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We apply Schrödinger functional methods to two gauge theories with fermions in two-index

representations: the SU(3) theory with Nf ¼ 2 adjoint fermions, and the SU(4) theory with Nf ¼ 6

fermions in the two-index antisymmetric representation. Each theory is believed to lie near the bottom of

the conformal window for its respective representation. In the SU(3) theory we find a small beta function

in strong coupling but we cannot confirm or rule out an infrared fixed point. In the SU(4) theory we find a

hint of walking—a beta function that approaches the axis and then turns away from it. In both theories

the mass anomalous dimension remains small even at the strongest couplings, much like the theories

with fermions in the two-index symmetric representation investigated earlier.
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I. INTRODUCTION

The extension of lattice gauge methods to theories
beyond QCD has been largely aimed at determining the
infrared properties of these theories [1,2]. For a given
gauge group, one varies the number Nf of fermion flavors

to try to find the conformal window, the range of Nf where

the theory is scale invariant at large distances. Below this
window the theory confines and breaks global symmetries,
much like QCD; the most interesting range of Nf is the

borderline area [3–5]. In a further departure from QCD,
one can put the fermions in a color representation
other than the fundamental. This opens a large arena for
exploration [6–8].

In this paper we analyze two gauge theories: the SU(3)
gauge theory with Nf ¼ 2 Dirac fermions in the adjoint

representation, and the SU(4) theory with Nf ¼ 6 Dirac

fermions in the sextet, which is an antisymmetric tensor
with two indices. For the SU(3)/adjoint theory, Nf ¼ 2 is

the only value that is interesting, in that the coefficients b1,
b2 of the one- and two-loop terms in the beta function,

�ðg2Þ ¼ �b1
g4

16�2
� b2

g6

ð16�2Þ2 þ � � � (1)

satisfy

b1 > 0; b2 < 0: (2)

The two-loop beta function thus possesses an infrared-
stable fixed point (IRFP) [9,10], which invites nonpertur-
bative confirmation. As for the SU(4)/sextet theory, the
condition (2) offers a wider range of Nf for study (see

Table I). Approximate solutions of the Schwinger-Dyson
equations [11,12] indicate that the Nf ¼ 6, 7 theories lie

below the sill of the conformal window while Nf ¼ 8 lies

just above (see Ref. [8]). Allowing that all three theories

invite study, we chose to start with Nf ¼ 6 so as to

approach the conformal window from below.1

We apply the method of the Schrödinger functional (SF)
to calculate the running coupling of the theories at hand
and thus their beta functions. This method was developed
[13–18] to study small-Nf QCD, whose coupling runs fast

in evolving from short- to long-distance scales. While we
use the same definition of the running coupling, we analyze
the results with methods that we have found useful for
conformal and near-conformal theories, where the cou-
pling runs very slowly. We developed these methods in
the course of our work on three gauge theories that lie near
the bottom of the conformal window: the SU(2) [19],
SU(3) [20–22], and SU(4) [23] theories, all with Nf ¼ 2

fermions in the respective two-index symmetric represen-
tations (2ISR) of color.2

The present study takes us to new two-index
representations—the adjoint and the antisymmetric. Our
SF analysis, even before extrapolation to the continuum
limit, is inconclusive regarding the existence of an IRFP
in both theories we study. The extrapolation of our data to
the continuum is difficult. The resulting error bars are on
the same scale as the one-loop beta function, and so we
cannot tell whether the beta function for each theory
crosses zero. It is possible that it approaches zero and
then runs off to negative values; this behavior is known
as walking. The SU(4)/sextet theory, in particular, shows a
hint of this behavior but with large error bars.

1As is well known, choosing an even number for Nf allows a
much simpler and less expensive algorithm for simulation than
an odd number. The Nf ¼ 5 theory also satisfies Eq. (2), but we
have omitted it from the table.

2For other applications of the SF method to near-conformal
gauge theories, see [24–33].
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As in our work on the 2ISR models, we are able to give
more precise results for �m, the anomalous dimension of
the fermion mass defined as usual through the scaling
behavior of �c c . This is calculated as a byproduct of the
SF calculation [27,34–36]. We find, as in the other theories,
that as g2 is increased, �m deviates downwards from the
one-loop curve and levels off below 0.4 in both the SU(3)
and the SU(4) theories. This result is robust under continuum
extrapolation.

The leveling off of �mðgÞ in these theories and in the
2ISR theories is a remarkable result. No such behavior has
ever appeared in perturbation theory. As we have noted
before, the existence of a global bound on �m is evidently
invariant under any redefinition g ! g0ðgÞ; that is, it is
entirely scheme independent.

The SU(3) lattice gauge theory with two adjoint fermions
has attracted attention as an extension of QCD in which the
dynamical scales of confinement and of chiral symmetry
breaking might be separated. Following early quenched [37]
and unquenched [38] studies, Karsch and Lütgemeier [39]
carried out an extensive study of the Nf ¼ 2 theory with

staggered fermions. They found clear evidence for separate
finite-temperature phase transitions. The nature of the chiral
phase transition, which should follow the scheme [40]
SUð4Þ ! SOð4Þ, was investigated in Refs. [41,42]. The
theory has also served as a laboratory for studying monopole
condensation [43] and finite-size phase transitions [44,45].

The finite-temperature transitions found in the above
work would seem to rule out IR conformality in the
SU(3)/adjoint theory. After all, an IR conformal theory
would have no scale from which one could construct a
zero-temperature chiral condensate, a string tension, or a
transition temperature. The evidence offered so far, how-
ever, is inconclusive. The results cited above were obtained
in studies on finite-temperature lattices with only one value
of n�, the number of sites in the Euclidean time direction.
When n� ¼ 4, say, the lattice spacing itself sets a scale for
the temperature so that a transition occurs at some bare
coupling g�0. A true test of confinement vs conformality

requires varying n� to see the behavior of g
�
0ðn�Þ. This will

determine whether, in the continuum limit, the transition

temperature reaches a finite limit or tends to zero. Such a
program has been attempted for the SU(3)/triplet theory
with various Nf [46–50] and for the SU(3)/sextet theory

[51–54], and it is fraught with difficulties.3

The SU(4)/sextet theory has not been studied on the
lattice before. It stands out in Table I. For Nf ¼ 6, the

zero of the two-loop beta function occurs at g2� ’ 27:2. This
is a much stronger coupling than in the other borderline
theories listed in the table. In the 2ISR theories [19–23] as
well as in the SU(3)/adjoint theory (see below), we found
that the nonperturbative beta function follows the two-loop
form fairly closely out to its zero.4 Clearly the two-loop
beta function cannot be trusted out to g2 ¼ 27, and in fact
we will show below that the calculated beta function
deviates and approaches zero at a much weaker coupling.
We review the choice of lattice action and describe

our simulations in Sec. II. We present the analysis of the
running coupling and the beta function in both theories
in Sec. III, and the mass anomalous dimension in Sec. IV.
We conclude with a summary of our results and a discus-
sion of the difficulties encountered.

II. LATTICE ACTION, PHASE DIAGRAM,
AND ENSEMBLES

Our fermion action �cDFc is the conventional Wilson
action supplemented by a clover term [56] with coefficient
cSW ¼ 1 [57]. The gauge links in the fermion action are fat
link variables V�ðxÞ. The fat links are the normalized

hypercubic links of Refs. [58,59] with weighting parameters
�1 ¼ 0:75, �2 ¼ 0:6, �3 ¼ 0:3, subsequently promoted to
the fermions’ representation.
As we found in our previous work [22,23], it is useful

to generalize the pure gauge part of the action beyond
the usual plaquette term to include a term built out of fat
links. Thus,

SG ¼ � �

2N

X
���

ReTrU�ðxÞU�ðxþ �̂ÞUy
�ðxþ �̂ÞUy

� ðxÞ

� �0

2df

X
���

ReTrV�ðxÞV�ðxþ �̂ÞVy
�ðxþ �̂ÞVy

� ðxÞ:

(3)

N ¼ 3, 4 is the number of colors while df (¼ 8, 6, respec-

tively) is the dimension of the fermion representation.
The reason for adding the �0 term can be found in the

phase diagram sketched in Fig. 1 [60–62]. We verified this
phase diagram in the SU(3)/sextet theory [21,55] and in the
SU(2)/triplet theory [19] (where part of the phase boundary

TABLE I. Coefficients of the two-loop beta function for the
SU(3)/adjoint and SU(4)/sextet theories and location of its zero
g2�. For comparison we list the quantities for borderline theories
with two-index symmetric representations.

Nf b1 b2 g2�
SU(3)/adjoint 2 3 �90 5.26

SU(4)/sextet 6 6 2
3 �38 2

3 27.2

7 5 1
3 �75 1

3 11.2

8 4 �112 5.6

SU(2)/triplet 2 2 �40 7.9

SU(3)/sextet 2 4 1
3 �64 2

3 10.6

SU(4)/decuplet 2 6 2
3 �86 2

3 12.1

3These studies used the staggered prescription for the fermi-
ons; the finite-temperature transition in the SU(3)/sextet theory
was observed with Wilson fermions in Ref. [55].

4We were able to confirm the zero at high significance in the
SU(2) theory [19] but not in the other theories.
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is a second-order transition).5 For the two theories at hand,
we discovered the same structure in the course of determin-
ing the �cð�Þ curve. Our SF calculations are, in principle,
carried out on the �cð�Þ line, where mq ¼ 0, to the right of

the point marked ð�1; �1Þ. Our goal is to reach as strong a
running coupling as possible, by pushing to strong bare
couplings. At strong coupling, however, we encounter either
the phase transition shown or impossibly low acceptance
due to roughness of the typical gauge configuration.
Adjusting �0 can help push these limitations off towards
stronger coupling. An exploration of the ð�;�0Þ plane
similar to that described in Ref. [23] led us to set
�0 ¼ 0:5 in the SU(4) theory. In the SU(3) theory, on the
other hand, we found no advantage in adjusting �0 away
from zero. Any other choice decreased the range of acces-
sible couplings. See the Appendix for more information.

We determine the critical hopping parameter �c ¼ �cð�Þ
by setting to zero the quark mass mq, as defined by the

unimproved axial Ward identity. mq is of course volume

dependent on small lattices. Ideally, we would like to fix �c

so that mq ! 0 in the infinite-volume limit. For clear prac-

tical reasons, we instead do the determination in relatively
short runs on lattices of size L ¼ 12a. In our work on the
SU(2)/adjoint theory [19], we addressed the concern that an
extrapolation of mq to infinite volume might show that the

L ! 1 limit is far from massless. The problem is poten-
tially serious only at the strongest couplings, and we showed
that, even there, adjustment of � to make mq acceptably

small does not affect the results for the � function or the
anomalous dimension �m.

In the SU(3)/adjoint theory, on the other hand, the
determination of �c runs into trouble at the strongest
couplings, � ¼ 3:8 and 3.9, and this time the problem
lies in the smallest lattices. We refer again to Fig. 1.
Both the first-order phase boundary and the �cð�Þ curve
shift with volume. We show in Fig. 2 the data formqð�Þ for
the various volumes at the two strongest bare couplings,
� ¼ 3:8 and 3.9. For each coupling we fix �c by demand-
ing mq ¼ 0 for L ¼ 12a. At � ¼ 3:8, this fixes �c ¼
0:1369. As can be seen in the figure, the values of mq at

this � for L ¼ 10a and L ¼ 8a are nonzero and positive.
This would hold as well for L ¼ 6a, except that for
L ¼ 6a the phase boundary in Fig. 1 has moved up past � ¼
0:1369 so that we find ourselves in the confining phase. It is
impossible to simulate for L ¼ 6a at the �c determined at
L ¼ 12a. It is worth noting that there is still a value of � at
whichmq crosses zero for L ¼ 6a; like the phase boundary,

it has shifted upwards. The bottom line is that we are
prevented from simulating on the L ¼ 6a lattice at �c.
For � ¼ 3:9 the situation is the same, except that for

L ¼ 6a at � ¼ �c ¼ 0:1360we succeeded in simulating in
a short run in the metastable state that is nonconfining.
(This is the origin of the bracketed point in the figure on the
right.) The lifetime of the metastable state, however, was
too short to make it useful for a SF measurement. Going
back to � ¼ 3:8, we found in fact that for L ¼ 8a as well,
the nonconfining state is metastable at �c. In this case,
however, we were able to run a very long simulation and
thus to make a useful determination of the SF observables.
We stress that the metastability issue on the small

volumes at � ¼ 3:8 and 3.9 is distinct from what happens
to the left of ð�1; �1Þ in Fig. 1. The strong-coupling part of
the phase boundary is a place where mq flips sign discon-

tinuously, and there is no equilibrium measurement that
will give mq ¼ 0 for any volume [19]. At � ¼ 3:8 and 3.9,

on the other hand, each lattice size allows a value of �
where mq ¼ 0. The fact that this � shifts with L does not

pose a special problem; the shift in the phase boundary
does pose a practical problem in preventing simulation at
a given � for small volumes. We overcame this in the case
of (� ¼ 3:8, L ¼ 8a), however, and so we make use of
the data here even though the state is metastable.6

Our tables for the SU(3)/adjoint theory are thus missing
entries for L ¼ 6a at the two strongest couplings. This
problem did not appear in the SU(4)/sextet theory.
Moreover, we did not run simulations for L ¼ 16a at the
weakest coupling in either theory.
As before, we employed the hybrid Monte Carlo (HMC)

algorithm in our simulations. The molecular dynamics

q

= 0mq

> 0mq> 0mq

cκ (β)

(β  ,κ  )11

β

m < 0

confining

non−conf.
1st

1st

κ

FIG. 1 (color online). Presumed phase diagram for both the
SU(3)/adjoint and SU(4)/sextet theories, for j�0j not too large.
The first-order phase boundary, as well as the �cð�Þ curve, shifts
with �0; the SF coupling g is determined along the �c curve, and
it, too, depends on �0.

5For more discussion see Refs. [63,64].

6In fact, we did not determine finally which is the stable state
for L ¼ 8a and which is the metastable. It is possible that the
confined state will tunnel back to the nonconfined in short order,
but simulation of the confined state is very difficult due to poor
acceptance, so we did not resolve this question.
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FIG. 2 (color online). mqð�Þ determined from the axial Ward identity, for the strongest couplings studied in the SU(3)/adjoint theory.
Left: � ¼ 3:8. Right: � ¼ 3:9. The square brackets indicate measurements in a metastable state.

TABLE II. Ensembles generated at the bare couplings ð�;�cÞ,
on lattice sizes L, for the SU(3)/adjoint theory. For this theory no
fat-plaquette term was added to the action. Listed are the total
number of trajectories for all streams at given ð�;LÞ, the
trajectory length, and the HMC acceptance.

� �c L=a
Trajectories

(thousands)

Trajectory

length Acceptance

3.8 0.1369 8 21 1.0 0.46

10 62 0.5 0.65

12 80 0.5 0.64

16 88 0.4 0.43

3.9 0.136 8 37 1.0 0.68

10 76 0.5 0.77

12 133 0.5 0.72

16 100 0.4 0.57

4.1 0.134 54 6 26 1.0 0.85

8 18 1.0 0.67

10 38 0.5 0.87

12 48 0.5 0.84

16 26 0.5 0.70

4.5 0.131 72 6 16 1.0 0.99

8 9 1.0 0.97

10 13 1.0 0.94

12 19 1.0 0.88

16 10 1.0 0.81

5.0 0.1295 6 17 1.0 0.99

8 8 1.0 0.99

10 13 1.0 0.99

12 32 1.0 0.97

TABLE III. Ensembles generated at the bare couplings ð�;�cÞ,
on lattice sizes L, for the SU(4)/sextet theory. For this theory
a fat-plaquette term was added to the action with coefficient
�0 ¼ 0:5. Columns as in Table II.

� �c L=a
Trajectories

(thousands)

Trajectory

length Acceptance

5.5 0.133 98 6 8 1.0 0.74

8 8 0.5 0.79

10 16 0.5 0.77

12 48 0.5 0.57

16 17 0.5 0.38

6.0 0.133 15 6 8 1.0 0.64

8 8 1.0 0.48

10 8 0.5 0.45

12 10 0.5 0.73

16 16 0.5 0.57

7.0 0.131 20 6 8 1.0 0.92

8 8 1.0 0.84

10 8 1.0 0.67

12 16 1.0 0.47

16 11 0.5 0.82

8.0 0.129 33 6 8 1.0 0.98

8 8 1.0 0.96

10 8 1.0 0.93

12 16 1.0 0.65

16 16 0.5 0.86

10.0 0.127 02 6 8 1.0 0.99

8 8 1.0 0.99

10 8 1.0 0.99

12 8 1.0 0.97
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integration was accelerated with an additional heavy
pseudofermion field as suggested by Hasenbusch [65],
multiple time scales [66], and a second-order Omelyan
integrator [67]. The ensembles generated for the two theo-
ries are listed in Tables II and III. For the SU(3) theory,
each ensemble for L � 10a was divided into four streams,
with the requirement that the observables from the four
streams be consistent to a low 	2. For the SU(4) theory this
was done for all the ensembles, including L ¼ 6a, 8a.

The SU(3) theory was particularly difficult to simulate in
its strong-coupling region, requiring short trajectories and
producing long autocorrelation times, which in turn resulted
in slow convergence of the separate streams. For several
values of ð�;LÞ, we were unable to satisfy our consistency
test of	2 < 6 for 3 degrees of freedom, in one observable or
another, among the four streams. In most of these cases,
however, we saw a steady improvement with the length of
the run. Moreover, we found that the high 	2 was caused by
one stream out of the four; dropping this stream in favor of
the majority resulted in a change of the mean that was less
than 1
. We decided therefore to deem these results statis-
tically consistent. The only exception arose at � ¼ 3:8 for
L ¼ 16a, the largest volume at the strongest coupling.
Here an outlying stream resulted in 	2 ¼ 16=3 d.o.f. in
the result forZP, with no sign of improvement as the streams
grew longer. We were left with no choice but to omit this
stream from the final average, resulting in a shift by 2:5
.
This one result for ZP is thus less reliable than the others
and we mark it so in the following.

The tables show that the SU(4) theory reached reasonable
error bars with much shorter simulations. There were no
special problems with 	2 among the streams once they had
become long enough.

III. THE RUNNING COUPLING
AND THE BETA FUNCTION

We compute the running coupling in the SF method
exactly as described in our previous papers. We impose
Dirichlet boundary conditions at the time slices t ¼ 0, L,
and measure the response of the quantum effective action.
The coupling emerges from a measurement of the deriva-
tive of the action with respect to a parameter � in the
boundary gauge field,

K

g2ðLÞ ¼
�
@SG
@�

� tr

�
1

Dy
F

@ðDy
FDFÞ
@�

1

DF

�����������¼0
: (4)

The boundary conditions we use for each theory are
copied from other theories with the same gauge group.
For the SU(3)/adjoint model, see our paper on the SU(3)/
sextet theory [21]; for the SU(4)/sextet theory see
our paper on the SU(4)/decuplet theory [23]. The constant
K ¼ 12� emerges directly from the classical continuum
action.
We list the calculated running couplings for the SU(3)

theory in Table IVand for the SU(4) theory in Table V; they
are plotted in Figs. 3 and 4, respectively.

We define the beta function ~�ðuÞ for u � 1=g2 as

~�ðuÞ � dð1=g2Þ
d logL

¼ 2�ðg2Þ=g4 ¼ 2u2�ð1=uÞ: (5)

As discussed in Ref. [19], the slow running of the coupling
suggests extracting the beta function at each ð�; �cÞ from a
linear fit of the inverse coupling

uðLÞ ¼ c0 þ c1 log
L

8a
: (6)

TABLE IV. Running coupling measured in the SU(3)/adjoint theory.

1=g2

� L ¼ 6a L ¼ 8a L ¼ 10a L ¼ 12a L ¼ 16a

3.8 � � � 0.1343(32) 0.1387(29) 0.1438(31) 0.1387(55)

3.9 � � � 0.1561(26) 0.1576(28) 0.1558(27) 0.1568(45)

4.1 0.2059(22) 0.2031(40) 0.2106(40) 0.2000(43) 0.1989(67)

4.5 0.2954(26) 0.2959(40) 0.2838(45) 0.2765(43) 0.2826(69)

5.0 0.4016(27) 0.3993(54) 0.3953(44) 0.3900(34) � � �

TABLE V. Running coupling measured in the SU(4)/sextet theory.

1=g2

� L ¼ 6a L ¼ 8a L ¼ 10a L ¼ 12a L ¼ 16a

5.5 0.1244(21) 0.1225(40) 0.1297(32) 0.1213(22) 0.1120(60)

6.0 0.1675(26) 0.1676(38) 0.1626(42) 0.1659(45) 0.1592(54)

7.0 0.2849(27) 0.2692(32) 0.2642(45) 0.2448(45) 0.2581(66)

8.0 0.4193(27) 0.3947(42) 0.3905(27) 0.3777(40) 0.3628(69)

10.0 0.7214(32) 0.7000(42) 0.6729(53) 0.6621(58) � � �
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With this parametrization, c0 gives the inverse coupling

uðL ¼ 8aÞ, while c1 is an estimate for the beta function ~�
at this coupling.

For a first look, we fit the data points for all L to extract
the slopes at the given bare parameters, ignoring discreti-
zation errors that must be inherent in the smallest lattices.
These fits are shown in Figs. 3 and 4. Values of the beta

function ~�ðuÞ obtained from these fits are plotted as a

function of uðL ¼ 8aÞ in Fig. 5. Also shown are the
one- and two-loop approximations from the expansion
(see Table I)

~�ðuÞ ¼ � 2b1
16�2

� 2b2
ð16�2Þ2

1

u
þ � � � : (7)

The plotted points for the SU(3) theory follow the
two-loop curve closely, including its zero crossing. This
would imply an IRFP but at low significance since the
leftmost point is but 1:5
 above zero. (We will see also
that continuum extrapolation drives the point negative.)
In the case of the SU(4) theory, we see a large deviation
from the two-loop curve in strong coupling, even tending
towards a zero crossing but not quite getting there. In both
cases, one might be tempted to draw a smooth curve that
crosses zero, but one could also draw a curve that
approaches zero and then falls away, which is just the
conjectured behavior for walking.
In Ref. [22] we introduced a method for extrapolating

lattice results to the continuum limit when a theory runs
slowly. The key observation is that when a theory is almost
conformal, the finite-lattice corrections will not depend
separately on a and on L but only on the ratio (a=L).
Then successive elimination of the lattices with coarsest
lattice spacing a is equivalent to dropping the smallest

lattice sizes L. We calculated ~�ðuÞ above by linear
fits [Eq. (6)] to 1=g2 measured on lattices of size L1 <
L2 < . . .< LN . The results for this first fit are the coeffi-

cients c0 � cð1Þ0 and c1 � cð1Þ1 . We can obtain results closer

to the continuum limit by dropping the smallest lattice L1

from consideration, whereupon a linear fit gives cð2Þ0 , cð2Þ1 .

Dropping the two smallest lattices gives cð3Þ0 , cð3Þ1 , and so

forth. Each cðnÞ1 is an approximant to ~�ðuÞ associated with

L ¼ Ln, the smallest lattice kept. We can then extrapolate
to a=L ¼ 0 either linearly,

cðnÞ1 ¼ ~�ðuÞ þ C
a

L
; (8)

or quadratically,

cðnÞ1 ¼ ~�ðuÞ þ C

�
a

L

�
2
: (9)

Each extrapolation formula should be considered a model,
since perturbative estimates of lattice error are inapplicable
in the strong-coupling regime where we work. The extrap-

olations take into account the fact that the results cðnÞ1 of the

successive fits are correlated [22]. For graphs illustrating
the procedure, see the Appendix.
We plot the results of the continuum extrapolations for

both the SU(3) and the SU(4) theories in Fig. 6. Compared to
Fig. 5, the linear extrapolations increase the error bars by a
factor of 5, the quadratic extrapolations by only a factor of 3.
The linear and quadratic extrapolations are mutually con-
sistent for each data point; one can consider them separately

0.05 0.15 2.01.0
a/L

0.1

0.2

0.3

0.4

g−2
(L

)

FIG. 3 (color online). Running coupling 1=g2 vs a=L in the
SU(3)/adjoint theory (Table IV). Top to bottom: � ¼ 5:0, 4.5,
4.1, 3.9, 3.8. The straight lines are linear fits [Eq. (6)] to each set
of points at given �; the slope gives the beta function. The dotted
line shows the expected slope from one-loop running.

0.05 0.15 2.01.0

a/L

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

g−2
(L

)

FIG. 4 (color online). Same as Fig. 3 but for the SU(4)/sextet
theory (Table V). Top to bottom: � ¼ 10:0, 8.0, 7.0, 6.0, 5.5.
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as distinct models, or take their error bars together as a
combination of statistical with systematic errors.7

We note that the simple linear fits (6) typically give a
large 	2 precisely because they neglect finite-lattice

corrections. The extrapolations (8) and (9), on the other
hand, are models aimed at removing the discretization
error and indeed they result in acceptable 	2.
In the SU(3) theory, we can no longer tell whether

the beta function crosses zero, and indeed the very shape
of the function is not well determined. In the SU(4) theory,
the extrapolations indicate a function that approaches zero
and then veers off downwards.

0 0.1 0.2 0.3 0.4 0.5

u = 1/g
2

-0.1

0

β~ (u
)

linear fit
one loop
two loops

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

u = 1/g
2

-0.1

0

β~ (u
)

linear fit
two loops
one loop

FIG. 5 (color online). Beta function ~�ðuÞ of the SU(3)/adjoint theory (left) and the SU(4)/sextet theory (right) plotted as a function
of uðL ¼ 8aÞ. Results are extracted from the linear fits (6), as shown in Figs. 3 and 4, respectively. Plotted curves are the one-loop
(dotted line) and two-loop (dashed line) beta functions. No correction has been made for discretization errors.

0 0.1 0.2 0.3 0.4 0.5

u = 1/g
2

-0.1

0

β~ (u
)

linear fit
a/L extrapolation

(a/L)
2
 extrapolation

one loop
two loops

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

u = 1/g
2

-0.1

0

β~ (u
)

linear fit
a/L extrapolation

(a/L)
2
 extrapolation

two loops
one loop

FIG. 6 (color online). Beta function ~�ðuÞ of the SU(3)/adjoint theory (left) and the SU(4)/sextet theory (right) extrapolated
to the continuum limit. Black squares and curves are the same as in Fig. 5. The points for the extrapolations have been displaced slightly
for clarity.

7For both theories we do not extrapolate the beta function at
the weakest coupling; the absence of data for L ¼ 16a leads to
very large error in the extrapolation.
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IV. MASS ANOMALOUS DIMENSION

Following still the methods used in our previous work,
we calculate the mass anomalous dimension from the
scaling with L of the pseudoscalar renormalization factor
ZP. The latter comes from the ratio

ZP ¼ c
ffiffiffiffiffi
f1

p
fPðL=2Þ : (10)

fP is the propagator from a wall source at the t ¼ 0
boundary to a point pseudoscalar operator at time L=2.
The normalization of the wall source is removed by theffiffiffiffiffi
f1

p
factor, which comes from a boundary-to-boundary

correlator. The constant c, which is an arbitrary normal-

ization, is 1=
ffiffiffi
2

p
in our convention.

We present in Tables VI and VII the values of ZP we find
in the SU(3) and SU(4) theories, respectively; we plot them
in Figs. 7 and 8.

TABLE VII. Pseudoscalar renormalization constant ZP measured in the SU(4)/sextet theory.

ZP

� L ¼ 6a L ¼ 8a L ¼ 10a L ¼ 12a L ¼ 16a

5.5 0.2149(10) 0.2022(11) 0.1906(12) 0.1801(7) 0.1681(14)

6.0 0.2311(9) 0.2150(9) 0.1995(8) 0.1918(12) 0.1747(13)

7.0 0.2558(6) 0.2376(6) 0.2243(6) 0.2123(8) 0.1981(11)

8.0 0.2820(4) 0.2616(6) 0.2496(5) 0.2374(5) 0.2242(8)

10.0 0.3201(3) 0.3037(4) 0.2929(4) 0.2844(4) � � �

TABLE VI. Pseudoscalar renormalization constant ZP measured in the SU(3)/adjoint theory.

ZP

� L ¼ 6a L ¼ 8a L ¼ 10a L ¼ 12a L ¼ 16a

3.8 � � � 0.1333(4) 0.1243(5) 0.1169(3) 0.1070(7)a

3.9 � � � 0.1418(4) 0.1306(4) 0.1222(3) 0.1119(6)

4.1 0.1760(4) 0.1550(5) 0.1426(4) 0.1352(6) 0.1225(8)

4.5 0.1990(4) 0.1775(6) 0.1656(5) 0.1546(3) 0.1427(8)

5.0 0.2193(4) 0.1998(8) 0.1881(7) 0.1788(5) � � �
aAverage of three streams out of four; see Sec. II.

0.15 2.01.00.05
a/L

0.1

0.2

Z
P

FIG. 7 (color online). The pseudoscalar renormalization con-
stant ZP vs L=a in the SU(3)/adjoint theory (Table VI). Top to
bottom: � ¼ 5:0, 4.5, 4.1, 3.9, 3.8. The straight lines are linear
fits to each set of points at given �; the slope gives �m. The
hypothetical dotted line corresponds to �m ¼ 1.

0.15 2.01.00.05
a/L

0.2

0.3

Z
P

FIG. 8 (color online). Same as Fig. 7 but for the SU(4)/
fsextet theory (Table VII). Top to bottom: � ¼ 10:0, 8.0, 7.0,
6.0, 5.5.
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As in the calculation of ~�, we begin with the simple fits
based on the slowness of the running of 1=g2 [19].
Following the approximate scaling formula

ZPðLÞ ¼ ZPðL0Þ
�
L0

L

�
�m

; (11)

we fit the ZP data at each value of � to

logZPðLÞ ¼ c0 þ c1 log
8a

L
; (12)

giving the straight lines plotted in the figures; the slope c1
gives an estimate of �m. For an analysis of finite-volume
effects, we drop successive volumes starting from the

smallest, giving the sequence of cðnÞ1 as above. Again we

extrapolate cðnÞ1 either linearly or quadratically to a=L ¼ 0.
All these results are plotted in Fig. 9.

In both theories, the simple linear fits produce values of
�m that depart from the one-loop line and level off. In the
SU(3) theory, the extrapolations drive the result downward.
Overall, we have a bound �m & 0:4. In the SU(4) theory,
the extrapolations are remarkably consistent with each
other and with the original linear fit. �m again agrees
well with the one-loop line in weak coupling, and then
deviates downward to level off below 0.3 for the linear fits,
stretching to 0.35 for the extrapolations.

The behavior of �m in both theories is remarkably
similar to our what we found in the three 2ISR theories:
SU(2)/triplet, SU(3)/sextet, and SU(4)/decuplet.

V. CONCLUSIONS

Our calculations reveal that the beta functions associated
with the SF coupling in the two theories studied are small,
everywhere smaller than the one-loop values. In the SU(4)
theory, the running is even slower than what is expected
in two loops. Our inability to disentangle possible lattice
artifacts from real running prevents a more definite
statement.
In all cases we have studied, the two in this paper and the

2ISR theories in our previous work, the mass anomalous
dimension varies linearly with the SF gauge coupling when
the coupling is small, and then levels off to a plateau at
large gauge coupling. All the plateaus are at a level
below 0.5.
Imagine now performing a lattice simulation for any of

these systems at any value of the bare lattice coupling in
which the system is in the same phase as at weak coupling.
One will have access to physical scales ranging from the
lattice spacing a to the system size L, where (in the near
future) L=a will be smaller than about 100. The running
coupling will scarcely evolve over this change of scale.
Whether or not the system is actually at a fixed point,
the slow evolution of the coupling implies that lattice

0 1 2 3 4 5 6 7 8 9

g
2

0

0.2

0.4

0.6

0.8

γ
m

linear fit
a/L extrapolation

(a/L)
2
 extrapolation

one loop

0 1 2 3 4 5 6 7 8 9

g
2

0

0.2

0.4

0.6

0.8

γ
m

linear fit
a/L extrapolation

(a/L)
2
 extrapolation

one loop

FIG. 9 (color online). Mass anomalous dimension �mðg2Þ of the SU(3)/adjoint theory (left) and the SU(4)/sextet theory (right)
plotted as a function of g2ðL ¼ 8aÞ. Shown are the simple linear fits and the linear and quadratic extrapolations to the continuum limit.
The points for the extrapolations have been displaced slightly where necessary. The brackets indicate the results of fits at � ¼ 3:8,
which were obtained after dropping an outlying stream for L ¼ 16a; see Sec. II and Table VI. (Restoring the dropped stream to the
averages moves the bracketed points upwards slightly: the simple linear fit by 1:4
, the linear extrapolation by 1:9
, and the quadratic
extrapolation by 1:9
.)
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spectroscopy will display systematics of scaling, broken
by a nonzero fermion mass, by irrelevant operators, and by
the effect of finite volume. Given the size of the one-loop
coefficient of the beta function, plus the observation that
the running coupling in these theories always runs more
slowly than one-loop expectations, this behavior is com-
pletely natural.

In all these lattice systems, typically one will encounter
a confining phase with broken chiral symmetry when the
bare coupling exceeds a certain value. Whether or not this
describes continuum physics can in principle be decided by
calculating the beta function as we have attempted, and
determining whether an IRFP is encountered before chiral
symmetry breaks. In the two systems studied in this paper,
we were unable to resolve this question.

The great advantage of lattice QCD is that the bare
coupling can be adjusted such that perturbation theory is
valid at the lattice scale a, while at the same time the
volume is big enough to accommodate even the lightest
of the hadrons. The same is not true for nearly conformal
theories. Whether the infrared physics is conformal or not,
in order to probe it the bare coupling must be strong.
One consequence is that the Symanzik effective action—
defined around the Gaussian fixed point—offers no guid-
ance to the scaling dimensions of irrelevant operators. In a
nearly conformal theory, where finite-lattice corrections
are essentially functions of a=L, this also leaves us igno-
rant regarding the behavior of finite-volume corrections.
Our extrapolations to infinite volume are then only models.

A comparison to the SF analysis of ordinary QCD
(with small Nf and triplet quarks) invites the question of

why it is so difficult to produce good quality results for
borderline-conformal theories. We believe that the answer
lies in the fact that what is interesting is not the absolute

uncertainty � ~� in the value of the beta function ~�ðg2Þ;
rather, it is the relative error, for which we take the ratio of
the uncertainty to the one-loop constant value. The latter is
proportional to the lowest-order coefficient b1. In QCD
with three flavors, b1 ¼ 9; for the near-conformal theories,
Table I lists values that are a good deal smaller. The QCD
beta function is also increased by a positive b2, whereas
b2 < 0 is a necessary feature of the borderline theories.
Indeed, Table I shows that the SU(3)/adjoint theory studied
here is a particularly difficult case to begin with.

The uncertainty � ~� scales with the ensemble size as

1=
ffiffiffiffi
N

p
, where N is the number of uncorrelated measure-

ments. The observable giving the SF coupling is essentially
a surface quantity. It also includes data generated by a
noisy estimator. Thus it has large inherent fluctuations
as well as long-time autocorrelations underlying these
fluctuations. While this is true for all theories, we found the
SU(3)/adjoint model to be particularly intractable. New
methods of computing running couplings will compete
successfully with the SF if they can overcome these
problems.
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APPENDIX

1. Choosing the value of �0

To find an optimal value of �0 for each theory, we do a
series of short runs on small (L ¼ 6a) lattices to determine
�cð�Þ and then to measure the SF coupling g2 along the �c

curve. For fixed �0, g2 grows as � is decreased (see
Figs. 10 and 11). Our aim is to reach the largest g2 possible.
This is limited by two effects that appear as � is decreased:
Either one reaches the point �1 where the �cð�Þ curve hits
the first-order transition seen in Fig. 1, or the poor accep-
tance due to the increasing disorder makes simulation
impractical. The encounter with the phase transition is
indicated by vertical lines drawn for one value of �0 in
each of Figs. 10 and 11; for other values of �0, we were
stopped by acceptance so poor on these small lattices that
simulation on larger lattices would have been impossible.
For the SU(3)/adjoint theory we chose �0 ¼ 0 since it

appeared to offer the largest range in g2. As it turned out,
longer runs on 64 lattices showed that the three points
plotted for the strongest couplings (� ¼ 3:7, 3.8, 3.9) in
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Fig. 10 represented metastable states, i.e., lying on the
wrong side of the phase transition. We were nonetheless
able to run at� ¼ 3:8 and 3.9 on larger lattices, as described
in Sec. II. In the SU(4)/sextet theory no such issue arose;
Fig. 11 shows why we chose �0 ¼ 0:5 for this theory.
Figures 10 and 11 may be compared to Fig. 1 in our

paper on the SU(4)/decuplet theory [23]. One may find

2 3 4 5 6
β

0

0.1

0.2

0.3

0.4

1/g
2

BZ FP
γ

m
 = 1

FIG. 10 (color online). Inverse SF coupling vs gauge coupling
� for several choices of �0 in the SU(3)/adjoint theory measured
with short runs on a 64 lattice. The connected data sets are for
(right to left) �0 ¼ �0:5, 0, 0.5, 1.0. For �0 ¼ �0:5, the vertical
line marks the appearance of the first-order transition that makes
�c disappear for smaller �. The horizontal dashed line near the
bottom of the graph marks the location of the Banks-Zaks
(two-loop) fixed point. The horizontal dotted line marks where
the one-loop �mðg2Þ is equal to unity. Statistical error bars range
from �0:01 to �0:02.
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FIG. 11 (color online). As in Fig. 10 but in the SU(4)/sextet
theory. The connected data sets are for (right to left) �0 ¼ 0, 0.5,
1.0. The vertical line marks the appearance of the first-order
transition for �0 ¼ 0.
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FIG. 12. Successive fits cðnÞ1 giving the beta function ~� of the
SU(4)/sextet theory, as a function of a=Ln, where Ln is the
smallest lattice size used in the fit. The linear extrapolations to
a=L ¼ 0 are shown.
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FIG. 13. Same as Fig. 12 but showing the quadratic extrapo-
lations to a=L ¼ 0.
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there a demonstration of universality in weak coupling
as �0 is varied.

2. Continuum extrapolations

To illustrate our method of continuum extrapolation, we

show the values of cðnÞ1 for the beta function in the SU(4)

theory in Figs. 12 and 13, along with their linear and
quadratic extrapolations to a=L ¼ 0. The figures show
the origin of the error bars in the extrapolated values at
L ! 1. The quadratic extrapolations result in smaller
error bars because they have a longer lever arm between
the smallest and largest lattices.
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Lett. 69, 21 (1992).

[61] Y. Iwasaki, K. Kanaya, S. Kaya, S. Sakai, and T. Yoshié ,
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