � 0:09 fm) lattices to take the con-
tinuum limit, the result obtained for the strange quark mass

was msðMS; 2 GeVÞ ¼ 103� 3 MeV, where the error is
only statistical. This is somewhat higher than the results
one obtains from these two lattices using one-loop [14]
(ms ¼ 76� 8 MeV) and two-loop [15] matching
(ms ¼ 87� 6 MeV).4 What is needed, however, is a full
error budget for the NPR calculation. One aim of the
present work is to study some of the systematic errors
that enter into this budget.

The second ongoing calculation which motivates the
present work is that of BK (and related matrix elements)
using HYP-smeared staggered fermions on the MILC asq-
tad configurations [16,17]. This calculation uses one-loop
matching for the relevant four-fermion operators, and the
truncation error again dominates that from other sources.
This error can be significantly reduced using NPR. The
present calculation is a step on the way, as the four-fermion
operators are essentially composed of products of the
bilinears studied here.

For completeness, we recall the main disadvantages of
NPR. These are the need for a ‘‘window’’ where nonpertur-
bative and discretization errors are small, the presence of
statistical errors, and the possibility of ‘‘Gribov noise.’’
Methods exist, however, to systematically reduce the first
two errors. The window can be enlarged by combining the
step-scaling technique with NPR [18] (a technique we do
not use here), and statistical errors can be substantially
reduced using momentum sources (which we do use).
Gribov noise5 is the uncertainty caused by the presence of
multiple solutions to the gauge-fixing criterion [21–26].

This paper is organized as follows. The following sec-
tion describes the application of NPR to staggered fermi-
ons, beginning with the quark propagator and then
discussing bilinears. We introduce and use ‘‘covariant
bilinears,’’ which transform in irreducible representations
(irreps) of the lattice symmetry group, and differ somewhat

from the ‘‘hypercube bilinears’’ commonly used in simu-
lations. In Sec. III we briefly describe the numerical meth-
ods we use and their implementation. We present our
results in Sec. IV, providing a detailed comparison with
perturbation theory. We conclude in Sec. V.
Technical results are collected in four appendices.

Appendix B sketches the classification of covariant
bilinears into irreps of the lattice symmetry group. In
Appendix C we explain how lattice symmetries constrain
the form of the quark propagator and bilinear amplitudes.
In Appendix D we describe how the perturbative calcula-
tion of one-loop matching factors changes when moving
from hypercube to covariant bilinears. In Appendix E we
collect continuum results needed for the renormalization
scale evolution of the matching factors.
Preliminary results from this study were presented in

Refs. [27,28].

II. NPR FOR STAGGERED FERMIONS

For valence staggered fermions we use either the unim-
proved action, the HYP-smeared improved action or the
asqtad action. The unimproved action is

Sun ¼
X
n

��ðnÞ
�X

�

��ðnÞr� þm

�
�ðnÞ;

r��ðnÞ ¼ 1

2
½U�ðnÞ�ðnþ �̂Þ �Uy

�ðn� �̂Þ�ðn� �̂Þ�
(1)

where �ðnÞ is the usual single-component staggered lattice
field, n ¼ ðn1; n2; n3; n4Þ labels lattice sites, ��ðnÞ ¼
ð�1Þn1þ���þn��1 is the remnant of the Dirac matrices, and
U�ðnÞ are the SU(3) gauge links. All quantities are dimen-

sionless, so that, for example, the bare quark mass is
related to the physical mass by Zmm ¼ mphysa.

The HYP-smeared action is obtained simply by replac-
ing the links with HYP-smeared links, V�ðnÞ, obtained as

explained in Ref. [7]. We use the HYP-smearing parame-
ters labeled ‘‘HYP(1)’’ in Ref. [29]: �1 ¼ 0:75, �2 ¼ 0:6
and �3 ¼ 0:3.
The asqtad action [4–6] is described in Appendix A.

This action is fully tree-level Oða2Þ improved, unlike the
HYP-smeared action where only taste-breaking terms are
improved.
We use configurations from the MILC Collaboration,

which are generated with the asqtad action for sea quarks
(using the rooting prescription to remove unwanted tastes)
and the one-loop improved Symanzik action for gluons [8].
All lattices have an even number of points, L�, in each

direction, and we use periodic boundary conditions on the
propagators in all directions.
Before calculating propagators and vertices, gauge fields

are fixed to Landau gauge. On the lattice, this is achieved
by maximizing

4The result based on four lattice spacings and two-loop match-
ing is ms ¼ 88� 5 MeV [8]. We also note that the most precise
determination, (obtained using the ratio ms=mc) is ms ¼ 92:4�
1:5 MeV [11].

5Gribov noise can be avoided using methods based on the
Schrödinger functional [19,20], but these are more complicated
in practice than NPR.
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FL ¼ X
n;�

TrðU�ðnÞ þU�ðnÞyÞ; (2)

for which we use an over-relaxation algorithm. This finds a
local maximum, of which there are many, leading to the
ambiguity of Gribov copies. We simply assume, following
standard practice [21–26], that the differences in the results
on different copies are small enough to ignore.

A. Quark propagator

NPR takes place in momentum space, so we must choose
the appropriate momentum-space quark fields. The choice is
nontrivial for staggered fermions, because the lattice
Brillouin zone contains both momentum and taste informa-
tion [30]. This is the momentum-space analog of the fact that
the four-taste Dirac field is built up from staggered fields �
living on a 24 hypercube [31]. Motivated by this split into
hypercubes, Ref. [3] used the momentum-space field

�0
Aðp0Þ ¼ X

y

e�ip0�y�ðyþ AÞ; (3)

where y is a vector labeling 24 hypercubes (y� ¼ 2ny�, with

ny� integers), and A is a hypercube vector labeling points
within the hypercubes (A� 2 f0; 1g). Thus yþ A picks out a

particular lattice point. The physical momentum6 p0 lies in a
reduced Brillouin zone,

� �=2 � p0
� < �=2; (4)

and the label A contains the Dirac and taste indices. The key
feature of the choice (3) is that the momentum phase factor
does not vary within each hypercube.

This choice is, however, problematic, because �0
Aðp0Þ

does not transform irreducibly under lattice translations.
This is clear from the fact that the division of the lattice
into 24 hypercubes is not invariant under single-site
translations. The lack of irreducibility implies that the
propagator does not have a simple, continuumlike form.

It is straightforward to avoid this problem by using the
definition introduced by Ref. [30]. One uses the standard
Fourier transform, without reference to hypercubes, lead-
ing to a momentum lying in the usual Brillouin zone,
�� � p� < �. One then breaks this up into 24 subzones,

each characterized by a hypercube vector B, such that a
general momentum is written

p� ¼ p0
� þ �B�; (5)

with p0
� constrained as in (4) above. p0 is the physical

momentum and B contains the spin and taste information.
The momentum-space field of Ref. [30] is then

�Bðp0Þ ¼ X
n

e�ip�n�ðnÞ (6)

¼ X
y;A

e�ip0�y�ip0�Að�ÞB�A�ðyþ AÞ (7)

¼ X
A

e�ip0�Að�ÞB�A�0
Aðp0Þ; (8)

(with an identical definition for �� in terms of ��). The
second line shows that this new choice differs from �0

B

of Eq. (3) by the presence of a phase factor exp ð�ip0 � AÞ
within the hypercube. The last line gives the explicit rela-
tion between�B and�0

B. In the continuum limit, when one
can set p0 ! 0, the two fields are simply related by a
unitary transformation, and are thus physically equivalent.
Away from the continuum, however, they differ in an
essential way.
The merits of the choice (6) can be seen by considering

the free quark propagator. First we define the propagator
(with or without interactions) by

h�Aðp0Þ ��Bð�q0Þi ¼ ð2�Þ4 ��ðp0 � q0ÞSðp0ÞAB; (9)

where �� is the periodic delta function (with period 2�).7

This form follows from the invariance of the action under
two-site translations without the need for phases on the
quark fields. The propagator Sðp0Þ has implicit color
indices and explicit spin-taste indices. Altogether it is a
48� 48matrix. Invariance under global gauge transforma-
tions implies, however, that it is proportional to the identity
matrix in color space, a property that holds also for its
inverse. Thus we keep color indices implicit in the follow-
ing discussion. For free quarks, the inverse of S is [30]

S�1
freeðp0ÞAB ¼ mð1 	 IÞAB þ i

X
�

sin ðp0
�Þð�� 	 IÞ

AB
; (10)

where m is the valence quark mass. Here we use the
notation of Refs. [32,33] (also briefly explained in
Appendix A).
The result (10) has a continuumlike form with a taste-

singlet mass term and a taste-singlet derivative term; the
only effect of discretization is the replacement of p0

� with

sin ðp0
�Þ. In particular, there are no taste-violating terms.

This simplicity is guaranteed by the lattice symmetries
[30], and does not hold if one uses the field (3).
In fact, one can show that the absence of taste-violating

terms holds in the presence of interactions. This was shown
in Ref. [30] close to the continuum limit, and is demon-
strated for arbitrary p0 in Appendix C. The key result is that
the propagator satisfies, for each �,

SðpÞ ¼ ðI 	 	�ÞSðpÞðI 	 	�Þ , ½ðI 	 	�Þ; SðpÞ� ¼ 0:

(11)

6This momentum is physical in the sense that the part corre-
sponding to taste degrees of freedom has been removed. It is,
however, dimensionless, containing an implicit factor of a.

7On a finite lattice one replaces ð2�Þ4 ��ð0Þ with the number of
sites, Nsite.
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This implies that SðpÞ is a taste singlet, i.e. consists only of
terms whose matrix structure is ð�S 	 IÞ. We stress that this
result holds to all orders in perturbation theory, and, in-
deed, nonperturbatively.

Constraints on the form of the propagator also arise from
lattice rotations and spatial inversions, as discussed in
Appendix C. Given that only taste-singlet terms appear,
however, these constraints are identical to those that apply
to other types of fermions, e.g. Wilson or overlap fermions.
The final constraints arise from the Uð1Þ
 axial symmetry
of the staggered action. The net effect is that the form of the
inverse propagator is8

S�1ðp0Þ¼cSmðI	IÞþcVp
0
���	I

þcTm
X
��

p0
�ðp0

�Þ3���	I

þcA
X
���

p0
�ðp0

�Þ3ðp0
�Þ5����	I

þcPm
X

���

p0
�ðp0

�Þ3ðp0
�Þ5ðp0

Þ7����	 I; (12)

where the cj are constants. Here we are using a somewhat

schematic notation in which, for each Dirac structure, we
display only the term having the lowest power of p0 andm.
Thus, for example, in the cT term, there are terms not
shown in which the momentum dependence is p0

�ðp0
�Þ5,

etc. Such terms are suppressed in the continuum limit
relative to those shown by powers of a2. We are also using
the shorthand ��� ¼ ����, etc. The factors ofm arise due

to the Uð1Þ
 symmetry (and are thus absent in the corre-
sponding result for Wilson fermions). As one approaches
the continuum limit (i.e. as p0, m ! OðaÞ) only the cS and
cV terms survive, and one is thus guaranteed to obtain the
same form as the free propagator, up to mass and wave
function renormalization.

With this background we can now return to the applica-
tion of NPR to staggered fermions. Since the staggered
propagator has the same general form as with other fermi-
ons, supplemented only by the taste degrees of freedom,
one can carry over the formalism of Ref. [1] essentially
verbatim. We first calculate Sðp0Þ from Eq. (9), and then,
for each p0, invert the resulting 48� 48 matrix to obtain
S�1ðp0Þ. In the RI0 scheme, wave function renormalization
is then given by

Z0
qðp0Þ ¼ �i

1

48

X
�

~p0
�

~p02 Tr½ð�� 	 IÞS�1ðp0Þ�: (13)

Here ~p0 ¼ sin ðp0Þ and sin ðp0Þ þ sin 3ðp0Þ=6, respectively,
for HYP and asqtad fermions. These choices are made
so that, for both cases, Z0

q ¼ 1 in the free theory.

The shorthand ~p02 means
P

�ð~p0
�Þ2, and the trace is over

spin, taste and color indices. As always, with NPR, one
aims to work in the window

�2
QCD 
 p02 


�
�

a

�
2
; (14)

so as to avoid nonperturbative effects and discretization
errors. We discuss these constraints further when we
present results.
The quark propagator allows one, in principle, to

determine the mass renormalization factor Zm, using

1

48
Tr½ðI 	 IÞS�1ðp0Þ� ¼ Z0

qðp0Þ
�
Zmðp0Þmþ C1

h ���i
p02

�
:

(15)

Here we display the leading nonperturbative correction,
obtained in Refs. [34,35] using the operator product
expansion. In practice, as is well known, this method of
determining Zm has larger nonperturbative corrections than
that (to be described in Sec. II C) using vertex functions.

B. Covariant quark bilinears

Before discussing vertex functions we introduce the
bilinear operators used in our numerical calculations. The
conventional choice for bilinears relies on a partitioning of
the lattice into 24 hypercubes. For operators at zero
momentum, which is all we consider here, these take
the form

OS	F ¼ 1

Ny

X
y

X
A;B

��AðyÞð�S 	 	FÞABUyþA;yþB�BðyÞ: (16)

Here y labels hypercubes as above, with Ny being the

total number in the lattice. The hypercube fields are defined
by [32]

��AðyÞ ¼ 1

4
�ðyþ AÞ and �BðyÞ ¼ 1

4
�ðyþ BÞ: (17)

The normalization is such that, in the continuum limit,
the matrix element of OS	F is the same as that of
a3

R
d4x �Qð�S 	 	FÞQ=V, with V the four-volume [36].

The bilinears are made gauge invariant by the inclusion
of UyþA;yþB, which is the average over products of gauge

links along minimal-length paths connecting the �� and �
fields. We have investigated various choices of links:
(1) For unimproved or asqtad valence quarks, a pos-

sible choice is the original gauge links, tadpole-
improved: U�=u0. We find that this leads in

general to Z factors differing substantially from
unity, and poor convergence of perturbative predic-
tions. We do not present results for this choice.

(2) For asqtad valence quarks one can also use the
Fat-7þ Lepage smeared links W�. The resulting

links are closer to unity, and couple less strongly
to gluons with momenta of Oð1=aÞ. This is the

8The same constraint applies to the propagator, but for the
NPR procedure it is more convenient to focus on S�1.
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choice for which we present results with asqtad
quarks.

(3) For HYP valence quarks, we use HYP-smeared
links.

The operators (16) do not, in general, transform irredu-
cibly under translations, because they rely on a particular
partitioning of the lattice into hypercubes. As discussed in
Ref. [37], they can be written as linear combinations of
operators with definite, and in general different, transfor-
mation properties. These operators are distinguished by
having different numbers of derivatives and thus varying
dimensions. The operators of lowest dimension are those
with no derivatives and thus d ¼ 3: these are the ‘‘transla-
tionally covariant’’ (‘‘covariant’’ for short) hypercube
operators.

Although noncovariant four-fermion operators are
being used in the calculations of BK with staggered
fermions, we have chosen to use covariant bilinears in
the present study. This is because these operators are
simpler to code, and have simpler renormalization prop-
erties. Indeed, if one were calculating matrix elements of
staggered bilinears, such as those needed for K ! �
semileptonic form factors, then covariant bilinears would
be a natural choice.

The explicit form of these operators was not determined
in Ref. [37], so we construct them here. A simple approach
is to adapt the methodology developed in Ref. [38] for the
construction of irreducible baryon operators. The key point
is that, when separating the quark and antiquark fields in
the bilinear, one obtains objects which transform irredu-
cibly under translations if one uses ‘‘symmetric shifts.’’
These are shifts in which one averages over forward and
backward directions (including, of course, the gauge links
necessary for gauge invariance). The operator in Eq. (16) is
not of this form. For example, for a vector current with
S¼ð1000Þ and F¼ð0000Þ, if A¼ð0000Þ then B¼ð1000Þ
and one only has the link pointing in one direction. A
symmetric shift would include terms with A ¼ ð0000Þ,
B ¼ ð�1000Þ as well as A ¼ ð2000Þ, B ¼ ð1000Þ (each
weighted by a factor of 1=4) in addition to the original
term (with a weight of 1=2 since it appears both when
shifting the � field and the ��).9

This example illustrates the general prescription for con-
verting the hypercube operators (16) into covariant opera-
tors. For given values of A and B [and recalling that, for
fixed S and F, only one value of B contributes for each A,
namely B¼2 Aþ S� F (with the subscript indicating
mod-2 arithmetic)], one replaces ��AUyþA;yþB�B with

1

2N�

X
�

ð ��AUyþA;yþAþ��Aþ� þ ��B��UyþB��;yþB�BÞ;

(18)

where the set of N� allowed vectors � are those obtained
from B� A by independently changing the signs of the
nonzero components, including no changes. For example,
if B� A ¼ ð1100Þ, then

� ¼ ð1100Þ; ð�1100Þ; ð1 � 100Þ; ð�1 � 100Þ; (19)

and so N� ¼ 4.
After some algebraic manipulations, the resulting

operator can be written

Ocov
S	F ¼ 1

Nsite

X
n

1

16

X
A;B

��ðnÞð�S 	 	FÞn;nþB�A

�Un;nþB�A�ðnþ B� AÞ: (20)

The factor of 1=16 is required in order to retain the same
normalization as in (16), because of the definition �ðyÞA ¼
ð1=4Þ�ðyþ AÞ. The double sum over A and B in (20),

which is really a single sum since ð�S 	 	FÞ enforces
B¼2 Aþ Sþ F, corresponds to the sum over � in the
symmetric shift. This can be made explicit by writing the
operator as

Ocov
S	F ¼ 1

Nsite

X
n

1

N�

X
j�j¼jS�Fj

��ðnÞð�S 	 	FÞn;nþS�F

�Un;nþ��ðnþ �Þ; (21)

where the second sum is over the N� allowed values of �.
This result makes the presence of symmetric shifts

manifest. Note that the sign arising from ð�S 	 	FÞ is
independent of �, and that the form (21) removes some
redundancy in the sums of (20).
The forms (20) and (21) show explicitly that the cova-

riant bilinears do not require a partitioning of the lattice
into hypercubes. This simplifies their numerical implemen-
tation, since one can freely sum over n. The computation of
the link factors is the most costly part of the calculation,
with the cost growing rapidly with j�j.

C. Vertex renormalization

To determine matching factors of general bilinears we
must calculate the vertex functions. We consider here only
the case of exceptional kinematics in which the operator
inserts no momentum,

�S	F
AB ðp0Þ ¼ 1

Nsite

h�a
Aðp0ÞOcov;ðabÞ

S	F ��b
Bð�p0Þi: (22)

Like the propagator, the vertex is 48� 48 matrix, with the
color part being trivial. The new indices a and b in the
superscripts are flavor indices. We always choose a � b so
that the operator is a flavor nonsinglet, which implies that
there is only a single quark contraction between the exter-
nal fields and the operator. The fields in the vertex are
valence quarks and antiquarks, as for the propagator.

9Here it is convenient to allow the vectors A and B to range
outside the hypercube.
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One now follows the perturbative renormalization
procedure, amputating the vertex with the previously
calculated inverse propagators,

�S	Fðp0Þ ¼ S�1ðp0Þ�S	Fðp0ÞS�1ðp0Þ: (23)

Matching factors are determined by enforcing the tree-
level form of �when fields and operators are renormalized,

Z0
qðp0Þ

ZS	Fðp0Þ ¼
1

48

Tr½ð�S 	 	FÞy�S	Fðp0Þ�
VS	Fðp0Þ : (24)

Here we assume no mixing, which is the case for the
covariant bilinears. This is shown nonperturbatively in
Appendix C. We have also divided the projected vertex
by its tree-level expression, VS	F. This has the form
1þOða2Þ, and is given explicitly in Eq. (D4). Dividing
by V removes some of the discretization errors, and this
approach is common practice in NPR.

One can use the following lattice Ward identities to
relate matching factors:

1

m
Tr½ðI 	 IÞS�1ðpÞ� ¼ Tr ½ð�5 	 	5Þ�5	5ðpÞ�; (25)

@

@m
Tr½ðI 	 IÞS�1ðpÞ� ¼ Tr ½ðI 	 IÞ�I	IðpÞ�: (26)

These follow by standard manipulations, and hold as writ-
ten only when m is the valence quark mass [so that the
derivative in (26) does not act on sea quark masses] and the
operators in the vertices are flavor nonsinglets [so that there
are no ‘‘quark-disconnected’’ contractions]. Using the defi-
nition (24) for the right-hand sides and inserting the result
(15) into the left-hand sides, we find, at sufficiently large
p02, that

Zqðp0ÞZmðp0Þ ¼ Zqðp0Þ
ZPðp0Þ ¼

Zqðp0Þ
ZSðp0Þ

) Zmðp0Þ ¼ 1

ZPðp0Þ ¼
1

ZSðp0Þ :
(27)

These are the familiar relations from continuum perturba-
tion theory, which here hold nonperturbatively.

We can now see why it is better to use the vertex rather
than the propagator [Eq. (15)] to determine ZS ¼ 1=Zm.
This is because the condensate term in (15), which gives a
significant correction at typical values of p0, is absent in the
scalar vertex. This can be seen by inserting (15) in the left-
hand side of (26). The condensate appearing in the operator
product expansion is evaluated in the chiral limit, so the
@=@m removes this 1=p02 contribution. By contrast, a
similar analysis for the pseudoscalar vertex shows that
there is a nonperturbative correction proportional to
h �qqi=ðmp02Þ. This is the well-known pion pole contribution
[1], which makes the direct determination of ZP difficult.
One can also use axial Ward identities to show that

ZS	F ¼ ZS5	F5, where the subscript S5 	 F5 indicates

the bilinear with spin taste ð�S�5 	 	F	5Þ. We do not
reproduce the derivation as this result is already known
to hold to all orders in perturbation theory [37].

D. Irreducible representations
and perturbative matching

The 162 covariant bilinears Ocov
S	F fall into 35 irreps

under the lattice symmetry group. These are collected in
Table I, organized according to the number of links, i.e. the
separation between quark and antiquark fields. To our
knowledge, this decomposition into irreps for covariant
bilinears has not been demonstrated previously in the
literature. Thus we provide a brief demonstration in
Appendix B.
As already noted above, matching factors for operators

with spin taste (�S 	 	F) and (�S�5 	 	F	5) are the same.
This reduces the number of independent matching factors
from 35 to 19, as described in the caption to the table.
Since our aim is to compare to perturbation theory,

we need the one-loop matching factors for the covariant
operators. It turns out, for reasons discussed in
Appendix D, that they can be obtained from those for
hypercube bilinears in a trivial way: one simply has to
drop the mixing terms, with the diagonal matching factors
being unchanged. The lack of mixing is a direct result of
using covariant operators, since different spin tastes lie in
different irreps of the lattice symmetry group.

TABLE I. Spin-taste assignments of covariant bilinears forming irreps of the lattice symmetry group. Indices�, � and � are summed
from 1 to 4, except that all are different. If two indices appear in either the spin or the taste, there may be some redundancy, e.g. in
(1 	 	�	�) one can enforce �< � so that the dimension of the irrep is 6. Pseudoscalar and axial bilinears are not listed: they can be

obtained from scalar and vector, respectively, by multiplication by �5 	 	5. Bilinears related in this way have the same matching
factors. This operation also implies the equality of the matching factors for the three pairs of tensor bilinears within square brackets.

Number of links S V T

4 ðI 	 	5Þ ð�� 	 	�	5Þ ð���� 	 	�	�	5Þ
3 ðI 	 	�	5Þ ð�� 	 	5Þ ð�� 	 	�	�Þ ½ð���� 	 	�	5Þð���� 	 	�Þ�
2 ðI 	 	�	�Þ ð�� 	 	�Þ ð�� 	 	�	5Þ ½ð���� 	 IÞð���� 	 	5Þ� ð���� 	 	�	�Þ
1 ðI 	 	�Þ ð�� 	 IÞ ð�� 	 	�	�Þ ½ð���� 	 	�Þð���� 	 	�	5Þ�
0 ðI 	 IÞ ð�� 	 	�Þ ð���� 	 	�	�Þ
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Expressions for the required diagonal matching factors
are given in Ref. [39] in terms of a single lattice loop
integral. Numerical values are, however, not given for the
HYP-smearing coefficients that we use, nor for mean-field
improved asqtad bilinears. We have calculated these values
and collect them in Appendix D.

III. NUMERICAL IMPLEMENTATION

We use the Chroma [40] software library for Landau-
gauge fixing, HYP smearing, and asqtad inversions. We
have added code to implement momentum sources, to
invert the unimproved staggered fermion matrix (needed
for HYP-smeared fermions), and to construct the bilinears
including the gauge links. Stopping criteria for gauge fix-
ing and propagator inversions were set so that the errors are
smaller than those from other sources, and in particular
from statistics [13].

Our gauge configurations are taken from the MILC
coarse (a � 0:12 fm) and fine (a � 0:09 fm) ensembles
[8], which are generated using asqtad fermions and
Symanzik-improved gauge action. Relevant details are
given in Tables II and III. We include results for the ~u0
factors needed for mean-field improvement; these are
defined in Appendix D.

The momenta p0 that we use are listed in Table IV. These
are chosen so that the components are comparable in all
four directions (after inclusion of 2�=Ls;t factors), ensur-

ing that no single component becomes too large. This is
known to reduce discretization errors. These choices cover
the expected NPR window, as will be seen below.
For every gauge-fixed configuration in our ensemble

fUig and each physical momentum p0 under consideration,
we invert the Dirac operator D on 16 momentum sources,
solving DS ¼ eip�n for p ¼ p0 þ �B to obtain

Siðn; p0 þ �BÞ ¼ h�ðnÞ ��Bð�p0ÞiUi ; (28)

where color indices are suppressed. We next Fourier trans-
form the free space index with the 16 different momenta
p ¼ �p0 þ �A, leading to the 16� 16 momentum-space
propagator matrix Siðp0ÞAB of Eq. (9). This is then averaged
over configurations to obtain the propagator Sðp0ÞAB of (9).
Lattice symmetries predict that the inverse propagator
contains only 1 	 1 and �� 	 1 contributions up to terms

suppressed by a4 [see Eq. (12)]. We have checked that
noncontinuum terms are in fact consistent with zero within
our statistical errors.
Vertex functions are constructed from Siðn; p0 þ �BÞ

and

TABLE III. Parameters of asqtad fine ensembles. Lattices are of size 283 � 96, and the strange sea quark mass is amsea;strange ¼
0:031.

amsea=amval Number of configs. Number of momenta a�1 [GeV] u0 ~uHYP0 ~uASQ0

0:0124=0:0124 16 8 2.357 0.8788 0.9869 1.0507

0:0093=0:0093 16 8 2.352 0.8785 0.9868 1.0508

0:0062=0:0062 16 8 2.349 0.8782 0.9868 1.0509

Chiral � � � 8 2.340 � � � 0.9867 1.0511

TABLE II. Parameters of coarse ensembles. The lattices are of size 203 � 64. The quoted masses are for the light (average of up and
down) quarks, there is in addition a strange sea quark of fixed bare mass amsea;strange ¼ 0:05. Lattice spacings are obtained using

r1 ¼ 0:3108 fm and taken from Ref. [8]. Extrapolations to the chiral limit are done with a linear fit. The quoted number of momenta
are for valence asqtad/HYP-smeared fermions.

amsea=amval Number of configs. Number of momenta a�1 [GeV] u0 ~uHYP0 ~uASQ0

0:03=0:03 16 7=10 1.682 0.8696 0.9845 1.0521

0:02=0:02 16 7=10 1.679 0.8688 0.9843 1.0525

0:01=0:01 16 7=10 1.662 0.8677 0.9841 1.0528

Chiral � � � 7=10 1.654 � � � 0.9839 1.0532

TABLE IV. Physical momenta used in our calculations. The four vectors are in units of ð2�=Ls; 2�=Ls; 2�=Ls; 2�=LtÞ, where Ls

(Lt) is the number of sites in the spatial (temporal) directions.

Lattice Fermion momenta

Coarse asqtad (1, 2, 2, 4), (2, 1, 2, 6), (2, 2, 2, 7), (2, 2, 2, 8), (2, 2, 2, 9), (2, 3, 2, 7), (3, 3, 3, 9)

Fine asqtad (1, 2, 2, 5), (2, 2, 2, 6), (2, 2, 2, 7), (2, 2, 2, 8), (2, 2, 3, 8), (2, 3, 3, 9), (3, 3, 3, 10), (3, 3, 3, 12)

Coarse HYP (1, 1, 1, 4), (1, 1, 1, 6), (1, 2, 1, 5), (1, 2, 2, 4), (2, 1, 2, 6), (2, 2, 2, 7), (2, 2, 2, 8), (2, 2, 2, 9), (2, 3, 2, 7), (3, 3, 3, 9)

Fine HYP (1, 2, 2, 5), (2, 2, 2, 6), (2, 2, 2, 7), (2, 2, 2, 8), (2, 2, 3, 8), (2, 3, 3, 9), (3, 3, 3, 10), (3, 3, 3, 12)
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Siðp0 þ �A; nÞ ¼ h�Aðp0Þ ��ðnÞiUi : (29)

As usual, the latter propagator may be obtained from the
former using the staggered analogue of �5-hermiticity
of the Dirac operator, 
Dy
 ¼ D, where 
 ¼
ð�1Þn1þn2þn3þn4 � ð�1Þn is the alternating phase factor.
We find

Siðp0 þ �A; nÞ ¼ ð�1ÞnSiðn; p0 þ � ~AÞy; (30)

where ~A ¼ Aþ2 ð1; 1; 1; 1Þ, and the Hermitian conjugation
acts on color indices. The two propagators are then tied
together with the bilinear. For example, the pseudoscalar
(unamputated) vertex is

�
�5		5

AB ðp0Þ ¼ h�Aðp0ÞOcov
�5		5

��Bð�p0Þi

¼ 1

NconfNsite

X
i;n

Siðp0 þ �A; nÞð�1Þn

� Siðn; p0 þ �BÞ
¼ 1

NconfNsite

X
i;n

Siðn; p0 þ � ~AÞySiðn; p0 þ �BÞ:

(31)

In the general the two propagators end at positions
differing by a hypercube vector, and are connected by an
average over products of links over minimal-length paths
[cf. Eq. (21)].

Amputation and determination of the Z factors is then
performed using Eqs. (23) and (24). For a given value of p0,
these involve manipulations of 16� 16 matrices, which
can be done in the analysis phase of the calculation. The Z
factor corresponding to a given irrep is determined by
averaging the traces of the amputated vertex functions in
that irrep; e.g., for the vector we compute ZV from
1
4 Tr

P
�ð�� 	 1Þ���	1ðp0Þ.

For both asqtad and HYP-smeared fermions, and for
both coarse and fine lattices, we use valence quarks with
bare masses equal to those of the light (asqtad) sea quarks.
Thus our calculations are unquenched for asqtad valence
fermions. For HYP-smeared fermions we are, however,
using a mixed fermion action (different discretizations
of valence and sea quarks) and, in addition, a partially
quenched setup (because Z factors for HYP-smeared and
asqtad fermions are different, so that the physical masses of
sea and valence quarks differ even though the bare masses
are equal). For both types of valence fermions we extrapo-
late our final results to the chiral limit using a linear fit. If
the dependence on quark masses is linear and weak, this
extrapolation will remove partial quenching effects for the
HYP-smeared fermions. Residual effects from using a
mixed action should vanish in the continuum limit, and
thus appear as additional discretization errors for a > 0.
Examples of the chiral fits for Z��	1 are shown in Figs. 1

and 2. These are typical in terms of the quality of fits,

although the extent of the chiral extrapolation is greater for
scalar bilinears. We also use linear chiral fits to determine

values for 1=a, ~uHYP0 and ~uASQ0 which we use in subsequent

analysis. These are shown in Tables II and III. We stress
that these are very mild extrapolations, so that none of our
conclusions would be changed were we to take the values
of these quantities from, say, the lattice spacing with the
smallest values of the valence quark masses.
The only exception to the above discussion of chiral

extrapolations are the matching factors for pseudoscalar
bilinears. As discussed after Eq. (27), these are singular in
the m ! 0 limit [1]. It is possible to remove the singular
part in various ways, but in this work we have chosen to
exclude the pseudoscalars from our analysis.
Although we can extrapolate to the chiral limit for

the two light quarks, our calculations have the strange
sea-quark mass fixed at approximately its physical value.
Strictly speaking, this means that our NPR results are not in

FIG. 1. Example of chiral extrapolation for the ratio
Z��		�

=Z��	1 on the HYP coarse ensemble.

FIG. 2. Example of chiral extrapolation for the ratio
Z��		�

=Z��	1 on the HYP coarse ensemble.
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the desired mass-independent renormalization scheme.
However, given the mild dependence on quark mass that
we observe, we expect that this shortcoming will have
little impact on the final results. In particular, we assume
the error that this introduces to be smaller than the trunca-
tion errors in the one-loop PT expressions to which
we compare.

We compute diagonal Z factors for all 256 choices of
spin and taste. We have checked in some cases that off-
diagonal contributions to Z factors are consistent with zero,
as expected given that the covariant bilinears do not mix.
We use 16 decorrelated configurations, which we find to be
sufficient when using momentum sources. We then com-
bine the 256 choices into the irreps listed in Table I, which
further reduces the errors. All errors are obtained using
single-elimination jackknife.

IV. RESULTS

We divide our discussion of the results into three parts.
In the first two we consider ratios of Z factors in which
the numerator and denominator have the same spins but
different tastes. Specifically, we consider ratios in which
the denominators are taste singlets10:

ZS	Fðp;aÞ
ZS	1ðp;aÞ ¼ 1þ�ð�0Þ

4�
½CLAT

S	F �CLAT
S	1 � þOð½ap�2Þ þ . . . :

(32)

As discussed in Appendix D, PT predicts these ratios to be
independent of the NPR momentum p since they are
dominated by contributions from loop momenta near the
cutoff scale. In particular, � is to be evaluated at a scale
�0 � 1=a which is not related to jpj. This is illustrated by
the right-hand side of Eq. (32), which shows the one-loop
expression for the simplified case of no mean-field
improvement.11 These ratios are thus good quantities to
use to test the accuracy of PT since one does not have
to worry about anomalous dimensions. They are analogous
to ZA=ZV with Wilson-like fermions, with the analogue
of the lack of p dependence being the fact that ZA=ZV

calculated in different ways should agree up to discretiza-
tion errors.

The lack of dependence of the ratios on p does not carry
over to discretization effects [represented in Eq. (32) by the
ðapÞ2 term] or to nonperturbative effects, which behave as
inverse powers of p and are important only for small p.
One can hope to disentangle these effects by studying the p
and a dependence of the ratios, as we discuss below.

In the final part of this section we present results for the
denominators of the ratios. These do have anomalous
dimensions, so we can see how well the p dependence
agrees with the perturbative predictions. These predictions
can be made using continuum perturbation theory, for
which results are known to three- or four-loop order
(as described in Appendix E).

A. Ratios for HYP-smeared bilinears

We begin by discussing the results with HYP-smeared
fermions. In Figs. 3 and 4 we display results for all ratios at
a fixed NPR momentum. We choose ap ¼ ð2; 2; 2; 7Þ in
units of ð2�=Ls; 2�=Ls; 2�=Ls; 2�=LtÞ, so that ðapÞ2 �
1:66 and 0.81, respectively, on coarse and fine lattices. This
turns out to correspond to nearly the same physical value,
jpj � 2:1 GeV, for both lattice spacings. We expect that
this choice satisfies the window condition (14) for both
lattice spacings.
These figures show the comparison of the 26 ratios

involving bilinears with vector, axial, tensor and scalar
spins to one-loop PT. We show perturbative predictions
both without [Eq. (32)] and with [Eq. (D9)] mean-field
improvement [41].12 For these predictions we use �0 ¼
1:8=a leading to �ð�0Þ � 0:24 and 0.21 on the coarse and
fine lattices, respectively. For the mean-field improved

FIG. 3 (color online). Comparison of Z-factor ratios obtained
using NPR to one-loop perturbation theory for HYP fermions on
coarse lattices. V, A, T and S refer to bilinears with vector, axial,
tensor and scalar spins, respectively. Horizontal lines show
perturbative predictions, with solid/dotted lines showing results
with/without mean-field improvement. Results are in the chiral
limit for the momentum described in the text.

10In this section we will denote the NPR momentum scale by p,
which has physical units. Thus ap here corresponds to the p0
used in previous sections. We also make explicit that
the Z factors depend separately on p and a in general.
11The CLAT are finite lattice constants. For the general expres-
sion including mean-field improvement see Eqs. (D6)–(D10).

12We stress that we are using mean-field improvement to obtain
an improved perturbative prediction for the same operators.
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prediction, we also need values for ~uHYP0 , which are given

in Table II. The color coding in the plots indicates the
number of links in the operators in the numerators of the
ratios. The denominators have 1-link operators for spins V
and A, 2-link operators for T, and 0-link operators for S.

Overall the one-loop prediction works well. We
highlight certain features. First, the statistical errors in
the NPR results are very small, particularly for spins V,
A and T. Second, PT correctly captures the ordering
with link number, and placement relative to unity. This
ordering is the dominant feature of the results, and indi-
cates that the fluctuations in individual smeared links
(which reduce their [gauge-fixed] average values below
unity) are the largest contributor to Z factors differing
from unity. Bilinears with more links thus have smaller
matrix elements and require larger Z factors to attain the
canonical normalization. This argument would imply that
ratios involving 1-link V and A ratios and 2-link T ratios
should lie close to unity, since the numerators and denom-
inators have the same number of links. This is indeed what
is observed.

Third, PT correctly predicts the ‘‘fine structure’’ within a
given link number. For example, for spins V and A, there
are two ratios involving three-link numerators, and two
involving two-links (see Table I). The predicted orderings
and splittings match well with PT. There is a similar fine
structure for the tensors, though this is hard to discern from
the figure. For one-link numerators, there are two ratios,
which are predicted to be equal to all orders in PT. The
NPR results for these two ratios are indistinguishable.
The same is true for three-link numerators. For two-link
numerators there are also two ratios, but in this case they
are predicted to be equal at one-loop order but not to all
orders. Here the NPR results for the two ratios do differ, but

the difference is very small (and consistent with a two-loop
or higher-order perturbative effect).
Fourth, we recall that matching factors for spins Vand A

are predicted to be equal to all-orders in PT. We observe
very small (subpercent level) differences. Differences can
arise due to long-distance nonperturbative effects, and so
these effects are small in these channels.
Fifth, we note that the NPR results on the fine lattices are

all slightly closer to unity than those on the coarse lattices.
This is qualitatively what one would expect if the dominant
contribution to the difference from unity was perturbative,
since �ð�0Þ decreases with a if �0 � 1=a. However, a
complete interpretation of this result requires understand-
ing the contributions of nonperturbative and discretization
errors, which we discuss below.
We now discuss the level of quantitative agreement

between the NPR results and one-loop PT. With the cou-
plings we have chosen, the agreement is at the subpercent
level for spins V, A and T, and at the 5–10% level for
scalars. We cannot, of course, expect perfect agreement
because we have truncated PT. One way of estimating the
uncertainty in the one-loop prediction is to vary the scale at
which � is evaluated over a reasonable range. Were we to
use �0 ¼ 1=a rather than 1:8=a, the couplings would
become roughly 30% larger (� � 0:32 and 0.27 on the
coarse and fine lattices, respectively). This would lead to a
much improved quantitative agreement with the scalar
ratios, while that with spins V, A and T would be less
good.13 But the most important point is that, within this
perturbative uncertainty the PT and NPR results agree.
As can be seen from the numerical values, the coeffi-

cients of � in the one-loop predictions have magnitudes
smaller than unity for all except the three and four-link
scalar ratios. Our way of estimating the uncertainties in
perturbative predictions assumes that a small one-loop
coefficient implies that higher orders are also small. An
alternate, and more conservative, approach is to say that,
for all ratios, two-loop effects are of size Oð1Þ � �2 �
0:05–0:09. This gives a larger estimate than that obtained
above except for the three- and four-link scalar ratios, for
which the two estimates agree.
Our final comment on these two figures is that we find

the impact of mean-field improvement to be fairly minor,
below the level of the uncertainty due to the choice of �.
The effects are small because ~uHYP0 is very close to unity,

and lies close to its perturbative prediction [Eq. (D11)].
Evaluating � at the scale 1=a the prediction for the coarse
and fine lattices are 0.985 and 0.988, respectively, to be
compared to 0.984 and 0.987 (from Tables II and III).
We next display the NPR renormalization-scale depen-

dence of the ratios. Figures 5–7 show this respectively for

FIG. 4 (color online). As for Fig. 3 but on the fine lattices.

13It would be interesting to use an approximate scale-setting
method to better predict the appropriate value of � to use for
each quantity. Our data suggests that a lower scale would be
found for scalars than for the other bilinears.
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the S, T and V ratios on the coarse lattices. We omit the
axial ratios since they are very similar to the vectors. We
recall that PT predicts to all orders that the ratios should be
independent of p, up to discretization effects at large ðapÞ2
and nonperturbative effects at small p2. We might hope
that the window in which such effects would be small runs
(for the coarse lattices) from jpj � 1 GeVð) ðapÞ2 �
0:4Þ up to ðapÞ2 � 2–3, i.e. the entire width of our data
set. In fact we find moderate scale dependence for vector
ratios (a doubling of the separation from unity from the
high end to the low end of the range), a significantly
smaller dependence for the tensor ratios, but a very strong
dependence for the scalars.

A possible interpretation of these results is as follows.
The curvature at small ðapÞ2 suggests nonperturbative
effects proportional to powers of 1=p2. These are largest

for the scalar ratios, and for these the lower edge of the
NPR window should be moved up to ðapÞ2 � 1:5 (corre-
sponding to jpj � 2 GeV). The data above this value can
be reasonably well fit by a straight line, consistent with
discretization errors. Extrapolating to ðapÞ2 ¼ 0 removes
these discretization errors. For the vector and tensor ratios
the lower edge of the window can be placed at ðapÞ2 � 1
(corresponding to jpj � 1:6 GeV). This is how many NPR
results have traditionally been analyzed (see, e.g., Ref. [3]).
We do not carry out these extrapolations quantitatively,

because there is clearly an uncertainty introduced by the
choice of fitting window, and we are in this work not
aiming to quote results with a full error analysis.
Nevertheless, what is clear from the figures is that, after
extrapolation, the overall features found at ðapÞ2 ¼ 1:66
and shown in Fig. 3 would still hold. The only change
would be that the ratios would be pushed further away from
unity: by 15–20% for V, A and T ratios and by � 50% for
the scalar ratios. Thus for quantitative agreement at ap ¼
0 for V, A and T ratios one needs to use � � 0:28, corre-
sponding to �0 � 1:3=a � 2:2 GeV, while for scalars one
needs � � 0:48, corresponding to �0 � a=2 � 0:8 GeV.
In the former case the scale is reasonable and the value of�
small enough for reasonable convergence, but for the
scalars the convergence of PT is suspect.
It is interesting to ask whether the ðapÞ2 corrections are

of the expected size. If the ratios are described approxi-
mately by Rðap ¼ 0Þ½1þ xðapÞ2�, then, if we take the
relevant scale for cutoff effects to be �=a, and assume
that the (approximate) improvement of the actions leads to
a reduction by ��, then we would expect jxj � �=�2 �
0:03. In fact, we find, for example, that x � �0:015 for
four-link vector ratios, x � �0:007 for four-link tensors,
and x � �0:06 for three-link scalars. These are of the
expected size or somewhat smaller. For ratios involving
smaller numbers of links, which lie closer to unity, we see
that the slopes, x, have yet smaller magnitudes. For
example, the slope of the two-link tensor ratios are almost

FIG. 5 (color online). Scale dependence of the ratios of vector
HYP-smeared bilinear Z factors on coarse MILC lattices. The
color coding indicates the link number of the numerator and
corresponds to that in Fig. 3 (where the results for ðapÞ2 ¼ 1:66
are shown).

FIG. 7 (color online). As for Fig. 5 but for the scalar ratios.FIG. 6 (color online). As for Fig. 5 but for the tensor ratios.
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zero. This suggests that there is an additional suppression
arising from a cancellation of discretization effects which
follows approximately that for the perturbative corrections.

The corresponding plots for the fine lattices are qualita-
tively similar and, for the sake of brevity, we display only
the results for the vector bilinears [Fig. 8]. Note that the
range of ðapÞ2 that is covered is smaller than on the coarse
lattices. Since the ratio of squared lattice spacings is
ðacoarse=afineÞ2 � 2, the lower edge of the NPR window
should be halved compared to the coarse lattices (since it is
set by a physical momentum). Thus the lower edge for V, A
and T ratios should move from ðapÞ2 � 1 to ðapÞ2 � 0:5,
as a result of which the entire momentum range shown in
Fig. 8 should lie in the window. This is consistent with our
results, which are approximately linear across the figure.
The same is true for the tensor ratios, while for the scalars
the lower edge of the window must be moved up.

Comparing Figs. 5 and 8, we see that, aside from the
one-link (black) points, all the ratios move towards unity as
one goes from the coarse to the fine lattices at a fixed value
of ðapÞ2. The one-link points start very close to unity and
remain there. This same ‘‘collapse towards unity’’ occurs
for the tensor and scalar ratios. This is qualitatively what
we expect, because discretization errors should be similar
for both lattice spacings at fixed ðapÞ2, while nonperturba-
tive 1=pn effects should be small as we are in the NPR
window, and so the change in the ratios should (if one-loop
PT is reasonably accurate) fall-like �ð�0Þ with �0 � 1=a.
In fact, it may be that the discretization errors scale
approximately in this fashion too.

Pursuing this a little more quantitatively, we find that the
values of the slopes x are approximately the same for
corresponding quantities at the two lattice spacings. This
holds for all the ratios. The uncertainties in our estimates
are large enough to accommodate a possible factor of
�ð1=aÞ reduction in slope for the fine lattices, but we do

not claim to have found such a reduction. The approximate
equality of slopes implies that the values after extrapola-
tion to ap ¼ 0 on the fine lattices remain closer to unity
than the corresponding values on the coarse lattices. This is
what one expects from the perturbative prediction.
Finally, we show, in Figs. 9–11, a direct comparison of

the results for the ratios at the two lattice spacings. To
make the plots readable, we plot versus � � jpj rather
than ðapÞ2. This prevents the points from overlapping and
distributes them more evenly in the horizontal direction.
The coarse results are identical to those in Figs. 5–7,
respectively, except that the color coding is no longer
used. A disadvantage of this presentation is that the dis-
cretization errors are, at fixed �, roughly half as large for
the fine lattice points as for the coarse points. An advantage
is that we expect nonperturbative effects to be similar.
Thus one cannot, from these plots alone, easily disentangle

FIG. 8 (color online). Vector ratios vs. ðapÞ2 for HYP-smeared
bilinears on the fine lattices. Note that the results at ðapÞ2 ¼ 0:81
are the same as those in Fig. 4. Notation as in Fig. 5.

FIG. 9 (color online). Comparison of vector ratios for HYP-
smeared bilinears from coarse (black) and fine (red) lattices,
plotted against � ¼ jpj. The coarse results are the same as those
presented in Fig. 5. The link numbers for the coarse results can
be determined by referring to the latter plot; those for the fine
results are the same as for the nearest coarse points.

FIG. 10 (color online). As for Fig. 9 except for tensor ratios.
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the perturbative, discretization and nonperturbative
contributions. Nevertheless, one does see the general trend
noted above that the ratios move towards unity on the fine
lattices.

B. Ratios for asqtad bilinears

We now turn to the asqtad bilinears, for which the
results turn out to be less well represented by PT, and
harder to understand. We begin with plots of all ratios at
our canonical momentum on the coarse and fine lattices,
Figs. 12 and 13. Mean-field improvement is necessary
to obtain even reasonably accurate predictions, so we
show only the corresponding results. The greater impor-
tance of mean-field improvement for asqtad fermions is

related to the result that the corresponding fat links
(‘‘Fat-7þ Lepage’’) have traces that are significantly fur-
ther from unity than the HYP-smeared links indicating
larger fluctuations. For example, on the coarse lattices,

~uASQ0 ¼ 1:053 to be compared to ~uHYP0 ¼ 0:984.
The asqtad results differ in several noteworthy ways

from those with HYP-smeared fermions. First, the ordering
of the tensor bilinears by link number is reversed. This is
also true for the two-, three- and four-link V and A spins.
This can be qualitatively understood as follows. The aver-
age of the smeared link in the asqtad operators is larger
than unity.14 Bilinear matrix elements are thus expected to
grow with the number of links, leading to Z factors that
must decrease to compensate. This is the same argument
used above for the HYP-smeared bilinears, except in that
case it leads to the opposite ordering because ~uHYP0 < 1.
Here, however, the argument fails for the scalars, which
have the same ordering as for HYP fermions (although they
are, in relative terms, more bunched together). Of course
this argument is naive, as there are correlations between
fluctuations in the links, something that is approximately
accounted for by PT. Indeed, mean-field improved PT does
predict the observed ordering for tensor ratios and the two-
to four-link Vand A spins. Nevertheless, the gross structure
is reproduced in its entirety only for the tensor ratios, with
the predictions for the scalars simply being poor. This
situation is not improved by changes to the value of �.
On the positive side we note that the all-orders predic-

tions of degeneracy are borne out at about the same level as
for HYP-smeared operators. In addition, the quantitative
disagreements with PT for the V, A and T ratios are at the

FIG. 11 (color online). As for Fig. 9 except for scalar ratios.

FIG. 12 (color online). As for Fig. 3 but for asqtad fermions,
and with only mean-field improved perturbative predictions
shown.

FIG. 13 (color online). As for Fig. 12, but for the fine lattices.

14This is possible because the Fat-7þ Lepage links are linear
combinations of different paths.
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few percent level, which could be understood as generic
Oð�2Þ effects.

Finally, we comment on the changes as one goes from
coarse to fine lattices, which exhibit a more complicated
pattern than for the HYP-smeared operators. The NPR
results for the scalar, vector and axial ratios do move
towards unity as a decreases (as in the HYP case), but
the tensor ratios are almost unchanged. The perturbative
predictions for scalar ratios move toward unity, while those
for vector and axial ratios are almost unchanged, and the
predictions for tensors move slightly away from unity. This
complicated pattern of perturbative predictions is due to
the use of mean-field improvement and the fact that the

nonperturbative value of ~uASQ0 drops by a smaller factor

from coarse to fine lattices than is predicted by perturbation
theory. For example, evaluating � at the scale 1=a,
Eq. (D12) predicts 1.12 and 1.10 for coarse and fine
lattices, respectively, to be compared to the measured
values 1.053 and 1.051.

The momentum dependence of the asqtad ratios on the
coarse lattices are shown in Figs. 14–16, with one example
(the tensors) of the corresponding behavior on the fine
lattices shown in Fig. 17. Note that on the coarse lattices
the range of ðapÞ2 is smaller than in the corresponding
HYP plots, so any curvature due to nonperturbative effects
will be harder to see. This explains why the curves for V
and T spins appear more linear. For these cases the NPR
window appears to cover the entire range of our data
(consistent with the results from HYP-smeared bilinears),
while for the scalars the lower cutoff again needs to be
moved up to ðapÞ2 � 1:5 on the coarse lattices.
We first discuss the vector and tensor ratios. Although

the plots look superficially different from those with HYP-
smeared fermions, we note that all the slopes have the same
signs in the two cases (comparing data with the same
number of links), and indeed have the same ordering of

FIG. 14 (color online). Scale dependence of asqtad vector
ratios on coarse MILC lattices. Notation as in Fig. 5.

FIG. 15 (color online). As for Fig. 14 but for tensor ratios.

FIG. 16 (color online). As for Fig. 14 but for scalar ratios.

FIG. 17 (color online). Tensor ratios vs. ðapÞ2 for HYP-
smeared bilinears on the fine lattices. Note that the results at
ðapÞ2 ¼ 0:81 are the same as those in Fig. 13. Notation as in
Fig. 15.
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magnitudes. The only change in the discretization effects
between HYP and asqtad cases is that the slope coefficients
x are about twice as large for asqtad bilinears. This is
consistent with the general experience that HYP smearing
leads to smaller discretization effects. We also find that, as
for HYP-smeared bilinears, the slopes at the two lattice
spacings are similar.

For tensor ratios, the ordering seen in Fig. 12 remains
valid over our entire momentum range, and also after
extrapolation to ap ¼ 0. Thus by a small rescaling of �
one can retain quantitative agreement with one-loop PT at
ap ¼ 0. On the other hand, extrapolating the fine lattice
results to ap ¼ 0 leads to values which lie a little further
from unity (cf. Figs. 15 and 17), which is not consistent
with PT.

For the vector ratios extrapolation to ap ¼ 0 reshuffles
the ordering, with the zero-link ratio now having the small-
est Z factor. Thus the perturbative predictions of Fig. 12
becomeworse for the vectors after extrapolation, even after
possible rescalings of �.

The ap dependence of the scalar ratios, by contrast, is
similar to that for the HYP-smeared bilinears. The ordering
is maintained by extrapolations to ap ¼ 0, with slope
coefficients that are similar (not differing by a factor of
two). However, the already very poor perturbative predic-
tions become even worse after the extrapolations.

A perplexing feature of the results for momentum
dependence is that, at the highest values of ðapÞ2, both
vector and scalar ratios become much closer to the pertur-
bative predictions, particularly in terms of the ordering
and relative splittings. We do not understand why this
should be.

For the sake of brevity, we do not show the direct
comparisons of coarse and fine asqtad ratios versus jpj.
These plots are both messy and hard to interpret, adding
little to the preceding discussion.

In summary, one-loop PT fails to provide even a quali-
tative description of many of the features observed for the
asqtad bilinears, with the exception of the tensor ratios.
One should keep in mind, however, that the disagreements
with the vectors are well within the expected size of
generic two-loop contributions.

C. Results for denominators

Finally we turn to a discussion of the denominators in
the ratios, namely the matching factors Z1	1, Z��	1 and

Z����	1 which we label simply ZS, ZV and ZT , respec-

tively. Unlike the ratios, these quantities have anomalous
dimensions (even ZV in the RI0 scheme), so that they do
depend on � ¼ jpj even in the absence of nonperturbative
effects and discretization errors. This dependence is de-
scribed in perturbation theory by the result Eq. (D6), the
ingredients for which are collected in appendices D and E.
In brief, one runs in the continuum (in the RI0 scheme)
from � to �0 � 1=a, and then matches to the lattice

scheme at that scale. This matching is done, for technical

reasons, using the MS scheme as an intermediate step.
As above, we consider first the HYP-smeared bilinears.

Results from the coarse and fine lattices are shown in
Figs. 18 and 19, respectively. Note again that the range
of � differs in the two cases. For the perturbative results,
we use the non-mean-field improved result (which lies very
close to the mean-field improved result), and display a
band to give an indication of the uncertainty due to trun-
cation errors. This is obtained by varying �0 between 1=a
and 2=a, a range for which �� � �2. We stress that the
weakest link in the perturbative result is the one-loop

matching between the lattice and MS schemes; all other
running or matching is done at three- or four-loop order.
We also note that, as for the Z-factor ratios, this estimate of
truncation errors is not the most conservative when Z is
close to unity, because there can be genericOð�2Þ terms of
size 5% to 9%.
The figures show good qualitative agreement between

the NPR and PT results in all three channels. The ordering
is correct and the � dependence is reasonably well pre-
dicted. Quantitatively the perturbative prediction under-
shoots the separation from unity for ZT and ZV , even
allowing for the predicted uncertainty band. This mismatch
is small enough, however, that it could be due to generic
two-loop contributions. The level of quantitative agreement
is somewhat worse than that found above for the ratios: for
these, PT could reproduce all the vector and tensor ratios
with choices of �0 lying in the range 1=a� 2=a.
Unlike the ratios, the Z factors do not themselves have a

good continuum limit, due to the nonvanishing anomalous

FIG. 18 (color online). Comparison of scale dependence of the
HYP-smeared taste-singlet scalar, vector, and tensor Z factors
computed nonperturbatively on the coarse lattices to the
perturbative prediction described in the text. The colored bands
give the variation in the perturbative prediction arising from
varying the intermediate matching scale between 1=a (dotted
line) and 2=a.
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dimensions. To take a continuum limit one must multiply
them by hadronic matrix elements of the corresponding
bilinears, which we do not have available here. Because of
this, there is no general expectation that results from the
fine lattices should lie closer to unity than those from the
coarse lattices, even ignoring discretization errors. What
one might expect, however, is that the perturbative predic-
tion should become more accurate, since the intermediate
matching scale �0 is higher. We do in fact see a small
improvement between Fig. 18 and 19.

In order to disentangle the predicted running with �
from discretization effects, we can run our results in the RI0
scheme from� to a canonical scale which we choose to be
2 GeV. This running is done at three- or four-loop order
using continuum anomalous dimensions (see Appendix E).
The hope is that the data will significantly ‘‘flatten,’’

leaving a residual ða�Þ2 dependence. In Figs. 20–22, we
show results after this running for the fine lattices. Results
on the coarse lattices are similar and are not shown. The
perturbative predictions are obtained as above, but with p
replaced by 2 GeV. We recall that the NPR window covers
the range of results shown in these plots.
For ZS, we see that the flattening is successful, although

the perturbative prediction for the absolute value misses
the data. Nevertheless, a generic two-loop term would be
sufficient to make up the gap. ZV varies by�1–2% over the
momentum range shown, and, if extrapolated to a�¼0,
will lie quite close to the perturbative prediction. ZT varies
more rapidly, and, if extrapolated linearly in ðapÞ2 to a ¼ 0,
will become � 1:16. This is �5% above the perturbative
prediction, a difference which could be bridged by two-loop
perturbative contributions. The slope coefficient is x �
�0:023 and is comparable to that for ratios.
We now turn to the asqtad denominators, for which

we show the running with NPR scale on the fine lattices
in Fig. 23. Results are similar on the coarse lattices.

FIG. 21 (color online). As for Fig. 20 but for ZV .FIG. 19 (color online). As for Fig. 18 but on the fine lattices.

FIG. 20 (color online). Predictions for ZRI0
S (2 GeV) with HYP-

smeared fermions on fine MILC lattices. The Z factor is run from
NPR scale � to 2 GeV using continuum perturbation theory. The
perturbative predictions use an intermediate conversion scale of
1=a (‘‘pt’’) or 2=a (‘‘pt2’’). FIG. 22 (color online). As for Fig. 20 but for ZT .
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We compare here to mean-field improved perturbation
theory, since without mean-field improvement the asqtad
ratios are poorly represented, as discussed above. We note
that mean-field improvement impacts the predictions for
ZV and ZT , but not that for ZS. For ZS, we also show the

perturbative result including the two-loop lattice to MS
matching factor from Ref. [15]. This has a much weaker
dependence on the intermediate matching scale than that
using one-loop matching, and we show the result only for
intermediate scale 1=a. We stress that one cannot directly

gauge the rate of convergence of the perturbative series
from a comparison of ‘‘one-loop’’ and ‘‘two-loop’’ results,
since both are composed of several components, some
of which are being evaluated at three- or four-loop order
[see Eq. (D6)]. What one can see, however, is that shift
between ‘‘one-loop’’ and ‘‘two-loop’’ results is of the�5%
size expected of a generic two-loop term on the fine
lattices. Compared to the corresponding HYP-smeared
results (Fig. 19), we observe that the NPR result for
ZS is much further from unity, and also further from the
perturbative predictions.
We learn more from the results after flattening, shown in

Figs. 24–26. For ZS, it is striking that (as for the HYP
bilinears), the results show little indication of ða�Þ2
effects, indicating that the four-loop anomalous dimension
is giving a good representation of the � dependence. On
the other hand, the value itself lies �0:2 below the
‘‘one-loop’’ and �0:15 below the ‘‘two-loop’’ predictions,
indicating a failure of convergence since this gap is too
large to be bridged by a generic Oð�3Þ term. We note that

FIG. 25 (color online). As for Fig. 24 except for ZV .
FIG. 23 (color online). Comparison of the asqtad ZS, ZV and
ZT on fine lattices with mean-field improved PT. Details as in
Fig. 19, except that the two-loop prediction for ZS (red solid line)
is also shown.

FIG. 24 (color online). Predictions for ZRI0
S (2 GeV) with

asqtad fermions on fine MILC lattices. The Z factor is run
from NPR scale � to 2 GeV using continuum perturbation
theory. The one-loop perturbative predictions use an intermedi-
ate conversion scale of 1=a (‘‘pt’’) or 2=a (‘‘pt2’’). Also shown
is the two-loop perturbative prediction (with intermediate
scale 1=a). FIG. 26 (color online). As for Fig. 24 except for ZT .
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this gap is the reason why, as described in the Introduction,
the value of ms obtained from our NPR results lies sig-
nificantly above that obtained using two-loop matching.
Specifically, on the fine lattices, NPR yields ms ¼
105 MeV [13] while the two-loop result is 86 MeV [15].

The situation is much better for ZV and ZT . For ZV there
is a mild � dependence, which brings the result at a� ¼ 0
close to the one-loop prediction. For ZT , the� dependence
is somewhat stronger and leads to a value at a� ¼ 0 of
ZTða� ¼ 0Þ � 1:18, within 5% of the perturbative predic-
tion. In both cases, the gap can be bridged by a generic
two-loop contribution.

V. CONCLUSIONS

We have implemented nonperturbative renormalization
for general staggered-fermion bilinear operators, using a
method that is consistent with the symmetries of the stag-
gered action. We have shown how those symmetries con-
strain the propagator and vertex functions to have the
expected continuum forms at leading nontrivial order in
an expansion in the lattice spacing. We have also intro-
duced ‘‘covariant bilinears,’’ which transform irreducibly
under the lattice symmetries and thus do not mix, unlike
the traditional ‘‘hypercube bilinears.’’

We have calculated Z factors for 30 different operators
having spins V, A, T and S. It is well known that, for
unimproved staggered fermions, many Z factors, particu-
larly those for scalars, lie very far from unity and have
perturbative expansions which are not convergent [3,36].
We have rechecked this result ourselves. It is also well
known that these problems can be substantially improved
using smeared lattice links and other forms of action
improvement. Here we have used HYP-smeared and asqtad
fermions. By studying many operators we are able to give a
general judgement on the utility of perturbation theory for
these two types of fermion. A useful tool in this regard is
the use of ratios for which the overall running due to
anomalous dimensions cancels, allowing a study of the
approach to the continuum limit.

Overall, we find that the HYP-smeared Z factors lie
relatively close to unity and can be predicted by one-loop
PT as long as one includes a generic uncertainty of relative
sizeOð1Þ � �ð1=aÞ2. This holds both for ratios and for the
Z factors themselves. In fact, PT works more accurately
than this for the vector and tensor ratios, with an uncer-
tainty given by the square of the one-loop term sufficing.
The detailed ordering of these ratios is predicted very well.
We also find that discretization errors proportional to ðapÞ2
are of the expected size or smaller.

For the asqtad bilinears, one-loop PT is less successful.
Only for the tensor ratios does it approach the efficacy
observed in the HYP-smeared case, while for the scalars
there appears to be a breakdown in convergence.

These results have implications for extracting physical
predictions from staggered simulations. The recent

calculation of BK using HYP-smeared fermions used
one-loop perturbative results for the needed Z factors
[16,17]. The anomalous dimension of the operator which
appears is roughly comparable to that for the tensor
bilinear, and thus we can use the latter as a guide to how
well one-loop PT reproduces the Z factor obtained using
NPR. We find in this case (see, e.g., Figs. 18 and 19) that
one-loop PT gives a good estimate as long as one uses an
error estimate of Oð1Þ � �2. This is, in fact, the estimate
used in Refs. [16,17].
As for quark masses obtained using one- or two-loop

perturbative matching, the results of Figs. 23 and 24 show
that there is a substantial gap between the perturbative and
nonperturbative results for ZS ¼ 1=Zm with asqtad fermi-
ons. This gap is larger than a straightforward estimate of
the truncation error. This suggests that the systematic error
in the quark masses obtained in Refs. [8,14,15] may be
larger than previously estimated. To study this point fur-
ther, it will be important to use NPR with nonexceptional
momenta [28].
Finally, we note that present large-scale simulations with

staggered fermions now use HISQ rather than asqtad
quarks. HISQ quarks combine the advantages of HYP
smearing with the full Oða2Þ improvement of asqtad
quarks (and in addition reduce discretization errors for
heavier quarks) [9]. Thus we expect the success of PT in
describing Z factors for HYP-smeared operators to carry
over to operators composed of HISQ quarks.
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APPENDIX A: NOTATION AND CONVENTIONS

1. Staggered matrix conventions

We use the notation of Refs. [32,33], which introduce
two sets of matrices unitarily equivalent to the general
spin-taste matrices. A basis for the latter is (�S 	 	F),
where a general spin matrix is labeled by the hypercube
vector S,

�S ¼ �S1
1 �S2

2 �
S3
3 �S4

4 ; (A1)

while the general taste matrix is labeled by another such
vector F,

	F ¼ 	F1

1 	F2

2 	
F3

3 	F4

4 ; (A2)

ANDREW T. LYTLE AND STEPHEN R. SHARPE PHYSICAL REVIEW D 88, 054506 (2013)

054506-18



with 	� ¼ ��
�. The two unitarily equivalent sets of

matrices are then

ð�S 	 	FÞAB � 1

4
Tr½�y

A�S�B�
y
F�; (A3)

ð�S 	 	FÞAB � X
CD

ð�ÞA�C
4

ð�S 	 	FÞCD ð�ÞD�B

4
: (A4)

Using these relations one can trace the connection
between the 162 choices for the indices AB in the
propagator (10) to the spin and taste indices in the more
familiar form (�S 	 	F).

2. Definition of the asqtad action

The asqtad action is [4–6]

Sasqtad¼
X
n

�
��ðnÞX

�

��ðnÞ
�
rF7L

� �ðnÞþ1

8
½rT1

� �rT3
� ��ðnÞ

�

þðm=u0Þ ��ðnÞ�ðnÞ
�
; (A5)

rF7L
� �ðnÞ ¼ 1

2
½W�ðnÞ�ðnþ �̂Þ �Wy

�ðn� �̂Þ�ðn� �̂Þ�;
(A6)

rT1
� �ðnÞ ¼ 1

2u0
½U�ðnÞ�ðnþ �̂Þ �Uy

�ðn� �̂Þ�ðn� �̂Þ�;
(A7)

rT3
� �ðnÞ ¼ 1

6u30
½Uðn; nþ 3�̂Þ�ðnþ 3�̂Þ

�Uðn; n� 3�̂Þ�ðn� 3�̂Þ�; (A8)

where W�ðnÞ is a smeared link constructed using the Fat7

blocking transformation [4,5] combined with Lepage’s
prescription [6] and tadpole improvement [41], and
Uðn; n� 3�̂Þ are products of three thin links in the �
direction starting at position n. Finally, u0 is the tadpole
improvement factor [41], which we take to be the fourth
root of the average plaquette.

APPENDIX B: IRREDUCIBLE REPRESENTATIONS
FOR COVARIANT BILINEARS

In this appendix we sketch the demonstration that the
covariant bilinears Ocov

S	F of Eq. (21) fall into the irreps

listed in Table I under the lattice symmetry group.
Although this result is likely known to workers in the field,
we have not found a demonstration in the literature. In
particular, in their seminal work on staggered fermions,
Golterman and Smit described the full lattice group [30],
but focused on constructing operators transforming as

irreps of the smaller time slice group, which classifies
eigenstates of the transfer matrix [38,42]. Verstegen
subsequently classified the irreps of bilinears living on a
single 24 hypercube [43]. The symmetry group in this case
is smaller than that for the zero momentum covariant
bilinears, since translations are excluded. Thus, although
Verstegen’s work will be useful in the following, the
irreps he finds are in general smaller than those for
covariant bilinears.
Perturbative calculations of matching factors also give

information on the irreps, since operators living in different
irreps have different matching factors. This information is,
however, incomplete since results are available only at
finite order (usually one-loop), and differences could
show up at higher order.
In the subsequent discussion we use the presentation of

the lattice group and method of analysis (as well as the
notation) of Ref. [44]. We refer to this reference for most
of the technical details. An alternative approach is that
of Ref. [45].
For operators having zero physical momentum, the

group of transformations is

G0 ¼ �4;1 2W4; �4;1 ¼ f��;C0g; W4 ¼ fR��; Isg:
(B1)

Here W4 is the hypercubic group generated by rotations
R�� and spatial inversion Is, while �4;1 is the Clifford

group in 5-dimensional Minkowski space generated by
lattice charge conjugation, C0, and single-site translations
��.

15 The symbol ‘‘ 2’’ indicates a semidirect product.

In the analysis of Verstegen, the translations�� are absent,

leaving only the group W4 combined with C0. Thus
the constraints he finds are weaker than those obtained
from G0.
Under translations the covariant bilinears pick up a sign

ð�Þ ~F� , where ~F� ¼ P
���F�. This is shown in the follow-

ing appendix. Similarly the bilinears have a definite parity
under C0 (which is straightforward to calculate but not
needed in the following). Thus the bilinears reside in
1-dimensional irreps of �4;1 characterized by five parities.

In Ref. [44] these are called

�ð4;1Þð�;�;�;�; 	CÞ; (B2)

where the first four arguments are the translation signs
under�1,�2,�3 and�4, while the last is the parity under
C0. Since G0 is a semidirect product, one must, for each

irrep �ð4;1Þ, find the subgroup of W4 which leaves the irrep
invariant. The bilinears are then classified into irreps of this
‘‘little group.’’ These induce representations of the full
group that are known to be irreducible.

15In general�� are single-site translations with the momentum

factor eip
0
� removed, but this removal is not needed as p0 ¼ 0.
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The action of the rotations and spatial inversion which
form W4 is discussed in the next appendix. All we need to
know here is that both transformations act simultaneously
on spin and taste indices. ThusOcov

S	F is transformed, up to a

sign, into Ocov
SR	FR

, where SR and FR are the hypercube

vectors obtained from S by F by the transformation under
consideration.

We now begin the classification of bilinears into
irreps. For taste-singlet bilinears, the �4;1 irrep is

�ð4;1Þðþ;þ;þ;þ; 	CÞ and the little group is the full W4

[44]. The same little group holds for taste 	5 [F ¼ ð1111Þ]
for which the irrep is �ð4;1Þð�;�;�;�; 	CÞ. In both cases
we can use the analysis of Verstegen, who shows (see his
Table III for irreps of the rotation subgroup, together with
the discussion in his Sec. V of how inversion combines
irreps) that each of the five types of spin lives in a single
irrep.16 Explicitly, the irreps for taste singlets have
spin tastes

ðI 	 IÞ; ð�� 	 IÞ; ð��� 	 IÞ;
ð��5 	 IÞ & ð�5 	 IÞ: (B3)

Here � and � run from 1 to 4 except that�< �. These are
the five taste-singlet irreps appearing in Table I. The same
five spins apply also to taste 	5.

Next we consider bilinears with taste 	� and 	�5.

Choosing � ¼ 4 for definiteness, the �4;1 irreps are

�ð4;1Þð�;�;�;þ; 	CÞ and �ð4;1Þðþ;þ;þ;�; 	CÞ;
(B4)

respectively. In both cases the little group is W3 � Z2,
with W3 the cubic group fRij; Isg while Z2 is generated

by the axis inversion symmetry in the fourth direction
[44]. Determining the transformations under rotations,
one finds that the following spins live in 3-dimensional
irreps of W3 (either the 1 or the �1 in the notation
of Ref. [46]):

�j; �j5; �j4; and 
jkl�kl ðj; k; l ¼ 1–3Þ:
(B5)

The remaining spins (I, �5, �4 and �45) live in one of the
two 1-dimensional irreps. Extending these irreps of the
little group to the full group by acting with the ‘‘miss-
ing’’ generators, i.e. R4k, their size is multiplied by a
factor of 4, the dimension of the orbit of the �4;1 irrep

under W4. Thus (choosing taste vector for definiteness)
one ends up with four 12-dimensional irreps and four
4-dimensional irreps:

ð�� 	 	�Þ; ð��5 	 	�Þ; ð��� 	 	�Þ; ð��� 	 	�Þ;
ðI 	 	�Þ; ð�5 	 	�Þ; ð�� 	 	�Þ; ð��5 	 	�Þ;

(B6)

where � � �, � � � and �< �. These are the eight
taste-vector irreps appearing in Table I. The same set
of spins appear for the axial taste bilinears (with
	� ! 	�5).

In this case, the results differ from those obtained
for single-hypercube bilinears. For example, Verstegen
finds that the spin-scalar, taste-vector bilinears split
into two irreps, a 1-dimensional irrep

P
�ðI 	 	�Þ and

a 3-dimensional irrep consisting of the differences
ðI 	 	�Þ � ðI 	 	�Þ. For covariant bilinears, by contrast,

one has a single 4-dimensional irrep, (I 	 	�).

Finally, we consider the taste tensors. If the taste is 	12,

the �4;1 irrep is �ð4;1Þð�;�;þ;þ; 	CÞ. The little group is

D4 	D4, where the first dihedral groupD4 is generated by
R12 and I1 (the axis inversion operator in the first direc-
tion), while the second D4 is generated by R34 and I3. D4

has four 1-dimensional and one 2-dimensional irreps. The
bilinears decompose into a single 4-dimensional irrep of
D4 �D4 (spin �j�k, with j ¼ 1, 2 and k ¼ 3, 4), four

2-dimensional irreps (spins �j, �j5, �k and �k5), and four

1-dimensional irreps (spins I, �5, �12 and �34). The orbit in
this case is six dimensional, so the induced irreps of G0 are
the 24-dimensional

ð��� 	 	��Þ; (B7)

with �< �, � � � and � � �, the four 12-dimensional
irreps

ð��		��Þ ð��5		��Þ ð��		��Þ & ð��5		mu�Þ;
(B8)

and the four 6-dimensional irreps,

ðI 	 	��Þ ð�5 	 	��Þ ð��� 	 	��Þ & ð�� 	 	��Þ;
(B9)

with indices constrained as above together with  differing
from�, � and �. Altogether, these are the nine taste-tensor
irreps appearing in Table I.

APPENDIX C: SYMMETRY CONSTRAINTS ON
PROPAGATOR AND VERTICES

In this appendix we describe how lattice translation
symmetry constrains the form of the quark propagator
and the vertices of covariant bilinears.
The fermion fields transform under translations as [30]

�ðnÞ ! ��ðnÞ�ðnþ �̂Þ and ��ðnÞ ! ��ðnÞ ��ðnþ �̂Þ:
(C1)

The translation phases can be chosen to be

16Verstegen’s rotations and inversions are about the center of
the hypercube, rather than the standard choice of being about a
lattice point. These choices differ, however, by translations,
which, for the taste-singlet and 	5 operators, are simply signs
and do not lead to changes in the dimensionality of the resulting
irreps.
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��ðnÞ ¼ ð�Þ
P
�>�

n� ¼ ð�Þn� ��̂ ¼ ð�Þn��̂� ; (C2)

where

n� ¼ ðn2 þ n3 þ n4; n3 þ n4; n4; 0Þ (C3)

and

n� ¼ ð0; n1; n1 þ n2; n1 þ n2 þ n3Þ; (C4)

and we have used the identity

n� �m ¼ n �m�: (C5)

Thus the momentum-space field (6) transforms as

�Aðp0Þ ! X
n

e�ip0�nð�ÞA�nð�Þn��̂��ðnþ �̂Þ (C6)

¼ eip
0
�ð�ÞA�

X
m

e�ip0�mð�Þm�ðAþ�̂�Þ�ðmÞ (C7)

¼ eip
0
�ð�ÞA��Aþ2�̂�;C

�Cðp0Þ (C8)

¼ eip
0
�ðI 	 	�ÞAC�Cðp0Þ; (C9)

where þ2 indicates addition mod 2. In the last step we
have used

ðI 	 	�ÞAC ¼ ð�ÞA��Aþ2�̂�;C
: (C10)

One can similarly show that

��Bð�q0Þ ! e�iq0� ��Dð�q0ÞðI 	 	�ÞDB: (C11)

These results show explicitly how translations by a single
site correspond (once momentum factors are removed) to
taste rotations [30].

Using the translation invariance of the action, one thus
learns that the momentum space propagator (9) satisfies

Sðp0ÞABNsite � h�Aðp0Þ ��Bð�p0Þi
¼ ðI 	 	�ÞACh�Cðp0Þ ��Dð�p0ÞiðI 	 	�ÞDB

(C12)

from which the result (11) follows. As explained in the
main text, it follows that the propagator is taste singlet.

We now turn to the implications of translation invariance
for the (unamputated) vertex, Eq. (22). As for the propa-
gator, translating the external fields lead to multiplications

by ðI 	 	�Þ, as well as to phase factors which cancel in

our kinematics. To determine the effect of translations on
the bilinear operator (21) we first note that the �� and �

fields together lead to the sign ð�ÞðS�FÞ� ��̂. Combining this
with the sign resulting from translating the phases in the
operator,

ð�S 	 	FÞxþ�̂;xþ�̂þS�F

¼ ð�Þ ~F�ð�ÞðS�FÞ� ��̂ð�S 	 	FÞx;xþS�F; (C13)

we find (dropping flavor indices for clarity)

Ocov
S	F ! ð�Þ ~F�Ocov

S	F: (C14)

Combining these results we see that the vertex functions
satisfy, for each �,

�S	Fðp0Þ ¼ ð�Þ ~F�ðI 	 	�Þ�S	Fðp0ÞðI 	 	�Þ: (C15)

This implies that �ðpÞ must have taste F, because

ðI 	 	�Þ ð�S 	 	FÞ ðI 	 	�Þ ¼ ð�Þ ~F�ð�S 	 	FÞ: (C16)

When we amputate the vertex using inverse propagators,
which we know, from above, are taste singlets, the result-
ing amputated vertex will also have taste F. This shows
that, if one uses covariant bilinears, there can be no mixing
with other tastes.
We next discuss the constraints due to spatial inversion

symmetry, Is. This acts on the fields as

�ðnÞ ! �4ðnÞ�ðnSÞ; ��ðnÞ ! �4ðnÞ ��ðnSÞ; (C17)

where nS ¼ I�1
s n. By manipulations analogous to those

given above, one can rewrite these transformations in terms
of the momentum-space fields, finding

�ðp0Þ ! ð�4 		4Þ�ðp0
SÞ; ��ð�p0Þ !�ð�p0

SÞð�4 		4Þ:
(C18)

From the invariance of the action under Is it follows that

Sðp0Þ ¼ ð�4 	 	4ÞSðp0
SÞð�4 	 	4Þ ) S�1ðp0Þ

¼ ð�4 	 	4ÞS�1ðp0
SÞð�4 	 	4Þ: (C19)

The conjugation by ð�4 	 	4Þ flips the sign of each spatial
component of all spin and taste matrices. Since we know,
however, that S�1 is a taste singlet, the effect of the con-
jugation is to replace each �� with its spatial inverse. The

relation (C19) thus has exactly the same implication as the
corresponding result for fermions without the taste degree
of freedom. As noted in the main text, combined with
rotations, one finds that S�1 has the form given in
Eq. (12). The appearance of odd powers of p0 in this result
is due to the spatial inversion symmetry.
For the unamputated vertex, one finds that inversion

symmetry leads to

�S	Fðp0Þ ¼ �4ð�Þð�4 	 	4Þ�S	Fðp0
SÞð�4 	 	4Þ; (C20)

where � ¼ S� F. Multiplying from left and right with
S�1ðp0Þ and using the relation (C19), one can convert
this into a result of the same form for the amputated
vertex,
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�S	Fðp0Þ ¼ �4ð�Þð�4 	 	4Þ�S	Fðp0
SÞð�4 	 	4Þ: (C21)

We consider only the consequences of this result for the
momentum independent part of the vertex, i.e. that
which survives in the continuum limit (when multiplied
by an appropriate matching factor). Then �S	F is simply
a 16� 16 matrix, having taste F (from translation in-
variance) but as yet undetermined spin,

�S	F ¼ X
S0
cFSS0 ð�S0 	 	FÞ: (C22)

The constraint (C21) implies that the only non-
vanishing constants, cFSS0 are those for which S0 satisfies
�4ðS0 � SÞ ¼ 1. This is because

ð�4 	 	4Þ ð�S0 	 	FÞ ð�4 	 	4Þ ¼ �4ðS0 � FÞð�S0 	 	FÞ
(C23)

and

�4ðS0 � FÞ ¼ �4ðS0 � SÞ�4ð�Þ: (C24)

Thus, inversions alone allow several choices of S0, those
satisfying S01 þ S02 þ S03 ¼2 S1 þ S2 þ S3.

To further constrain the propagator and vertices we
turn to the final discrete symmetry, namely rotations.
Here the analysis is more involved, since rotations mix
bilinears. Consider the (��) rotation generator defined
such that

p0
R ¼ R�1p0; ðp0

RÞ� ¼ �p0
�;

ðp0
RÞ� ¼ p0

�; ðp0
RÞ� ¼ p0

�; (C25)

where �, � and � are all different. We find that the
inverse propagator satisfies

S�1ðp0Þ ¼ RS�1ðp0
RÞR�1; (C26)

where

R ¼ 1

2
ð½I þ ���� 	 ½I þ 	���Þ: (C27)

The key property of R is that it rotates the spin and taste
matrices, e.g.,

Rð�� 	 IÞR�1 ¼ �ð�� 	 IÞ; (C28)

Rð�� 	 IÞR�1 ¼ ð�� 	 IÞ; (C29)

RðI 	 	�ÞR�1 ¼ �ðI 	 	�Þ: (C30)

The result (C26) is the final input which leads to the
general form of the propagator, Eq. (12). Given that S�1

is a taste singlet, (C26) enforces that each �� must be

multiplied by a power of p�.

The implication of rotation invariance for amputated
vertices is

�S	Fðp0Þ ¼ c ðS; FÞR�SR	FR
ðp0

RÞR�1 (C31)

c ðS; FÞ ¼ 1

16
tr½Rð�SR 	 	FR

ÞR�1ð�S 	 	FÞy�: (C32)

Note that, unlike for translations and spatial inversion, the
vertices on the two sides of (C31) involve different opera-
tors. This is as expected since the operators fall into non-
trivial irreps under the full lattice group. Note that the signs

c ðS; FÞ are such that (C31) is satisfied if �S	Fðp0Þ ¼
ð�S 	 	FÞ. We will show that, up to a constant, this is the
only momentum-independent solution to (C31) that is also
consistent with the relations from translations and spatial
inversion.
Indeed, from translations and spatial inversion we know

the form of the momentum-independent part of the ampu-
tated vertices to be that of Eq. (C22). Applying (C31) we
learn that the constants satisfy

cFSS0 ¼ cFR

SRS
0
R

c ðS; FÞ
c ðS0; FÞ : (C33)

At first sight, this appears to simply relate the constants
appearing in the expansions of �S	F and �SR	FR

. However,

if we apply (C33) twice, we obtain

cFSS0 ¼ cFSS0
c ðS; FÞc ðSR; FRÞ
c ðS0; FÞc ðS0R; FRÞ : (C34)

Here we have used the result that ðSRÞR ¼ S for hypercube
vectors, since their elements are binary numbers. It is
straightforward to show that

c ðS; FÞc ðSR; FRÞ ¼ ð�ÞS�þS�ð�ÞF�þF�; (C35)

so that (C34) becomes

cFSS0 ¼ cFSS0 ð�ÞS�þS�þS0�þS0� : (C36)

Thus we learn that the only nonvanishing constants are
those for which S0� þ S0� ¼2 S� þ S� for all pairs ð�;�Þ.
The only solutions are S0 ¼ S and S0 ¼2 Sþ ð1111Þ. This
ambiguity is expected, since rotations alone allow mixing,

e.g. between ð�� 	 IÞ and ð��5 	 IÞ. However, if we also

enforce spatial inversion invariance, which, as seen above,
implies �4ðS0Þ ¼ �4ðSÞ, then we find that only S0 ¼ S is
allowed. Thus we finally attain the desired result that

�S	Fðp0Þ / ð�S 	 	FÞ þOðaÞ; (C37)

where the OðaÞ indicates momentum and mass dependent
terms.
For completeness we note that one can obtain covariant

operators containing derivatives by adding appropriate
signs in the sum over � in Eq. (21). In particular, if the
derivative is in the �th direction, instead of adding the two
terms in (18), one takes the difference when �� ¼ 1. This

leads to the correspondence,
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1

V
a3

Z
d4x �Q@�ð�S 	 	FÞQ

’ 1

Nsite

X
n

1

N�

X
j�j¼jS�Fj

�� ��ðnÞð�S 	 	FÞn;nþS�F

�Un;nþ��ðnþ�Þ: (C38)

The only difference from (21) is the factor of ��. This

construction only works if �� � 0, i.e. if the spin taste of

the operator is such that the �� and � fields are already
separated in the�th direction. If they are not, one must use
a two-step difference to get an operator containing a
derivative [37].

APPENDIX D: PERTURBATIVE MATCHING
FOR COVARIANT BILINEARS

In this appendix we describe briefly how the use of
covariant bilinears changes the one-loop matching
factors compared to those for hypercube bilinears. The
latter have been calculated for our choices of fermion
and gauge action in Ref. [39], following the earlier
work of Refs. [30,33,36,47]. We also present numerical
results for our choices of action, since these are not given
in Ref. [39].

It is instructive to compare the tree-level matrix ele-
ments of the hypercubic and covariant bilinears between
external quark ‘‘states’’ with physical momenta p0 þ �C
(outgoing from ��) and p0 þ �D (incoming to �). As
explained in Ref. [36], the matrix element of a hypercubic
operator is

MðS 	 F; hypÞð0ÞCD ¼ X
MN

EMðp0ÞENð�p0Þð�MSN 	 	MFNÞCD;

(D1)

where, like S and F, M and N are hypercube vectors.
(Note that ‘‘hyp’’ indicates hypercubic operator and
should not be confused with ‘‘HYP’’ for HYP-smearing.)
The functions that enter are

EMðkÞ ¼
Y
�

1

2
ðe�ik�=2 þ ð�Þ ~M�eik�=2Þ; (D2)

which are thus products of cosines or sines for the different
components. We see from (D1) that, even in this tree-level
matrix element, all combinations of spin and taste appear
which satisfy S0 � F0 ¼ 2S� F, i.e. which have the same
number of links. This mixing is, however, suppressed by
powers of a, since if M � 0 then ~M � 0, and there is at

least one factor of sin ðp0
�=2Þ / ap0phys

� in EM. These fac-

tors of a correspond to the fact that the hypercube
operators, when written in terms of irreps of the translation
group, break up into the desired dimension-3 bilinear plus
additional dimension-4 and higher operators containing
derivatives.

If one projects out the part of this vertex with the same
spin and taste as the initial bilinear (as one does in NPR),
one finds

1

48
Tr½ð�S 	 	FÞyMðS 	 F; hypÞð0Þ�
¼ X

M

EMðp0ÞEMð�p0Þð�ÞðS�FÞ� ~M (D3)

¼ Y
�

cos ½p0
�ðS� FÞ�� � VS	Fðp0Þ: (D4)

To obtain the last line we have used the sum rule given in
Eq. (A8) of Ref. [47]. Thus the tree-level kinematic factor
associated with the hypercube bilinear is the vertex factor
VS	F. This factor necessarily tends to unity in the contin-
uum limit, but the Oða2Þ corrections contained in the
cosines can be significant in practice.
At one-loop level, some of the hypercube operators mix.

This mixing arises from the so-called X-diagrams (see,
e.g., Ref. [39] for a figure explaining this terminology),
in which the momentum flowing through the bilinear is not
ofOðaÞ but rather ofOð1Þ (since it is inside a loop integral).
This mixing is not suppressed by powers of a.
Now consider the covariant bilinears of Eq. (21). A key

point is that the sign arising from the matrix ð�S 	 	FÞ is
independent of �. Thus the sum over � can be done, and
leads exactly to the vertex factor VS	Fðp0Þ. The tree-level
vertex is simply

MðS 	 F; covÞð0ÞCD ¼ VS	Fðp0Þð�S 	 	FÞCD; (D5)

with no mixing with other spins and tastes. Because of the
lack of mixing, one can read off the kinematical factor
associated with this vertex without the need for projection.
The result is that the kinematical factor is the same as that
for hypercube operators.
Since there is no mixing in the vertex (D5), irrespective

of the value of p0, we expect that there will be no mixing
between covariant bilinears in the one-loop calculation.
This is indeed what we find by explicit calculation.
Furthermore, it turns out that the diagonal (nonmixing)
parts of the matching factors are identical to those for
hypercube bilinears. For the X-diagrams, this is because
the same factor VS	F occurs in both tree-level vertices. For
the ‘‘Y-diagrams’’ (those involving a gluon coupling to the
vertex—see, e.g., Ref. [39]), the reason for the equality is
similar. The remaining diagrams (self-energy and tadpoles)
are the same for both operators.
Thus, we arrive at a very simple result. At one-loop

order, the diagonal matching of covariant operators is
identical to that for hypercube operators, while the off-
diagonal matching coefficients vanish. We stress that the
equality of diagonal matching factors should not hold at
higher orders in perturbation theory. One way to see this is
that the hypercube operators with different spin tastes
that arise due to one-loop mixing can mix back with the
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original operators at two-loop order. Such contributions are
not present for the covariant operators.

The rest of this appendix is devoted to providing
numerical results for bilinear one-loop matching factors
for the Symanzik gauge action and our choices of
valence fermions and links in the bilinears. Analytic
formulas are given in Ref. [39], but that work quotes
numerical values for several choices of fermion actions
and operators differing from those we use. In particular,
when HYP-smearing we use the HYP(1) choice of
smearing parameters.

We are ultimately interested in perturbative predictions
for the matching factors ZS	F relating operators in the
‘‘lattice scheme’’ (i.e. the bare operators we place on
the lattice and use in simulations) to those in the RI0
scheme. These are the matching factors we obtain non-
perturbatively in our simulations using Eq. (24). However,
perturbative calculations typically give results for match-
ing from the lattice scheme to an intermediate continuum

scheme, usually MS. Thus to obtain the full matching

factors, one must determine the matching between MS
and RI0 schemes. This latter matching can be done in
the continuum.

These considerations lead to the ‘‘master formula,’’17

ZRI0;LAT
O ð�; aÞ ¼ exp

�
�
Z �ð�Þ

�ð�0Þ
d�

�Oð�Þ
�ð�Þ

�

� ZRI0;MS
O ð�0Þ � ZMS;LAT

O ð�0; aÞ: (D6)

Here � ¼ �=ð4�Þ, with � always evaluated in the MS
scheme. �O is the anomalous dimension of the operator
(O is shorthand for S 	 F), and �ð�Þ the � function. In
words, this equation says that one way of matching from
the RI0 scheme at scale18 � to the lattice scheme with
spacing a is to first run in the RI0 scheme to an intermediate

scale �0 � 1=a, then convert to the MS scheme at that
scale, and finally convert to the lattice scheme at scale 1=a.
This formula allows one to have large values of the ratio
�=�0, with the first factor on the right-hand side summing
the appropriate logarithms.

The one-loop results for matching from the lattice to the

MS scheme have the form

ZMS;LAT
O ð�0; aÞ ¼ ~uNu

0

�
1þ �ð�0Þ

4�
½�2�ð0Þ

O log ð�0aÞ

þ CMS
O � CLAT

O �
�
; (D7)

where �ð0Þ
O is the one-loop anomalous dimension of the

bilinear (defined precisely in the following appendix) and
the C are finite constants. The continuum constants are

CMS
I ¼ CMS

P ¼ 10=3, CMS
V ¼ CMS

A ¼ 0, and CMS
T ¼ 2=3,

and they do not depend on the taste. The factor of ~uNu

0

arises from possible mean-field improvement. This will be
discussed below, including the appropriate values of Nu.
Without such improvement, ~u0 ¼ 1. We stress again that
one should choose �0 � 1=a when using this result;
extending to other values of �0 requires resumming the
leading logarithms using Eq. (D6).
A very important feature of the results (D6) and (D7) is

that the anomalous dimensions depend only on the spin S

but not on the taste F. The same is true for ZRI0;MS
O , and, as

seen above, the CMS
O . This implies that if one takes ratios of

matching factors having different tastes but the same spin,
then most of the terms in Eq. (D6) will cancel, yielding

ZS	Fð�; aÞ
ZS	Ið�; aÞ ¼

ZMS;LAT
S	F ð�0; aÞ

ZMS;LAT
S	I ð�0; aÞ

(D8)

¼ ~ujSj�jS�Fj
0

�
1þ �ð�0Þ

4�
�S	F
S	I

�
; (D9)

�S	F
S	I ¼ CLAT

S	F � CLAT
S	1 : (D10)

Here we have taken the denominators (arbitrarily) to be
taste singlets. The first line shows the cancellation of all

except the lattice to MS matching factors, and has the
important consequence that the ratios are predicted to be
independent of �. This holds to all orders in PT, and arises
simply because it is only for momenta near the lattice
cutoff 1=a that taste dependence enters. The lack of
dependence on � need not hold, however, for discretiza-
tion errors, so the ratios can depend on powers of ða�Þ2.
The second line of Eq. (D9) gives the one-loop result for

the ratios, which, as shown in the third line, depends only
on the (difference of the) finite lattice constants CLAT. The
values of these constants depend on whether mean-field
improvement (along the lines of Ref. [41]) has been
implemented. In ratios, mean-field improvement amounts
to dividing the links in the bilinears by the fourth root of the
plaquette built from those links, ~u0. It is expected (and
found) that bilinears with such rescaled links will have
better behaved perturbative expansions [41]. Since we
have not implemented this rescaling in our nonperturbative
simulations, we must multiply by the rescaled bilinear by
~u0 raised to the power of the number of links in the bilinear.
These powers involve the length of the hypercube vectors S
and S� F, where, e.g., jSj ¼ P

�jS�j. Although it might

appear that multiplying and dividing by the same factors of
~u0 would lead to no change, this is not the case because for
the external factors we use the nonperturbatively deter-
mined value, while the impact of mean-field improvement

17For the sake of clarity, we have made the dependence on a
explicit on the left-hand side, although this is left implicit in the
main text.
18In the main text this scale is denoted p0, but this symbol is
used for a dimensionless lattice momentum earlier in this
appendix, so we use � here to denote a dimensionful energy
scale.
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in the differences � is evaluated in one-loop perturbation
theory. In effect, we are summing certain classes of dia-
grams to all orders in PT by using the nonperturbative ~u0.

We present results for the taste singlet constants CLAT
S	F1

and the differences �S	F1
S	I in Tables V, VI, VII, and VIII for

the following choices of action and operators. In all cases
the gauge action is the tree-level improved Symanzik
action.19

(a) Mean-field improved naive staggered fermions with
operators containing mean-field improved thin links.
In this case, ~u0 is determined from the thin link
plaquette, and equals the u0 discussed in the main
text. Mean-field improvement of the links replaces
U� with U�=~u0. Mean-field improvement of the

action follows the prescription explained, for the
present context, in Refs. [36,39,47]. The improve-
ment of the action has no impact on the differences
�, but does change the constants C, because the
power of ~u0 in Eq. (D7) becomesNu ¼ 1� jS� Fj.

(b) HYP-smeared staggered fermions with operators
containing HYP-smeared links. No mean-field im-
provement is used, so that ~u0 ¼ 1. As noted above,
HYP(1) smearing is used.

(c) As in (b), except with mean-field improved HYP-
smeared links, with ~u0 being the fourth root of the
average plaquette composed of HYP-smeared links.

The action is also mean-field improved, so that
Nu ¼ 1� jS� Fj as in case (a).

(d) Asqtad fermions with operators containing
smeared (‘‘Fat7þ Lepage’’) links. No mean-field
improvement.

(e) As in (d), but with mean-field improvement of the
links in the operators, ~u0 now being the fourth root
of the plaquette composed of the same smeared links
as used in the operators. Note that the asqtad action
already includes some tadpole improvement, and no
further improvement is made to the action. This
means that Nu ¼ �jS� Fj in Eq. (D7).

We present results only for scalar, vector and tensor
bilinears, since multiplication of the operators by �5 	 	5

leaves the constants unchanged. Thus those for pseudosca-
lars can be obtained from the results for scalars, and results
from axial bilinears from those for vectors. In addition,
three pairs of tensor matching factors are equal, as
displayed in Table VIII.
For completeness, we also give the expressions for ~u0 in

PT. For HYP(1) smearing, we find

~uHYP0 ¼ 1� CF

�

4�
0:4331; (D11)

where Cf ¼ 4=3, while for ‘‘Fat-7þ Lepage’’ smearing,

~uASQ0 ¼ 1þ CF

�

4�
3:4897: (D12)

We comment briefly on the values of the constants.
CLAT
��	1 ¼ 0 for naive and HYP-smeared quarks (see

TABLE V. Results for CLAT
S	I for the five choices of fermion

action and operators explained in the text: (a) Naive with mean-
field improvement, (b) HYP-smeared, (c) HYP-smeared with
mean-field improvement, (d) asqtad with smeared links in op-
erators, (e) asqtad with smeared and mean-field improved links
in operators. The indices � and � are different.

Spin (S) (a) (b) (c) (d) (e)

I 34.12 3.29 2.71 4.83 4.83

�� 0 0 0 �1:91 �6:57
��� �1:54 �1:53 �0:96 0.23 �9:08

TABLE VII. Results for �
�̂	F
�̂	I , i.e. the finite coefficients for

ratios involving vector bilinears. Notation as in Table V. The
indices �, � and � are all different.

Taste (F) Links (a) (b) (c) (d) (e)

	� 0 �5:32 �1:05 �0:48 3.26 �1:40
	�� 1 �3:46 0.32 0.32 0.09 0.09

	� 2 0.40 1.47 0.89 �3:23 1.42

	�5 2 0.51 1.83 1.25 �2:65 2.00

	�� 3 3.06 3.04 1.88 �6:03 3.27

	5 3 3.44 3.38 2.23 �5:49 3.82

	�5 4 5.80 4.64 2.91 �8:78 5.18

TABLE VIII. Results for �
�̂ �̂	F
�̂ �̂	I , i.e. the finite coefficients for

ratios involving tensor bilinears. Notation as in Table V. The
indices �, �, � and  are all different.

Taste (F) Links (a) (b) (c) (d) (e)

	�� 0 2.74 �1:85 �0:69 8.73 �0:58
	�, 	�5 1 �0:91 �1:05 �0:47 3.82 �0:84
	�� 2 �0:36 �0:02 �0:02 �0:09 �0:09
	5 2 0 0 0 0 0

	�, 	�5 3 1.57 1.17 0.59 �3:54 1.11

	� 4 3.72 2.45 1.30 �6:82 2.49

TABLE VI. Results for �I	F
I	I , i.e. the finite coefficients for

ratios involving scalar bilinears. The column ‘‘links’’ gives the
number of links in the operator with the given taste. Choices of
action and operators are as in Table V.

Taste (F) Links (a) (b) (c) (d) (e)

	� 1 21.84 2.80 2.23 1.99 6.64

	�� 2 32.02 5.32 4.17 1.58 10.88

	�5 3 37.41 7.66 5.93 0.21 14.16

	5 4 41.52 9.90 7.59 �1:51 17.10

19The numerical results for cases (a) and (d) are directly
obtained from those in Ref. [39], while those for cases (b), (c)
and (e) are new. The latter is new because Ref. [39] did not
consider mean-field improvement of the asqtad bilinears.
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Table V) because the taste-singlet vector bilinear is the
conserved current. This is not the case for the asqtad action
(due to the distance 3 Naik term), and so the constant need
not (and does not) vanish. To give an idea of the size of the
corrections, we note that on the coarse MILC lattices, the
momenta within the window where NPR can be used range
roughly from � ¼ 1:0=a � 1:7 GeV to � � 3 GeV, so
that 4�=�ð�Þ ranges from 38 to 52. Thus one needs
perturbative coefficients C and � to have magnitudes
& 10 to have reasonable convergence. We see from the
tables that this is the case except for the scalar (and
pseudoscalar) bilinears with the naive staggered action
and operators [case (a)]. This is one of the reasons why
we do not present numerical results for this case in the
main text. The constants are smallest for HYP-smeared
operators, suggesting the PT should be better behaved in
these cases. We also note that, while mean-field improve-
ment reduces the magnitude of the corrections for the
HYP-smeared action and operators, this is not uniformly
the case for the asqtad action, where for scalars corrections
are increased.

We close this section by describing two ways of rewrit-
ing the perturbative results that might have some practical
utility. The first involves ratios of the differences of the
initial ratios from unity:�

ZS	F1ð�;aÞ
ZS	Ið�;aÞ ~u

�jSjþjS�F1j
0 � 1

�
�
ZS	F2ð�;aÞ
ZS	Ið�;aÞ ~u

�jSjþjS�F2j
0 � 1

� ¼ �S	F1
S	I

�S	F2
S	I

þOð�2Þ: (D13)

The utility of this double ratio is that the coupling constant
cancels in the one-loop contribution, so one obtains a
simple numerical prediction. In practice, however, there
are two difficulties: the ða�Þ2 discretization errors need not
cancel, and the relative size of the Oð�2Þ contributions are
typically different for tastes F1 and F2. Because of these
difficulties, we have found it more useful to simply com-
pare the initial single ratios to PT.

An alternative way of presenting PT results for ratios is
to define �eff as follows:

ZS	Fð�Þ
ZS	Ið�Þ ~u

�jSjþjS�Fj
0 � 1 ¼ �eff

4�
�S	F
S	I þOð�2Þ: (D14)

If the one-loop results gave a perfect representation of the
data, �eff would be the almost the same for all ratios and
independent of �. There would be some variation since
�eff is the coupling evaluated at a scale which we know to
be of Oð1=aÞ but whose precise value varies between
ratios. It would then be interesting to take the ratio of the
values of �eff at our two different lattice spacings, since
this should lie in the range �ð1=acoarseÞ=�ð1=afineÞ ¼ 1:22
to�ð2=acoarseÞ=�ð2=afineÞ ¼ 1:15. In forming this ratio one
should work at fixed a� (rather than at fixed �), so as to
better cancel lattice artifacts.

Again, in practice we have found that the combination
of noncanceling discretization errors and taste-dependent

higher-order corrections makes this method difficult to use
quantitatively. Thus in the main text we make a more
qualitative comparison between the results on the two
lattice spacings.

APPENDIX E: CONTINUUM
PERTURBATIVE RESULTS

In this appendix we collect the results from the literature
that allow us to predict the matching factors using
perturbation theory using the master formula Eq. (D6).
There are many ways of writing the matching factor,

with or without intermediate schemes, and with the run-
ning over the large range of scales taking place in different
schemes. We have chosen the specific form (D6) for the
following reasons. First, by doing the running from � to
�0 � 1=a first, we can, if we wish, move the running to the
other side of the equation, and so convert the lattice results
into a scale-independent form. Second, we need to use the

intermediate MS scheme because the matching to the
lattice is only available in this scheme (as discussed in
the previous appendix).
When evaluating the master expression, we have

used the highest order available in the literature for each

part. For the beta function in the MS scheme, in the
convention where

�ð�Þ ¼ d�

d ln ð�2Þ ¼ ��ð0Þ�2 � �ð1Þ�3 � � � � ; (E1)

we have (setting here, and in the following, Nc ¼ Nf ¼ 3)

�ð0Þ ¼ 9; �ð1Þ ¼ 64; �ð2Þ ¼ 643:83; �ð3Þ ¼ 12090:4:

(E2)

For the anomalous dimensions in the RI0 scheme, whose
perturbative expansion we define as

�Oð�Þ ¼ � d ln ðZOÞ
d ln ð�2Þ (E3)

¼ �ð0Þ
O �þ �ð1Þ

O �2 þ � � � ; (E4)

the coefficients are known to four loops for the scalar [48],

�ð0Þ
S ¼ �4; �ð1Þ

S ¼ �108:67;

�ð2Þ
S ¼ �3576:95; �ð3Þ

S ¼ �147207;
(E5)

and three loops for the tensor [49],

�ð0Þ
T ¼ 1:33; �ð1Þ

T ¼ 34:44; �ð2Þ
T ¼ 976:64: (E6)

The vector current also has a nonvanishing anomalous
dimension in the RI0 scheme, which we determine
below.

The conversion factors from RI0 to MS can be obtained
for the scalar bilinear from Ref. [48] and for the tensor
from Ref. [49]. The results are
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ZRI0;MS
S ð�0Þ� 1�5:33��121:37�2�3564:54�3; (E7)

ZRI0;MS
T ð�0Þ � 1þ 35:07�2 þ 1207:96�3; (E8)

with the coupling constant evaluated at scale �0.
To obtain the result for the vector bilinear, we first note

that ZRI;MS
V ¼ 1, as shown in Ref. [1]. Here RI refers to the

original regularization independent scheme of Ref. [1], in
which the condition used to determine Zq from the quark

propagator differs from that in the RI0 scheme. The condi-
tion determining Zq=ZV , Eq. (24), is, however, the same in

both schemes, from which we learn that [50]

ZRI0;RI
V ¼ ZRI0;RI

q : (E9)

Combining these results, we find the desired matching
factor

ZRI0;MS
V ¼ ZRI0;RI

V ZRI;MS
V (E10)

¼ ZRI0;RI
q (E11)

¼ 1þ c2�
2 þ c3�

3 þ � � � (E12)

� 1þ 9:17�2 þ 342:01�3; (E13)

where the numerical values are from Ref. [50]. This, in
turn, can be used to obtain the anomalous dimension,

�RI0
V ¼ �d lnZRI0;MS

V

d ln ð�2Þ (E14)

¼ 2c2�
ð0Þ�3 þ ð2c2�ð1Þ þ 3c3�

ð0ÞÞ�4 þ � � � (E15)

� 165�3 þ 10407:5�4: (E16)
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