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In lattice QCD, color confinement manifests in flux tubes. We compute in detail the quark-antiquark

flux tube for pure gauge SU(3) dimension D ¼ 3þ 1 for quark-antiquark distances R ranging from 0.4 to

1.4 fm. To increase the signal-to-noise ratio, we apply the improved multihit and extended smearing

techniques. We detail the gauge-invariant squared components of the color electric and color magnetic

fields both in the mediator plane between the static quark and static antiquark and in the planes of the

charges. We fit the field densities with appropriate Ansätze, and we observe the screening of the color

fields in all studied planes together with the quantum widening of the flux tube in the mediator plane. All

components squared of the color fields are nonvanishing and are consistent with a penetration length

�� 0:22 to 0.24 fm and an effective screening mass �� 0:8 to 0.9 GeV. The quantum widening of the

flux tube is well fitted with a logarithmic law in R.
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I. INTRODUCTION

Confinement in QCD remains a central problem of
strong interactions. It has already been established, both
from gauge-invariant lattice QCD simulations [1–4] and
from experimental observations like Regge trajectories
[5–9], that the quark-antiquark confining potential is linear
and that a flux tube develops between quark-antiquark
static charges. Even in dynamical QCD where the flux
tube breaks due to the creation of another quark and
antiquark, a flux tube develops up to moderate quark-
antiquark distances. Recently, the flux tubes have been
shown to also occur in lattice QCD simulations of different
exotic hadrons [10–14]. Here we return to the fundamental
quark-antiquark flux tube to measure in detail the profile of
the SU(3) pure gauge lattice QCD flux tube in dimensions
D ¼ 3þ 1. We parametrize the flux tube profile, providing
new data for a better understanding of the confinement
in QCD.

In particular, presently two different perspectives for the
QCD flux tube exist, possibly leading to the two different
flux tubes of Fig. 1, and we quantitatively compare them.

Already in the 1970s, Nambu [15], ’t Hooft [16], and
Mandelstam [17] proposed that quark confinement would
be physically interpreted using the dual version of the
superconductivity [18,19]. The QCD vacuum state would
behave like an ordinary magnetic superconductor, where
Cooper-pair condensation leads to the Meissner effect, and
the magnetic flux is excluded or squeezed in a quasi-one-
dimensional tube, the Abrikosov vortex, where the mag-
netic flux is quantized topologically. Magnetic charges are
confined by Abrikosov-Nielsen-Olesen vortices [20–22] in
an ordinary superconductor (Meissner effect). Thus, it is

important for the understanding of confinement in QCD to
measure the flux tube profile and to parametrize the color
screening [23–29]. Moreover, the penetration length can be
related as

� ¼ ��1 (1)

to a possible effective mass � of the dual gluon if we
further explore the analogy between QCD and supercon-
ductors where the field in the London equation has a direct
relation with an effective mass of the interaction particle
fields, i.e., the photon. The dual gluon mass has been
studied by several authors [30–37], as well as the gluon
effective mass, see Ref. [38] for a review of the dual gluon
and gluon effective masses present in the literature.
Interestingly, there is also evidence of a gluon mass in
the Landau gauge [39] and in the multiplicity of particles
produced in heavy ion collisions [40]. Recently, the pene-
tration length started to be computed with gauge-invariant
lattice QCD techniques [38,41,42]. In superconductors,
another parameter, the coherence length �, is defined as
well and related to the curvature of the flux tube profile.
On the other hand, at quark-antiquark distances larger

than the penetration length, the flux tube is similar to a
quantum string, and the quantum string vibrates even in the
ground state where it has zero mode vibrations. A fair
description of the fundamental QCD flux tube—with
charges in the triplet representation of SU(3)—is given
by the string model based on the Nambu-Goto action
[43,44],

S ¼ ��
Z

d2�: (2)

The energy of the quantum string with length R and fixed
ends with quantum transverse fluctuations quantum num-
ber n is expressed in the Lüscher term and in the Arvis
potential [45,46],
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VnðRÞ ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ 2�

�

�
n�D� 2

24

�s

¼ �Rþ �

R

�
n�D� 2

24

�
þ � � � (3)

In Eq. (3), D is the dimension of the spacetime. Note that
the Arvis potential is tachyonic at small distances since the
argument of the square root is negative; moreover, rota-
tional invariance is only achieved for D ¼ 26.
Nevertheless, the first two terms in the 1=R expansion
are more general that the Arvis potential, since they fit
the D ¼ 3 and D ¼ 4 lattice data quite well beyond the
tachyonic distance. The 1=R term is independent of
the string tension � and for the physical D ¼ 3þ 1 it
has the value � �

12 . This is the Lüscher term [45]. The

energy spectrum of a static quark-antiquark and of its flux
tube is certainly well defined (not tachyonic), and this was
the first evidence of flux tube vibrations found in lattice
field theory. Moreover, it was shown [45] that the width of
the ground-state flux tube diverges when R ! 1 with a
logarithmic law,

w2 � w2
0 log

R

R0

; (4)

where w2 is the mean squared radius of the flux tube. This
enhancement of the flux tube transverse radius as R ! 1 is
called widening. The widening as been recently extended
with two-loop calculations [47]. The flux tube widening

has been verified numerically for compact U(1) QED
D¼2þ1 lattices [48], for non-Abelian SU(2) D¼2þ1
lattices [49–65] and, more recently, for the more physical
four-dimensional SU(3) case [66,67].
In this paper, we present an SU(3) gauge-independent

lattice QCD computation in D ¼ 3þ 1 for the penetration
length and for the string quantum widening. Although this
work is not the first one to study the widening in SU(3) for
a spacetime dimension ofD ¼ 3þ 1, we think it is the first
attempt to separate the screening from the quantum widen-
ing. While the screening leads to an exponential decay of
the flux tube profile, the widening leads to a Gaussian
profile.
In Sec. II, we introduce the lattice QCD formulation. We

briefly review the Wilson loop for this system, which was
used by Bicudo et al. [68] and Cardoso et al. [10,69], and
show how we compute the color fields and the Lagrangian
and energy densities’ distributions. In Sec. III, we show the
techniques we utilize to increase the signal-to-noise ratio.
In Sec. IV, we discuss our Ansatz for the width of the QCD
flux tube. In Sec. V, the lattice numerical results are shown
together with their fits. Finally, we present the conclusion
in Sec. VI.

II. COMPUTATION OF THE CHROMOFIELDS
IN THE FLUX TUBE

We impose our static quark-antiquark system with the
standard Wilson WðR; TÞ loop [70],

WðR;TÞ¼Tr
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(5)

In the limit of large Euclidean time limit T ! 1, the
expectation value

hWðR; TÞi ¼ X
n

jCnj2e�VnT (6)

selects the ground state of the static quark-antiquark
system aligned in the z direction with an intercharge dis-
tance R.
To compute the gauge-invariant squared components of

the chromoelectric and chromomagnetic fields on the
lattice, we utilize the Wilson loop and plaquette P��

expectation values,

FIG. 1 (color online). In (a) we illustrate a classical flux tube
similar to a solution of the Ginzburg-Landau and Ampère
equations for a superconductor. In (b) we illustrate a quantum
flux tube, as in a lattice QCD simulation, where the widening of
the flux tube occurs due to the zero mode string vibration. The
squeezing of the flux tube due to the color screening in (a) is
masked by the widening in (b).
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hBi
2ðrÞi ¼ hWðR; TÞPðrÞjki

hWðR; TÞi � hPðrÞjki;

hEi
2ðrÞi ¼ hPðrÞ0ii � hWðR; TÞPðrÞ0ii

hWðR; TÞi ;

(7)

where the jk indices of the plaquette complement the index
i of the magnetic field. The plaquette at position r ¼
ðx; y; zÞ is computed at lattice Euclidean time t ¼ 0, as
depicted in Fig. 2. In Eq. (7), we subtract from the plaquette
computed in the presence of the static charges, the average
plaquette computed in the vacuum. This cancels the vac-
uum fluctuations of the fields. To get the plaquette in the
lattice vertices, we average the neighboring plaques.

We define our plaquette as

P��ðrÞ ¼ 1� 1

3
ReTr½U�ðrÞU�ðrþ�ÞUy

�ðrþ �ÞUy
� ðrÞ�;

(8)

which for small lattice spacing a can be expanded in a
series of powers of the symmetric tensor F�� c whose
components are the electric and magnetic field compo-
nents. Prior to performing the trace, the expansion
reads [71,72]

P�� ¼ 1� 1

3
ReTr exp

�
iga2

X
c

Fc
��T

c þOða3Þ
�

¼ ReTr

�
1

36
g2a4½Fc

��F
c
�� þOðaÞ�I

� i

3
ga2

X
c

½Fc
�� þOðaÞ�Tc

�
; (9)

where Tc ¼ �c=2 are the generators of the Lie algebra and
I is the identity matrix. In Abelian theories, such as U(1)
QED, the electric and magnetic field components can be
computed with the plaquette at order a2 and are gauge
invariant. In non-Abelian gauge theories, such as SU(3),
the electric and magnetic field components are not gauge

invariant since they depend on the color index c. In SU(3),
we have to go up to order a4 to find our first nonvanishing
gauge-invariant term in the plaquette expansion, and it is
the square of a component of the electric or magnetic
fields. For instance Ex

2 ¼ P
cðEx

cÞ2 is gauge invariant,
while Ex

c is not. Thus, to directly produce the squared
components, we perform the trace.
Notice the field densities defined in Eq. (7) are dimen-

sionless. To arrive at physical units

X
c

Fc
��F

c
�� ¼ 2�

a4

�
1� 1

3
TrðP��Þ

�
þOðaÞ; (10)

we have to multiply the dimensionless field densities by
2�=a4.
The classical energy (H ) and the Lagrangian (L) den-

sities are directly computed from the filed densities,

hH ðrÞi ¼ 1

2
ðhE2ðrÞi þ hB2ðrÞiÞ; (11)

hLðrÞi ¼ 1

2
ðhE2ðrÞi � hB2ðrÞiÞ; (12)

and we can utilize any of the densities, either of the squared
component of the fields, of the action, or of the classical
energy, to study the profiles of the flux tubes.

III. TECHNIQUES EMPLOYED TO
IMPROVE THE SIGNAL

To compute the static field expectation value, we plot the
expectation value hE2

i ðrÞi or hB2
i ðrÞi as a function of the

temporal extent T of the Wilson loop. At sufficiently large
T, the ground state corresponding to the studied quantum
numbers dominates, and the expectation value tends to a
horizontal plateau. To compute the fields, we fit the hori-
zontal plateaus obtained for each point r. For the distances
R considered, we find in the range of T 2 ½4; 12� in lattice
units, horizontal plateaus with a �2=d:o:f: 2 ½0:3; 2:0�. We
finally compute the error bars of the fields with the jack-
knife method.
To produce the expectation values, we utilize 1100 pure

gauge 324 configurations with � ¼ 6:0 generated with
CUDA and graphics processing units [73]. This beta cor-
responds to the lattice spacing a ¼ 0:098 373 7 fm and
a�1 ¼ 2:002 57T GeV [74].
In order to reduce the noise, we utilize an improved

version of the multihit illustrated in Fig. 3 and an extended
spatial smearing technique with staples shown in Fig. 4.
Moreover, to reduce the contamination of the ground state
from the excited states, we use the energy gap between the
first excited and ground states depicted in Fig. 5 calculated
using a variational basis. With all three combined tech-
niques, we are able to get a clear signal, with statistical
errors already smaller than the lattice artifacts plotted in
Fig. 6.

FIG. 2. Wilson loop and example of a plaquette for the com-
putation of the electric field squared, where we project the D ¼
3þ 1 spacetime in a plane including the z axis. We compute the
fields squared in three planes perpendicular to the charge-
anticharge axis: in the mediator plane of the charges as illus-
trated in this figure, in the plane of the charge, and in the plane of
the anticharge.
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A. Extended multihit

In the multihit [75,76] method, we replace each tempo-
ral link by its thermal average, with its first neighbors fixed,

that is, U4 ! �U4 ¼
R

dU4U4e
� Tr½U4Fy�R

dU4e
� Tr½U4Fy�

.

We generalize this method by instead replacing each
temporal link by its thermal average with the first N
neighbors fixed, that is,

U4 ! �U4 ¼
R½DU��U4e

�
P

�s
Tr½U�ðsÞFy

�ðsÞ�R½DU��e�
P

�s
Tr½U�ðsÞFy

��
: (13)

By using N ¼ 2, we are able to greatly improve the
signal when compared with the error reduction achieved
with the simple multihit. Of course, this technique is more
computer intensive than a simple multihit, while being
simpler to implement than a multilevel [77] and its appli-
cation being independent in the value of R. The only
restriction is that R � 2N for this technique to be valid.

B. Extended spatial smearing

To increase the ground-state overlap, we use a spatial
extended APE-like smearing, first defined by the APE
Collaboration [78,79], namely,

Ui ! P SUð3Þ
�
Ui þ w1

X
j

S1ij þ w2

X
j

S2ij þ w3

X
j

S3ij

�
;

(14)

where the staples S1ij, S
2
ij, and S3ij are the ones shown in

Fig. 4. As can be seen, this technique reduces to the
common APE smearing when w2 ¼ w3 ¼ 0.

C. Variational basis to compute �

Even by using this technique, we were not able to find a
value of t for which the plaquette to Wilson loop correla-
tors are stable within error bars, while still having a suffi-
ciently high signal-to-noise ratio. To solve this, we note

FIG. 3 (color online). Left: Simple multihit. Right: Extended
multihit.

FIG. 4. Staples used in the extended spatial smearing.
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FIG. 5. Gap between the first excited state and the ground state
� ¼ V2 � V1 as a function of R.
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FIG. 6 (color online). Lagrangian density computed in the
mediator plane for intercharge distance of R ¼ 12 as a function
of the cylindrical distance r. We plot separately the density
measured in different lines of the mediator plane with fixed x.
At large distances r, the lattice artifacts, due to the square and
finite lattice, produce systematic errors already larger than the
statistical error bars represented in the figure. This shows that our
statistical noise is sufficiently reduced by the extended multihit,
the extended spatial smearing, and the variational basis methods.
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that the correlator, which gives the average of field hFi,
should be given by the formula hFit ¼ hFi1 þ be��t for
large values of t, with � ¼ V2 � V0 being the difference
between the first excited state that has overlap with the
Wilson loop and the ground-state potential. To compute �,
we a use a variational basis [80,81] of four levels of APE
smearing, with the potentials V2 and V0 being given by the
solution of the variational generalized eigensystem

hWijðtÞicnj ðtÞ ¼ wnðtÞhWijð0Þicnj ðtÞ; (15)

where hWiji ¼ hOiðtÞOy
j ð0Þi is the correlation between the

meson creation and annihilation operators at time t and 0 in
the smeared states i and j, respectively.

IV. OUR ANSÄTZE AND THE SEPARATION OF
PENETRATION LENGTH, COHERENCE
LENGTH, AND QUANTUM WIDENING

A. In the mediator plane of the two static charges

In a quantum flux tube, as in the QCD flux tube, at least
three parameters with the dimension of a length determine
the flux tube profile in the mediator plane of the two static
charges.

The width ! is a function of the flux tube length R and
is partly due to the quantum widening of the flux tube
produced by the zero mode quantum oscillations of the
stringlike flux tube.

Moreover, the flux tube is not an ideal string, and it is
due to the squeezing of the fields by the color confinement.
The penetration length � quantifies the exponential screen-
ing of the fields penetrating the medium.

But the flux tube cannot just be parametrized by the
penetration length, because it should be differentiable at
the center of the flux tube, with a finite curvature. For a
finite curvature, we need another parameter �.

All this is clear in Fig. 7, where we show the logarithm
of the profile of the fields we compute. The logarithm is
similar to a parabola at small distances and to a line at large
distances. The width ! clearly depends on the intercharge
distance R.
Thus, we choose a flux tube profile Ansatz consisting of

the exponential of the simplest possible function interpo-
lating between a parabola and a straight line. The simplest
exponent we can find is inspired in the relativistic kinetic
energy in order to interpolate between a Gaussian at small
r and an exponential decay at large r. Utilizing the cylin-
drical coordinates ðr; 	; zÞ, our Ansatz for the profile of the
quantum flux tube is

Fqu
2ðrÞ ¼ F0

2 exp

�
� 2

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ �2

p
þ 2

�

�

�
; (16)

where Fqu
2 corresponds to any of the components of the

squared electric or magnetic fields Er
2, E	

2, Ez
2, Br

2, B	
2,

Bz
2, or to the Lagrangian density L. Our Ansatz is depicted

in Fig. 8, and it has the same exponent as the quantum
profile deduced in the model of Ref. [55]. Its series ex-
pansions for large r and for small r are, respectively,

Fqu
2ðrÞ ¼ F0

2e
2�
� exp

�
� 2r

�
þ o

�
�

r

��
;

¼ F0
2 exp

�
� r2

��
þ o

�
r4

��3

��
: (17)

Our quantum Ansatz in Eq. (16) is parametrized with three
parameters: the flux tube central intensity F0

2, the flux tube

damping measured by the penetration length � ¼ 1=�, and
the flux tube central curvature radius �2F0

2=ð��Þ. For a
simpler expression, we prefer to utilize the parameter �
instead of explicitly parametrizing the curvature.
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FIG. 7 (color online). Results for minus the log of the action density in the charge mediator plane for R ¼ 4, R ¼ 6, R ¼ 8, R ¼ 10,
R ¼ 12, and R ¼ 14. The plots suggest the exponent is quadratic at small distances and linear at large distances, in agreement with our
Ansatz.
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Moreover, with our Ansatz Fqu
2ðrÞ defined in Eq. (16),

we obtain the following total width of the flux tube:

! ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR1
0 r3Fqu

2ðrÞdrR1
0 rFqu

2ðrÞdr

vuut ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

2
�2 þ 2

��2

�þ 2�

s
: (18)

We now discuss how many characteristic distances can
be extracted from fits of the flux tube profile measured with
our lattice QCD data, which includes statistical error bars
and is subject to statistical errors as well. The width ! is
obtained with an integral for the squared components
F2ðrÞ, and thus the error bars are averaged out; it is the
clearest distance we can compute.

The parameters � and � are more sensitive to the details
of our lattice QCD data. In the case where the signal is
clear, such as the figures with smaller R in Fig. 7, � and �
can be both determined with small error bars. However, at
larger R, the two parameters � and � become redundant,
and they are expected to have large error bars.

But we submit that further parameters are impossible to
fit with the present lattice QCD data. For instance, the
quantum widening 
 and the classical penetration length
� would be interesting to measure, but they are difficult to
separate. In confinement models where the electromag-
netic fields are classical, the coherence length � is defined
as the curvature of the field intensity in the center of the
flux tube. The penetration length and the coherence length
are characteristic of the medium (QCD in our case) where
the flux tube resides, and they determine the string tension
�. For instance, the penetration length � and the coherence
length � are well defined in magnetic confinement models
such as the Ginzburg-Landau model or the Ampère [38]
equations or in the Bogoliubov–de Gennes equations [22].
However, the curvature at the center of the flux tube is also
increased by the widening of the flux tube due to the zero
mode quantum oscillations of the stringlike flux tube. The

zero mode oscillations have a Gaussian shape of harmonic
oscillator parameter 
.
To illustrate this difficulty, let us convolute the classical

flux tube profile with a Gaussian distribution typical of the
quantum oscillation,

�2ðrÞ ¼ exp

�
� r2


2

�
: (19)

Notice this Gaussian already has a width of 
=
ffiffiffi
2

p
. The

result of the convolution is a quantum flux tube profile,

Fqu
2ðrÞ
¼

Z 1

0

Z 2�

0
�2ðr0ÞFcl

2ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r02 þ r2 � 2rr0 cos	

p
Þd	r0dr0:

(20)

For simplicity, let us consider a typical classical flux tube
profile Fcl

2ðrÞ similar to our Ansatz for the quantum profile

in Eq. (16) but with a classical parameter �cl related to the
coherence length �. In Fig. 8, we illustrate the numerical
result of this integration. We are able to compute analyti-
cally the profile Equ

2ðrÞ both close to the charge axis where
the profile is quadratic in r,

Fqu
2ðrÞ ¼ F0cl

2

"
1� 


ffiffiffiffi
�

p
�

eð
�cl

 þ


�Þ2erfc
�
�cl



þ 


�

�#

�
(
1�

"
�
�2 þ 2��cl

2 þ 2
3


�2
þ 2�cl

2 þ �


�


� 1

1� 

ffiffiffi
�

p
� eð

�cl

 þ


�Þ2erfcð�cl


 þ 

�Þ

#
r2


2
þ o

�
r4


4

�)
;

(21)

and at large distances from the charge axis where the
penetration length dominates,
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FIG. 8 (color online). In (a) we illustrate for arbitrary parameters F2
0cl ¼ 1, � ¼ 1, �cl ¼ 1, 
 ¼ 1 our Ansatz for the classical flux

tube profile (dashed line) and the quantum one (solid line) or convoluted one as a function of the distance to the charge axis r. In (b),
the convoluted profile (solid line) and its large and small r asymptotic functions are shown. Our Ansatz for the quantum field is defined
in Eq. (16).
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Fqu
2ðrÞ ¼ F0cl

2e
2��clþ
2

�2 exp

�
� 2r

�
þ o

�
�

r

��
: (22)

These two asymptotic curves to the convolution are shown
in Fig. 8. It is clear that the central curvature depends on
both distance parameters �cl and 
. Thus, it is not possible
when error bars are nonvanishing to separate the classical

coherence length � from the quantum widening 
=
ffiffiffi
2

p
.

Importantly, the convoluted profile remains with a shape
consistent with the Ansatz of Eq. (16), since it has both a
finite curvature and an exponential decay. Moreover, the
penetration length � measured at the long-distance tail of
the profile in r is unaffected by the convolution. Thus, �
constitutes an intrinsic characteristic distance [55] of
SU(3) flux tubes.

In the rest of this paper, we utilize Eq. (16) to fit the
profile Fqu

2ðrÞ of the full quantum SU(3) flux tube in the

mediator plane to determine the penetration length � and to
measure the widening !ðRÞ.

B. In the planes of the two static charges

In the planes containing either the quark or the antiquark
static charges, only one of the three characteristic distances
of the QCD flux tube may be measured. The coherence
length is masked by the charges, and the quantumwidening
only occurs in the flux tube. Thus, at most we may measure
the screening of the Coulomb field; i.e., we can only
measure the penetration length �.

Nevertheless, for a more detailed study of the screening,
we measure the fields in planes containing one of the two
static charges. We compare our lattice data with three
different models for the color fields. Without confinement,
one has a simple Coulomb potential

Fqu
2ðrÞ ¼ F0

2 1

r4
; (23)

when the distance to the charge r is smaller than the
intercharge distance R. If confinement does produce a
Yukawa-like screening, the color fields take the form

Fqu
2ðrÞ ¼ F0

2 exp

��2r

�

��
�rþ 1

r2

�
2
: (24)

Finally, we may also consider a simple exponential screen-
ing similar to the one occurring in the mediator plane of the
flux tube,

Fqu
2ðrÞ ¼ F0

2 exp

��2r

�

�
; (25)

where F0 is just a normalization parameter.
Then it is important to check whether the penetration

length � measured in the plane of the charges is indepen-
dent of the charge-anticharge distance R. For a simple
picture of the screening of the color fields, we must also
study if the penetration length � measured in the planes of

the charges coincides with the penetration length measured
in the mediator plane.
Thus, we measure the color electric and color magnetic

fields in planes including the charges. Because we consider
long flux tubes, we choose to measure the color fields in the
two planes parallel to the mediator plane. These planes are
perpendicular to the z axis, and again the variable measur-

ing the distance is r ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ z2

p
.

V. FITS OF THE FLUX TUBE PROFILES

A. The squared components of the electric and
magnetic fields in both planes

Among all densities we measure, the Lagrangian or
action density is the one with the strongest and clearest
signal; therefore, this is the density we utilize to parame-
trize the profiles of the flux tube. Nevertheless, all the
components squared of the electric and magnetic fields
Ez

2, Er
2, E	

2, Bz
2, Br

2, and B	
2 are relevant to understand

confinement.
In Fig. 9, we show that contrary to the dual supercon-

ductor models, all components of the fields are of the same
order of magnitude inside the flux tube. Only close to the
charges, the larger component is Ez

2 in the mediator plane
and E	

2 in the planes of the charges.

When the distance from the charges is sufficiently large,
all the components Ei

2 � 0:4 and all the components

Bi
2 ��0:3 in lattice spacing units. In any case, there is

no dominant component of the color electric or magnetic
fields. This is an important result that any model of con-
finement should address.
This also implies that, at sufficiently large distances from

the charges, the parameter � and the widthw computed with
any of our field densities are essentially the same.

B. Screening in the mediator plane

We find the noise increases with R, and thus we are able
to compute the flux tube profiles only up to R ¼ 14a.
We think that our noise suppression techniques are
nevertheless sufficient, since the lattice artifacts create
larger systematic errors than the statistical noise, see
Fig. 6. As a word of caution, we notice the systematic
errors may contribute to increase the �2=d:o:f.
The fits of the profile of the flux tube in the mediator

plane for the action density are shown in Fig. 10 and are
listed in Table I. Notice we only consider in the error bars
the statistical error, which increases with R, thus decreas-
ing the �2=d:o:f: with R. In the smallest distance R ¼ 4,
the systematic errors are larger than the statistical errors,
and the �2=d:o:f: is large. In the largest distances R ¼ 12
and R ¼ 14, the statistical errors are already large, and the
profile parameters are not well determined. Nevertheless,
we keep this distance in our study, since the error in the
width of the flux tube remains small up to R ¼ 14.
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We remark that, although the other parameters
change with R, the penetration length � remains
the same �� 2:2a, or �� 0:22 fm, within the statistical
error bars. This unique scale for the penetration length
is promising for the theoretical understanding of
confinement.

The Lagrangian density in the center of the flux tube
and for our largest R is of the order of 1:5� 10�3 in
dimensionless units. To arrive at physical dimensions, we
have to multiply this by 2�=a4 ¼ 2:5� 104 GeV fm�3,
and we arrive at a Lagrangian density of L0 �
38 GeV fm�3.
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FIG. 10 (color online). Results for our fits to the profile of the action density in the mediator of the charges for R ¼ 4, R ¼ 6, R ¼ 8,
R ¼ 10, R ¼ 12, and R ¼ 14.
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FIG. 9 (color online). Ratios of the components of the squared fields over the Lagrangian density for different intercharge distances
R. We show the ratios both computed for the field profiles computed in the mediator plane of the color charges and in the planes of the
color charges.
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C. Widening in the mediator plane

Since our Ansatz fits quite well the flux tube profile, we
then utilize Eq. (18) to compute the width of the flux tube.
Additionally, we compute the error bar or the width with
the jackknife method. Our results for the width of the flux
tube in the mediator plane are shown in Fig. 11. As can be
seen, the tube flux becomes wider as the quark-antiquark
distance is increased. We then fit the flux tube width with

the leading-order one-loop computation in effective string
theory [47] corresponding to the linear fit,

!2 ¼ Aþ B logR: (26)

The fit results in A ¼ 0:1477� 0:0035 fm2 and B ¼
0:0762� 0:0090 fm2 with error bars computed with the
jackknife method. We find a rather small �2=d:o:f: ¼
0:383.
The B parameter can be compared with the theoretical

leading-order [47] value for the factor of the logarithmic
term,

B ¼ D� 2

2��
¼ 0:0640028 fm2 (27)

obtained using a string tension of
ffiffiffiffi
�

p ¼ 0:44 GeV [74].
In what concerns the constant A parameter, it is possibly

larger than the corresponding constant of the leading-order
expansion of the string theory, due to the intrinsic width of
the flux tube. The QCD flux tube is not tachyonic and its
width is always real and positive. Notice a simple expo-
nential profile according to Eq. (18) already leads for very
small distances to w2 ¼ 3�2=2� 0:07 fm2. Indeed this
is similar to the width we get at our smaller distance of
R ¼ 4a ’ 0:4 fm.
Notice that the error bars of the fit of the width are much

smaller that the error bars for the parameters � and � at
larger intercharge distance R shown in Table I. This is
expected since at larger R, the profile error bars are larger
and the two parameters � and � become redundant. As for

data
fit: A + B * ln(R)
A = 0.1477 ± 0.0035
B = 0.0762 ± 0.0090
χ2/d.o.f. = 0.383

w
2 (R

/2
) 

 (
fm

2 )

0

0.05

0.1

0.15

0.2

R (fm)
0 0.25 0.5 0.75 1 1.25 1.5

FIG. 11 (color online). Square of the width of the flux tube
w2 ¼ hr2i in the mediator plane computed with our Ansatz. The
error bars are determined with the jackknife method. The solid
line corresponds to the fit of the widening of the quantum string.

FIG. 12 (color online). Lattice QCD data and fits with the exponential decay Ansatz for the profile of the action density in the planes
of the charges shown for R ¼ 4, R ¼ 8, and R ¼ 12.

TABLE I. Fits of the profile of the flux tube for the action density in the mediator plane for the
longitudinal component. We also consider a constant shift of the density, very small and not
shown here.

R½a� 103L0 �½a� �½a� �2=d:o:f:

4 3:509� 26:72 2:165� 0:033 0:877� 3:335 4.086

6 2:236� 0:078 2:379� 0:156 2:04� 0:365 2.254

8 1:762� 0:023 2:052� 0:201 4:092� 20:22 1.999

10 1:549� 0:046 2:088� 0:536 5:306� 36:43 1.477

12 1:357� 0:051 0:913� 2:044 17:41� 200:1 1.055

14 1:491� 0:053 0:064� 0:018 268:0� 1392:4 1.331
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the width !, an integral over all profile points, the impact
of the profile error bars is smaller. Nevertheless, because
the parameters � and � of our Ansatz show large error bars
for the intercharge distances of R ¼ 14 and R ¼ 12, we
repeat the fit removing these two points. We get essentially
the same result for the fit parameters A and B and for the
�2=d:o:f: with five, six, and seven points. Thus, our fit is
quite stable.

To comply exactly with the quantum widening of an
infinitely thin string, the string should be much thinner than
longer, and also much thinner than the width of the quan-
tum vibrations. Indeed we have R � �, however,
w� �. A very interesting result already is that our fitted
factor to the logarithm is close to one standard deviation
from the theoretical one-loop result, considering a large
part or the width is due to the penetration length.

D. Screening in the planes of the two static charges

We find that only one of the three Ansätze in
Eqs. (23)–(25) fits correctly the action density in the planes
of the charges. Both the Coulomb and Yukawa fields
produce very poor fits of our lattice data for the fields. A
poor fit by the Coulomb Ansatz was expected since a flux
tube is consistent with color screening. However, the
Yukawa Ansatz also leads to a poor fit, and this indicates
that the screening occurring in confinement differs from a
Yukawa screening.

Importantly, the exponential Ansatz fits correctly the tail
of the fields in the planes of the charges, see Fig. 12. Thus,
we have screening, though it is not a Yukawa screening.
Moreover, the fit results in a parameter �� 0:22 to
0.24 fm, as listed in Table II. The � fitted in the planes of
the charges is consistent with the � obtained in the media-
tor plane to the charges.

VI. CONCLUSIONS

We compute the quark-antiquark flux tube in pure gauge
SU(3) lattice QCD. We measure the profile of the electric
and magnetic field densities both in the mediator plane of
the color charges and in the planes of the charges. We
utilize three complementary techniques to enhance the
signal-to-noise ratio and are able to reduce the statistical
noise below the systematic errors of our lattice setup.
We show the flux tube is due to screening of the electric

and magnetic field components, since we measure a pene-
tration length �� 0:22 to 0.24 fm. The inverse of � may
indicate an effective screening mass, possibly for the gluon
or dual gluon, of �� 0:8 to 0.9 GeV. Moreover, the same
screening parameter is universal in the sense it occurs in all
components squared of the electric and magnetic fields
Ez

2, Er
2, E	

2, Bz
2, Br

2, and B	
2, both in the mediator

plane and in the charge’s plane.
However, there are differences to the dual superconduc-

tor models. The vector electric and magnetic fields are not
gauge invariant; their squared components are the first
gauge-invariant function of the field components.
Moreover, all the squared components have the same order
of magnitude and essentially similar profiles; thus, the
longitudinal color electric field is not dominant.
Importantly, this allows us to use the Lagrangian density,

since it has the largest signal-to-noise ratio, to determine the
width of the flux tube up to a distance of 14 lattice spacings.
We find that the width complies almost within one standard
deviation with the logarithmic widening obtained at leading
order in the Nambu-Gotto effective string theory.
Our results lead to a better understanding of the nature of

the confining SU(3) flux tube. We hope this work will
motivate more lattice QCD studies of flux tubes and will
be useful for the theoretical understanding both of the QCD
confinement and of string theory.
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