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We calculate the intrinsic strangeness of the nucleon, hNj�ssjNi � h0j�ssj0i, using the MILC library of

improved staggered gauge configurations using the Asqtad and HISQ actions. Additionally, we present a

preliminary calculation of the intrinsic charm of the nucleon using the HISQ action with dynamical

charm. The calculation is done with a method which incorporates features of both commonly used

methods, the direct evaluation of the three-point function and the application of the Feynman-Hellman

theorem. We present an improvement on this method that further reduces the statistical error, and check

the result from this hybrid method against the other two methods and find that they are consistent. The

values for hNj�ssjNi and hNj �ccjNi found here, together with perturbative results for heavy quarks, show

that dark matter scattering through Higgs-like exchange receives roughly equal contributions from all

heavy quark flavors.
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I. INTRODUCTION

The intrinsic strangeness of the nucleon, the matrix
element hNjR d3x �ssjNi � h0jR d3x�ssj0i (often abbrevi-

ated hNj�ssjNi, with the vacuum subtraction and volume
integral omitted), has been a quantity of significant interest
in the past few years due to its relevance to weakly inter-
acting massive particles(WIMP)-on-nucleon scattering
cross sections in many models [1,2]. This scattering pro-
cess is shown in Fig. 1. Early �PT calculations suggested
that its value might be quite large [3]. Early lattice calcu-
lations of its value suffered from large statistical errors and/
or uncontrolled systematic effects [4–8], and the results are
somewhat inconsistent. More recently, there have been a
number of more modern calculations with better control of
systematic errors, notably the use of fermion actions
retaining all or part of the continuum chiral symmetries,
which are roughly in agreement [9–21], including earlier
work by us [22] which is extended here. Figure 2 shows a
graphical depiction of the history of calculations, mostly
using lattice QCD, of the matrix element hNj�ssjNi.

We present a refinement of this method, originally dis-
cussed in Ref. [27], which reduces statistical error while
requiring, in principle, no additional computational effort.
However, due to averaging of propagators and condensate
measurements done by MILC in their original Asqtad
analysis, application of this method requires recomputation
of propagators and the quark condensate. We thus only use
the refined technique on a subgroup of the available Asqtad
ensembles. Applying these methods to the MILC Asqtad

data [28] to calculate hNj�ssjNi, we obtain results very
similar to those in Ref. [22], but with smaller statistical
and systematic errors.
We also perform a direct evaluation of hNj�ssjNi on those

Asqtad ensembles where the propagators and condensate
measurements have been rerun. This technique, while
inferior on the MILC data set, has been used by a number
of other calculations, for instance [11,12], and is more
theoretically straightforward; thus, it provides a useful
cross-check with our ‘‘hybrid method’’ for hNj�ssjNi.
The results from these methods are in excellent agreement.

FIG. 1 (color online). Feynman diagram of an incoming
neutralino interacting with a sea strange quark loop in the proton,
mediated by a Higgs boson. The overall interaction amplitude
depends on the intrinsic strangeness of the nucleon which must
be computed on the lattice.
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We also apply this method to the newer HISQ gauge
configurations to calculate both hNj�ssjNi and hNj �ccjNi.
The result for the intrinsic strangeness is somewhat
lower on the HISQ data, although it is not wildly different;
the result for the intrinsic charm has large errors but is
consistent with a perturbative prediction.

II. THE MEANING OF THE
‘‘NUCLEON STRANGENESS’’

The term ‘‘intrinsic strangeness of the nucleon’’ for this
matrix element is somewhat deceptive. While in perturba-
tion theory the relevant diagram involves a sea strange
quark loop (see Fig. 1), this does not imply that the
presence of the valence light quarks in the nucleon some-
how elicits strange quark loops from the vacuum where
none would exist otherwise. In fact, the meaning of the
nucleon strangeness is almost exactly the opposite of this.
The vacuum strange quark loops, as part of the strange
quark chiral condensate, pervade all space; the presence of
the valence quarks, in fact, partially suppresses the natural
vacuum condensate. The ‘‘strangeness of the nucleon’’ is
really the suppression of this vacuum behavior.

Chiral symmetry for the strange quark is only an
approximate symmetry; it is broken explicitly by the
mass term ms �ss in the QCD Lagrangian. This explicit
breaking determines the direction of the spontaneous
breaking of chiral symmetry; the symmetry is broken in
the direction that minimizes the action, leading to a nega-
tive expectation value for �ss in the QCD vacuum, with the
usual sign convention that the mass term in the Euclidean
Lagrangian is þms �ss. In the presence of the valence
quarks in the nucleon, the magnitude of the condensate is
reduced. Since the ‘‘strangeness of the nucleon’’ is defined
as hNj�ssjNi � h0j�ssj0i, its natural sign is positive: both
terms are negative in sign, but the vacuum term is larger in

magnitude. A schematic depiction of the nucleon’s ‘‘bubble’’
in the vacuum strange quark condensate is shown in Fig. 3.
The probability for an incident WIMP to scatter off of this
bubble can be understood in the same way as light scattering
off of a bubble in a piece of glass: it is the change in the
properties of the medium, not the absolute presence or
absence of those properties, that causes the scattering.

A. Perturbative predictions

The nucleon strangeness is an inherently nonperturba-
tive quantity, since the strange quark is too light to be

FIG. 2 (color online). A history of calculations of the nucleon strangeness. The ‘‘natural scale’’, given by the perturbative QCD
calculation [23] as discussed in II A, is shown as a vertical blue dashed line [3–10,12–14,16–26].

FIG. 3 (color online). A schematic illustration of the strange-
ness of the nucleon: the presence of the valence quarks creates a
‘‘bubble’’ in the vacuum chiral condensate.
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treated properly in perturbation theory. For sufficiently
heavy quarks, however, there is a perturbative approach
to calculate the hNj �qqjNi � h0j �qqj0i matrix element. This
calculation is enlightening in two ways. First, it allows for
a theoretical calculation of the intrinsic charm of the
nucleon. The intrinsic charm is similar in character to the
intrinsic strangeness, and can be calculated on the lattice in
the same ways. This allows contact with the lattice result
for the intrinsic charm. Second, while there is no reason to
expect it to be correct for the strange quark, the perturba-
tive result nonetheless sets a natural scale for the nucleon
strangeness. As we shall see, the value of mqhNj �qqjNi is
roughly constant for (perturbatively) heavy quarks. Lattice
simulation must determine if the nucleon strangeness is
substantially enhanced above this natural scale (as sug-
gested in Ref. [3] and some early lattice studies) or not.

Beginning with work of Shifman, Vainstein and
Zakharov [29] and continuing through a four-loop pertur-
bation theory calculation by Kryjevski [23], the scalar
condensate of a heavy quark in the nucleon is

mq

MN

hNj �qqjNi ¼ 2

33� 2nl
f1þ C1�s . . .g; (1)

where nl is the number of quark flavors lighter than the
heavy quark. (The explicit perturbative corrections may be
found in Ref. [23].)

The important point is that when a heavy quark mass
mq � �, MN is varied, with the bare coupling constant

held fixed, the nucleon mass is affected in the same manner
as the scale � at which �� runs to a particular value. Since
the running of the coupling constant sets the scale for
hadronic physics with light quarks, this amounts to saying
that varying a heavy quark mass has no effect on the
physical value of MN or of any other low-energy lattice
observable; rather, it amounts to an overall change in
lattice scale setting. (Recall that the quantityMN appearing

in the Feynman-Hellman relation @MN

@mq
¼ hNj �qqjNi is the

lattice nucleon mass, not a nucleon mass in physical
units, since the latter quantity is ambiguous and depends
on the method used to set the lattice scale: one could
chooseMN itself as the benchmark quantity to use in lattice

scale-setting, giving @MN

@mq
� 0 under all circumstances!)

Thus, @MN

@mq
depends on the running of the coupling con-

stant from its bare value �0 at scale �0 to its value ��. At
one-loop order, where the dependence of g�2 on log�
depends only on the number of light quark flavors, changing
the charm quark mass frommc tom

0
c only changes the scale

at which the charm quark freezes out from the beta function,

and the low-mass limit of @MN

@mc
can be calculated simply.

(This is true for any other flavor of heavy quark equally, of
course.) This approach is shown graphically in Fig. 4.
While we would not trust a perturbative calculation at

the strange quark mass, Eq. (1) defines a natural scale for
quark condensates, and lattice calculations are needed to
see if the strange quark content is in fact enhanced relative
to this scale.

III. METHODS

A. The direct method

A theoretically straightforward, but practically difficult,
way to evaluate the nucleon strangeness is to just evaluate
the needed matrix element directly. One computes

hNj�ssjNi ¼ hNyð0ÞNðTÞ �ssðT1Þi
hNyð0ÞNðTÞi � h�ssi; (2)

where T is the source-sink separation of the nucleon
propagator, and T1 is an intermediate time chosen suffi-
ciently far from both 0 and T that the overlap with the
excited states is small. (Here again volume integrals have
been omitted.)
In the limit where e�MNnt � 1 (i.e. states wrapping

around the lattice are irrelevant), this can be written as

hNj�ssjNi ¼
P

NyðT0ÞNðT0 þ TÞ �ssðT0 þ T1Þ þ NyðT0ÞNðT0 � TÞð�1ÞT �ssðT0 � T1ÞP
NyðT0ÞNðT0 þ TÞ þ NyðT0ÞNðT0 � TÞð�1ÞT � X

configs

1

nt

X
t

�ssðtÞ; (3)

FIG. 4 (color online). A schematic depiction of the perturba-
tive approach to @MN

@mc
taken by Shifman and Kryjevski at

leading order, inspired by a similar presentation by Kryjevski
in Ref. [23]. Changing the mass of a heavy quark changes the
scale at which it freezes out and thus affects the running of the
coupling constant, affecting all low-mass scales equally.
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where T0 are the source locations of the nucleon propaga-
tors, T is their length, T1 is an intermediate length at which
the strange quark condensate is measured, and the sums
run over all gauge configurations and all source locations
on each configuration. The factor of ð�1ÞT comes from
the fact that a backward-propagating nucleon state in the
staggered fermion formulation carries this factor.

This approach requires the evaluation of Nyð0ÞNðTÞ at
appropriate distances T, along with the evaluation of the
strange quark condensate

R
d3x�ssðx; tÞ on intermediate

time slice(s) T1. This is not part of the standard MILC
analysis program, which only records Nyð0ÞNðTÞ averaged
over all source time slices (typically 8 per configuration),
and only records the whole-lattice condensate

R
d4x �ssðx; tÞ

rather than separate values per time slice. Thus, without
extra computer work to recompute correlators and conden-
sates, this method cannot be used on the MILC results.

B. The spectrum method

An alternate route to hNj�ssjNi involves the Feynman-

Hellman theorem, to equate hNj�ssjNi with @MN

@ms
. This rela-

tion may be derived by differentiating the partition
function with respect to ms and using the fact that
hNyð0ÞNðTÞi ¼ e�MNT for an ideal nucleon operator.
This method has the disadvantage that it requires multiple
ensembles with different values of ms but all other lattice
parameters held fixed, a condition not met by the existing
MILC data.

C. The hybrid method

The two traditional methods for calculating the nucleon
strangeness would be expensive for the MILC ensembles:
the direct method would require recomputation of propa-
gators, while the spectrum method would require different
ensemble parameters. Thus, we use a third method,
originally presented in Ref. [22], which combines their
advantages: it can obtain a value for hNj�ssjNi from a single
lattice ensemble with arbitrary lattice parameters, using
only the whole-lattice average condensate and correlators
averaged over all source time slices that are available.

The nucleon massMN is obtained by a fit to the nucleon
propagator PðtÞ and as such can be thought of as a
complicated function of the propagator at different times:
MN ¼ fðPðt1Þ; Pðt2Þ; Pðt3Þ . . .Þ. The crucial idea is that
one can use the chain rule for differentiation to rewrite
the derivative:

@MN

@ms

¼ @MN

@Pðt1Þ
@Pðt1Þ
@ms

þ @MN

@Pðt2Þ
@Pðt2Þ
@ms

þ � � � : (4)

The partial derivatives @MN

@PðtiÞ can be evaluated most sim-

ply by applying a small perturbation to the nucleon propa-
gator and examining the change in the fit result, while the

second partial derivative @PðtiÞ
@ms

can be evaluated by an

application of the Feynman-Hellman theorem in reverse
to relate it to hPðtiÞ �ssi � hPðtiÞih�ssi.
The measurements of �ss have been made using the

commonly used stochastic estimator technique. Typically,
MILC has made such measurements as part of lattice
generation to monitor equilibration and simulation-time
autocorrelations and to use for subtracting zero tempera-
ture values in equation of state calculations. On most
ensembles, enough estimates are available that the fluctua-
tion of the stochastic estimator is a small part of the overall
uncertainty. On a few of the coarsest (a � 0:12 fm) en-
sembles, we have run additional estimates of �ss to ensure
that the stochastic estimator does not introduce any mean-
ingful error. While other groups have found it expedient to
project out the low modes of the Dirac operator and cal-
culate their contribution exactly, we find that using these
configurations it is sufficiently cheap and precise to simply
use repeated stochastic estimators on the entire space.
Prior results obtained by applying this method to the

MILC Asqtad gauge configurations can be found in
Ref. [22].

D. The improved hybrid method

In the original hybrid method, a major contribution to
the statistical error in this calculation comes from fluctua-
tions in the quark condensate that have no physical corre-
lation with the hadron propagator. While the correlation
between these fluctuations and the propagator averages to
zero in the limit of infinite statistics, with finite statistics it
does not, and spurious correlations of this sort are a major
contributor to statistical error.
Since there is no physical reason that fluctuations in the

quark condensate far from the propagator should be corre-
lated with it, those fluctuations contribute only noise and
can be discarded without introducing bias; in other words,
we replace

@PðTÞ
@ms

¼
�
PðTÞ

Z
d3 ~x dt �ssð ~x; tÞ

�

�
�
PðTÞ

�� Z
d3 ~x dt �ssð ~x; tÞ

�
(5)

with

@PðTÞ
@ms

¼
�
PðTÞ

Z
d3 ~x

Z t2

t1

dt �ssð ~x; tÞ
�

�
�
PðTÞ

�� Z
d3 ~x

Z t2

t1

dt �ssð ~x; tÞ
�

(6)

where t1 and t2 are chosen sufficiently far from the propa-
gation region so that they do not affect the final result.
The application of this method to the MILC Asqtad

ensembles requires some extra computer time, since it
requires separate values of �ss on each time slice and of
the nucleon propagator for each source location; these
separate values were not saved originally due to a desire
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to economize on storage. Due to the expense of this on the
finest ensembles, we have only completed these measure-
ments on the a � 0:12 fm Asqtad ensembles and some of
the a � 0:09 fm Asqtad ensembles.

IV. hNj�ssjNi FROM THE MILC ASQTAD DATA

A. Validity tests of the improved hybrid method

The hybrid method is exact, but subject to the usual
systematic errors that affect lattice calculations: pollu-
tion from excited states, finite size effects, and lattice
discretization errors. The improved hybrid method,
however, only considers the strange quark condensate
on those time slices that are meaningfully correlated
with the propagator, and is thus only valid if the corre-
lation between the quark condensate and the propagator
falls off reasonably rapidly away from the propagation
region.

To test this assumption, it is useful to calculate the
contribution of each time slice to the overall correlation
between the propagator and the condensate, given by the
expression

�
PðTÞ

Z
d3 ~x �ssð ~x; tÞ

�
� hPðTÞi

�Z
d3 ~x �ssð ~x; tÞ

�
(7)

(compare to Eq. (6)). This correlation is shown in Fig. 5.
These data show that the condensate is indeed only

meaningfully correlated with the propagator within the
propagation region and in a small window outside of it,
confirming that this method is valid.

B. Choice of padding length

We must thus determine the appropriate size of the
‘‘padding’’ outside the propagation region in which con-
densate measurements will be considered. If this padding
length is chosen to be too small, then the result will suffer
from systematic error, as some of the physical correlations
are not being considered; if it is chosen too large, then the
result will be unnecessarily noisy and the full benefit from
this method will not be realized.
Figure 5 suggests that the correlation between the

condensate and the nucleon propagator outside a window
consisting of the propagation region and a window of width
�5a on either side is only noise. To see if only considering
the condensate within this window improves the statistical
error without introducing significant bias, we consider the
resulting value of hNj�ssjNi and hNj �uujNi for various
widths of this padding on an average of the a � 0:12 fm
ensembles. We use the same choice of the minimum fit
distance Tmin ¼ 5a as in Ref. [22]. The result is shown in
Fig. 6. All errors have been determined by either omit-10 or
omit-20 jackknife; testing indicated no meaningful depen-
dence of error estimates on which jackknife blocksize
was used.
The salient feature of these graphs is the desired one:

a substantial reduction in statistical error provided by
the improved hybrid method. As expected, discarding
physically unmeaningful condensate measurements which
contribute only noise reduces the error bars by quite a bit.
Another notable feature is the difference between the

results obtained from the old and new data on the same
ensemble using the unimproved method (the fancy square

FIG. 5 (color online). The correlation between nucleon propagators of length 5a, 10a, and 15a with the strange quark condensate as
a function of the distance from the propagator source on one of the MILC a ¼ 0:12 fm ensembles. The source and sink location of the
propagators are marked as green vertical lines.
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and burst points, respectively). Part of this difference is due
to the use of the stochastic estimator method to determine
�ss. Indeed, by using the redone estimates of �ss but the old
propagators, we see some difference between the results.
This effect, however, is not sufficient to explain the entire
difference. The old and new propagators themselves are
slightly different due to the use of different source time
slices in the new data; when recomputing nucleon propa-
gators, we used eight equally-spaced source time slices
with the first located at a random offset from the lattice
origin, which will not necessarily correspond to the eight
sources used originally. This strongly suggests that the
MILC practice of using only eight source time slices
does not extract all available information about the nucleon
propagator from the lattice, and that the statistical errors in
MN and hNj�ssjNi could be reduced further by the consid-
eration of more source locations (requiring, of course,
more inversions to compute the propagators).

Examining 6, we conclude that a conservative choice for
padding size on the a � 0:12 fm ensembles is 6a, while an

aggressive choice is 4a. (The aggressive choice was made
in [27]; here we present data with the conservative choice,
which leads to essentially the same result but with slightly
larger errors.) On the a � 0:09 fm ensemble, the equiva-
lent padding size in physical units is 8a. We estimate the
systematic bias due to this procedure to be no more than
1%. This estimate is consistent with the result of fitting the
data shown in 6 to constant-plus-exponential.

C. Minimum fit distance and excited state pollution

In Ref. [22], we chose minimum distances of 5a, 7a, and
10a on the a ¼ 0:12, 0.09, and 0.06 fm ensembles respec-
tively, and gave a rather conservative estimate of the sta-
tistical error due to excited state pollution of 10%. These
minimum distances, corresponding to a physical distance
of � 0:6 fm, were chosen to trade off statistical error
(worse at higher minimum distances) and the possibility
of bias due to excited-state contamination. The largest
obstacle to determining the appropriate minimum distance
Tmin and the excited-state systematic error estimate was
the overall large statistical error in hNj �qqjNi, making it
difficult to tell the difference between systematic bias and
statistical accident. It is possible that the improved statis-
tical errors from the improved hybrid method may suggest
a different choice of Tmin or a different estimate of the
systematic error due to excited states.
The left pane of Fig. 7 shows the hNj �uujNi and hNj�ssjNi

matrix elements (in the lattice regularization) averaged
over the five a � 0:12 ensembles on which the data
for the improved method are available. We use the
‘‘aggressive’’ choice for padding size here (4a), on the
grounds that a little bit of systematic error due to padding
will not obscure trends in Tmin , and that the more aggressive
choice may allow resolution of smaller systematic effects.
The difference between the average result on the coarse

ensembles at Tmin ¼ 5 and Tmin ¼ 6 is about one standard
deviation: this could be due either to systematic bias or
simply a statistical fluctuation.
However, the difference is substantially smaller than 1�

on the a � 0:09 and a � 0:06 fm ensembles, suggesting
that this 1� difference is due to statistics rather than
excited-state pollution. The right pane of Fig. 7 shows
the dependence of hNj �uujNi and hNj�ssjNi on Tmin for
the a � 0:09 ensembles, in which no significant difference
between Tmin ¼ 7 (chosen as the optimum minimum dis-
tance) and Tmin ¼ 8 is apparent. The more precise results
available with the improved method, thus, are still consis-
tent with the previous choices of Tmin . Note that the aim in
the choice of Tmin is not to eliminate all systematic error
from excited states, but to achieve a balance between
statistical error (larger at higher Tmin ) and systematic error
(larger at lower Tmin ). The absolute size of this difference
is consistent with a 5% estimate for the systematic error
due to excited states. Note that due to autocorrelations
between the errors, an increasing trend is not necessarily

FIG. 6 (color online). Results for hNj �qqjNi using the improved
hybrid method averaged over the a � 0:12 fm ensembles on
which the needed measurements are available in the lattice
regularization. Each graph shows the values of hNj�ssjNi
(red circles) and hNj �uujNi (blue crosses) at varying pad sizes.
Negative pad sizes, with significant systematic bias, are included
to make the trend of this bias plain. The result using the
unimproved method (i.e. the limit of large pad size) on the
newly-computed condensate and propagator measurements is
shown as a starburst; the result using the unimproved method
on the old data is shown as a fancy square for comparison. Note
that the new data use different random time sources for the
nucleon correlator. The uncertainty in the difference between
adjacent values is shown as a horizontal carat centered on the left
point; if the right point lies within the bracketed range then the
difference between the two is less than one standard deviation.
A horizontal band corresponding to the width of the systematic
error estimate from the use of the improved method is shown.
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indicative of a systematic effect, and may just be a corre-
lated statistical fluctuation in adjacent points.

This lower estimate for the systematic error due to
excited states can also be justified by examining other
information. The nucleon mass itself can be computed
with much lower statistical error at higher Tmin ; mass fits
at these higher minimum distances differ from those at
Tmin ¼ 0:6 fm by only 1% to 5%. Naı̈vely applying the
perturbative argument to the nucleon strangeness, the
quantity ms

MX
hNj�ssjNi is the same for any hadron X, includ-

ing the nucleon or the delta; thus, the fractional difference
between the strangeness of the delta and the nucleon
should be of the order of the fractional difference in their
masses. We also note that in the quark model the nucleon
and delta differ in the spin of the quarks, which we expect
to be only indirectly related to the scalar strange quark
content. Thus, we may expect the systematic error in
@MN

@ms
due to excited state pollution to be smaller than the

1%–5% range for the systematic error in the nucleon mass.
(The 1%–5% range does not imply that this systematic
shift varies greatly from ensemble to ensemble; rather, at
large Tmin MN itself can only be determined to a few
percent accuracy.)

It is possible to calculate a rough estimate of the frac-
tional amount of excited-state pollution in a propagator of
any given length using a nucleon propagator fitting method
that includes the lowest-lying direct-parity excited state.
(Note that due to the spin structure of staggered fermions,
the nucleon interpolating operator used here overlaps in
part with the delta, which is this lowest ‘‘excited state.’’)
These methods give results for the spectral weight and
mass of the delta, allowing computation of the ratio
A�e

�M�T

ANe
�MNT , the fractional amount of delta pollution, for any

given propagator length T. For the chosen minimum dis-
tances, this ratio is generally less than 0.1. Since the
nucleon-delta mass splitting is about 30%, and we expect
the nucleon-delta strangeness difference to be not much

greater than 30%, this gives an estimate on the systematic
shift due to delta pollution of 3%. While this is not a
rigorous computation of the error due to finite-size effects,
it does provide an independent estimate of its size without
the high statistical error inherent in strangeness calcula-
tions and the associated difficulties in distinguishing
between statistical fluctuations and systematic shifts.

D. Renormalization

The quantity @MN

@ms
is renormalization scheme and scale

dependent, since ms depends on the renormalization
scheme and scale but MN does not. Thus, as a first step
in analysis we convert the results on each ensemble to a

consistent renormalization scheme, such as MS (2 GeV).
We used the Z-factors for converting from the Asqtad

formulation to MS (2 GeV) which were calculated by the
HPQCD Collaboration up to two-loop order in perturba-
tion theory [30].
An alternative approach would be to work with the

renormalization scheme dependent quantity mshNj�ssjNi,
or FTs

� ms

MN
hNj�ssjNi.

E. Chiral extrapolation

With one exception (with poor statistics), all of the
MILC Asqtad gauge ensembles were performed with light
quark masses significantly larger than the physical value of
ml. This necessitates an extrapolation of any lattice
measurement to the physical light quark mass. Care must
be taken in this extrapolation since the values of many
quantities curve sharply very near the physical point, and a
naı̈ve polynomial extrapolation done on lattice data calcu-
lated with a typical range of light quark masses ml >
10 MeV will miss this curvature.
The statistics in this study are not sufficiently strong

to resolve subtle nonlinearities in the chiral form
(or, equivalently, to determine higher-order low-energy

FIG. 7 (color online). hNj �uujNi (blue crosses) and hNj�ssjNi (red circles) vs. Tmin using the (improved) hybrid method. The three
panels show the average values on the 0.12 fm, 0.09 fm, and 0.06 fm ensembles, respectively; note the difference in the y-axis scale
between the plots. The uncertainty in the difference between adjacent values (obtained by jackknife) is shown as a horizontal carat
centered on the left point. The size of the 5% systematic error estimate from excited state pollution is shown with a green bar.
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constants); they suffice only to do a linear extrapolation to
the physical point. Thus, the presence of substantial curva-

ture for low light quark mass (caused by @2N
@ms@ml

diverging

as ml ! 0 due to chiral logs) would cause substantial
difficulties in the chiral extrapolation.

The mass of the nucleon in terms of the quark masses and
(mostly unknown)�PT coefficients has been calculated up to
orderm2

q in chiral perturbation theory [31], with the explicit

form given in section IV of this reference. Differentiation

with respect toms gives the chiral fit form for @MN

@ms
. This form

can then be examined for ‘‘dangerous’’ terms whose deriva-
tives with respect to ml diverge asml ! 0.

In this expansion there are no terms for which
@MN

@ms
diverges as ml ! 0. Another notable feature is the

absence of a term � msml log ðmlÞ. (This would be �9;N
in the notation of Ref. [31], and would give a contribution

to @MN

@ms
�ml log ðmlÞ, formally larger than a correction

linear in ml.) (We thank Ulf Meissner for correspondence
on this point.) Thus we can use a simple linear chiral
extrapolation, of the form

@MN

@ms

¼ Aþ Bml: (8)

F. Correcting for the strange quark mass

MILC tried to run most of the Asqtad ensembles at the
physical value of the strange quark mass. However, since
the lattice spacing is only determined a posteriori and since
the physical strange quark mass itself is not trivial to
measure, the Asqtad ensembles were run at nonphysical
strange quark masses. Since the aim of this work is to
calculate the strangeness of the nucleon for physical
strange quarks, an adjustment is necessary. To correct for
this and extrapolate the results to the physical value of ms,

we must determine the quantity @
@ms

hNj�ssjNi ¼ @2MN

@m2
s
.

ms has been most recently calculated by HPQCD on
MILC lattices [30], and updated by MILC as part of a
comprehensive fit of light meson masses and decay con-
stants to chiral perturbation theory [32] as 89.0(0.2)(1.6)

(4.5)(0.1) MeV in the MS (2 GeV) regularization scheme,
where the errors are statistical, miscellaneous systematic,
perturbative renormalization, and electromagnetic, respec-
tively. For the purposes of this work we treat the value as
89 MeV exactly; the contribution of the uncertainty in ms

to the overall error in hNj�ssjNi is not significant, since ms

only enters this quantity indirectly. (Note that when we
compute the RNG invariantmshNj�ssjNi, wherems appears
directly, the uncertainty in ms is very important.)

The values of ms used in the MILC ensembles do not
differ by enough to determine this quantity in any mean-
ingful way by simply performing a fit. Thus, we must resort
to a trick. The present method can also be used to calculate
the equivalent light quark matrix element, equivalent to

@MN

@ml;sea
, in exactly the same way. This quantity, interpreted as

the amount that the nucleon suppresses the light quark
condensate, has behavior qualitatively similar to the
strangeness of the nucleon if ml is sufficiently large that
the strong enhancement near the chiral limit is not relevant;
see Sec. IVE. On those MILC ensembles with the heaviest
light quarks (for instance, whereml ¼ 0:4ms), we may treat
the light sea quarks as ‘‘lighter strange quarks,’’ and write

@

@ms

hNj�ssjNi ¼ hNj�ssjNi � hNj �uujNi
ms �ml

: (9)

This approach has the advantage that the numerator of the
right-hand side is the difference of two correlated quanti-
ties, so the error on their difference (determined via the
jackknife method, as usual) will be smaller than the naı̈ve
sum of their errors in quadrature.
We choose to apply this technique to all ensembles with

ml � 0:15ms. The results are shown in Table I. We use the
improved hybrid method on the one of these ensembles
where it is available. Fitting a constant to these results, we
obtain

@

@ms

hNj�ssjNi ¼ �0:00331ð28Þ MeV�1: (10)

This value has be used to extrapolate measured values of
hNj�ssjNi to the correct strange quark mass. The error on
the slope of this extrapolation has been incorporated into
the overall statistical error.

G. Continuum extrapolation

The leading-order discretization errors in the Asqtad
action are Oða2Þ, so a continuum extrapolation can be

TABLE I. Results for hNj �ssjNi�hNj �uujNi
ms�ml

on ensembles with heavy
light quarks, presumed to be a good estimator of the dependence
of the strangeness of the nucleon on strange quark mass, @

@ms
	

hNj�ssjNi. The results are given in the MS (2 GeV) renormal-
ization scheme. The result is also given for the a � 0:12 fm
ensemble on which the improved method has been run. Errors
are obtained via jackknife of the difference in the proper way.
The result of fitting a constant to these values (using the
improved method for the ensemble where it is available) is
shown; this fit has �2=d:o:f ¼ 7:76=4.

� a (nominal, fm) aml ams

@
@ms

hNj�ssjNi
(MeV�1)

6.81 0.12 0.30 0.50 �0:0033ð21Þ
6.79 0.12 0.20 0.50 �0:0021ð6Þ
6.79 0.12 0.20 0.50 �0:0030ð3Þ

(improved)

7.10 0.09 0.093 0.31 �0:0067ð19Þ
7.11 0.09 0.124 0.31 �0:0046ð8Þ
7.48 0.06 0.72 0.18 �0:0046ð24Þ
Average �0:00331ð28Þ
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performed most simply by adding a term Ca2 to the fit
form used in the chiral extrapolation, and fitting to the form

@MN

@ms

¼ Aþ Bml þ Ca2: (11)

However, due to the large statistical error on hNj�ssjNi on
the a � 0:09 fm and especially the a � 0:06 fm gauge
ensembles compared to the likely discretization errors, it
is difficult to perform a tightly constrained continuum
extrapolation. Naı̈vely doing the fit given above gives a
large uncertainty in C and thus a large uncertainty in the
continuum limit.

However, the error band on the slope of the continuum
extrapolation includes values which are highly unlikely,
given our prior experience with continuum extrapolations
of (more precisely measured) hadronic quantities on the

Asqtad ensembles. The discretization errors in @MN

@ms
are

likely broadly comparable to those in other similar
hadronic quantities measured on the same gauge configu-
rations; the size of these discretization errors are shown in
Table II. We would be remiss not to take into account this
information regarding the usual size of such discretization
errors on the Asqtad ensembles, and the proper way to
include these data is with a Bayesian prior. The most
relevant of these other quantities is the nucleon mass; it
also shows the largest discretization effect, so using it as
the basis for a prior is both the most logical and the most
conservative choice. We thus constrain C with a Bayesian
prior centered on zero with a width corresponding to a shift
in the nucleon strangeness of 10% from 0.12 fm to the
continuum, taking into account our information about the
usual size of discretization errors in hadronic quantities on
the Asqtad lattices in as rigorous a way as possible.

H. Error budget and result

The value of hNj�ssjNi on each ensemble considered,
along with the fit described in the preceding sections and
its evaluation at the physical point, is shown in Fig. 8.
While many included ensembles have large errors, the fit is
controlled by a subset of ensembles with high statistics on
which the data for the improved method are available.
These ensembles are somewhat obscured in Fig. 8 by the
lower-statistics ensembles with large errors; Fig. 9 shows

TABLE II. Discretization errors on other hadronic quantities
on the Asqtad ensembles. The MILC collaboration has previ-
ously performed a well-constrained continuum extrapolation of
each of these quantities; the discretization errors listed are the
difference between the value at 0.12 fm and the continuum.

Quantity 0.12 fm discretization error

f�, fK, taste breaking 8.4%

f�, fK, other 2.6%

r1MN 9.7%

r1M� 7.2%

FIG. 8 (color online). hNj�ssjNi on the Asqtad ensembles using
data from the improved hybrid method where it is available, in
the MS (2 GeV) regularization scheme, adjusted to the correct
value of ms, along with the linear chiral and continuum fit. Data
from the 0.12, 0.09, and 0.06 fm ensembles are shown by red
octagons, green diamonds, and blue squares, respectively. The
black line is the chiral fit in the continuum limit; the chiral fit at
a � 0:12 fm is shown by the red dashed line. Symbol area is
proportional to the number of lattices in the gauge ensemble. The
black point marked by a cross is the evaluation at the physical
point, along with the combined statistical and continuum-
extrapolation error.

FIG. 9 (color online). hNj�ssjNi on the Asqtad ensembles with
the highest statistics, those with at least 1600 configurations,
along with the ensemble withml ¼ ms which has a large impact
on the chiral extrapolation. Symbols are the same as Fig. 8.
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only those ensembles with more than 1600 lattices, along
with the ensemble with ml ¼ ms which has lower statistics
but has a large impact on the slope of the chiral extrapolation.

There are other significant systematic errors. The fit
form linear in ml is of course an approximation, so there
is an error due to missing higher-order terms in chiral
perturbation theory. The effect of these higher-order terms
cannot be reliably determined from the data available. If
the chiral fit is modified to include a quadratic term, then
the central value changes significantly, but the coefficient
of the quadratic term is rather poorly determined and the
curvature in the fit is rather extreme; it is unlikely that this
curvature represents an actual nonlinearity in the chiral
extrapolation, given the analysis of the chiral perturbation
theory form given in Sec. IVE. To estimate the systematic
error from exclusion of these higher-order terms, we use
the case of chiral fits toMN to estimate the size of the effect
from these higher-order terms. If the value of MN is fit to
constant-plus-linear and evaluated at the physical point, the
result differs from the result obtained by fitting to two extra
orders inM� by 7%; we thus take 7% as an estimate of the
systematic error in hNj�ssjNi due to higher-orders in �PT.
This may be an overly conservative estimate; it is entirely
possible that the mass of the nucleon is more sensitive to
the masses of the valence quarks than is the nucleon’s
suppression of the strange quark condensate.

Finite-size effects in general are expected to be small on
the MILC Asqtad ensembles, since they have relatively
large physical volumes. However, this quantity may be
especially sensitive to finite-volume effects. Recall that
the physical basis for the nucleon strangeness is that the
presence of the nucleon’s valence quarks and the glue field
holding them together carves out a ‘‘bubble’’ in the QCD
vacuum with different characteristics, including the sup-
pression of the strange chiral condensate; since the size of
the measured effect is directly related to the size of this
region, which could extend over the nucleon and its sur-
rounding pion cloud, it is potentially especially sensitive to
small volumes. In general, it is not possible to directly
estimate the size of the finite-volume effects. However, in
one case, there are two MILC Asqtad ensembles with the
same lattice parameters but different physical volumes.
One volume corresponds to the volumes used on other
ensembles, while one has a spatial extent 40% greater.
The measured values of MN on these ensembles differ by
1%; since it is possible that the nucleon strangeness is more
sensitive to finite volume effects, we conservatively esti-
mate the systematic error due to finite volume corrections
as 3%. A more direct test of finite size effects is available
on the HISQ ensembles, where three ensembles with iden-
tical lattice parameters except for the volume are available.

Finally, there is an uncertainty in the values of Zm used to

convert the result from the lattice regularization to the MS
(2 GeV) scheme of 4% [30]. The result can be presented in
the renormalization-invariant form mshNj�ssjNi, the strange

quark sigma term, to eliminate this error. However, in this
case there is a systematic error of nearly the same size
coming from uncertainty in the physical value of ms and
from uncertainty in lattice scale-setting.
We note that these systematic error estimates correspond

to one-standard-deviation uncertainties, suitable for
combining in quadrature to obtain an overall error, and
not worst-case upper bounds on the systematic effects; it is
possible, in the same manner as with the statistical error,
that the true deviation from the central value is somewhat
larger.
This gives a result, extrapolated to the physical point, of

hNj�ssjNi ¼ 0:637ð55Þstatð74Þsys. The error budget is sum-

marized in Table III. The improvement in the statistical
error over that reported in [22] is not as large as was hoped
(note that the improved hybrid method reduces statistical
error by roughly half); this is due to the lack of improved
hybrid results on the finer ensembles due to the expense of
recomputing propagators. Thus, the largest remaining
contributor to the statistical error is uncertainty in the
continuum approximation.

I. Validation from the direct method

The additional measurements made to apply the
improved hybrid method are precisely the measurements
needed to apply the direct method. Thus, all of the
measurements required to implement Eq. (3) have already
been made on the coarsest (a � 0:12 fm) ensembles.
We do not expect the direct method to be competitive

with the improved hybrid method for an accurate determi-
nation of hNj�ssjNi on these ensembles. It considers less
information (fewer �ss condensate measurements and fewer
propagator lengths), and does not explicitly consider the
effect of excited states in the nucleon propagator. In par-
ticular, it does not consider the alternating-parity state
which appears in propagators using staggered fermions.
However, it is the preferred method of many other groups
calculating the nucleon strangeness, and thus it is appro-
priate to apply it to the MILC Asqtad data where possible
to provide a comparison between the methods. Since we
are using it only as a comparison to the (improved) hybrid
method and not as a stand alone calculation of the nucleon

strangeness, we do not convert to the MS (2 GeV)

TABLE III. Error budget for the measurement of hNj�ssjNi
using the (improved) hybrid method on the Asqtad data.

Source Error

Statistical 0.05

Improved method 0.007

Higher order �PT 0.05

Excited states 0.03

Finite volume 0.02

Renormalization 0.03
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regularization scheme or apply corrections for the strange
quark mass.

The direct method requires two choices: the length of the
propagator (T) and the location within that propagator
(T1, measured here from the source) where the condensate
is evaluated. As usual, there is a systematic/statistical error
tradeoff. If the condensate measurement is chosen too close
to either end of the propagator, then there is the possibility of
contamination by excited states; only far from the source
and sink does the propagating state approximate a pure
nucleon. If the propagator is chosen to be too short, then
nowhere between source and sink is this condition true, and
any result will potentially suffer from large systematic error.
However, the signal-to-noise ratio of the propagator declines
exponentially with increasing distance, so choosing longer
propagators leads to larger statistical error.

Figure 10 shows the result for hNj�ssjNi as a function of
the location of the �ssmeasurement (the value T1 in Eq. (3))
for a propagator length of 10a, averaged over the five
a � 0:12 ensembles where the needed measurements
have been made. As expected, the result depends strongly
on the choice of T1; the most accurate values will be
located far from both source and sink. While the length
of the propagator is too short to definitively say that a
plateau exists, there is certainly the suggestion of one in
the region 2a 
 T1 
 5a. This plateau agrees well with the
calculation using the improved hybrid method, reinforcing
the validity of that result.

Another very notable feature of this figure is the strong
asymmetry between source and sink ends; the result is

nearly to its plateau value at the source but consistent
with zero at the sink. This is due to the asymmetry of the
operators used by MILC to calculate the nucleon two-point
function (Coulomb wall source, point sink). Similar
asymmetry is notable in Fig. 5, which hints that it would
be possibly useful to explore an asymmetric padding
window in the improved hybrid method. This effect was
also noted by the JLQCD collaboration in their application
of the direct method [24] using asymmetric operators.
We can also vary the propagator length used. Figure 11

shows similar curves to Fig. 10 for various length propa-
gators. As expected, longer propagators have higher statis-
tical error (since the propagators themselves are noisier),
but the height of the plateau itself increases with increasing
propagator length. This is not entirely unexpected, since all
of the curves show suppression near the source and sink,
and a longer propagator allows for more distance from
both. For a result unpolluted by excited states, we should
choose a propagator length T long enough that the result
as a function of T reaches a plateau; for these ensembles,
this appears to be the case for T � 12a. However, these
results are far too noisy to be able to draw much of a
conclusion other than that these results appear consistent
with those obtained from the improved hybrid method.
It is also possible and beneficial to use multiple conden-

sate time slices and multiple propagator lengths to reduce
statistical error. This has a side benefit when applied to a

FIG. 10. The intrinsic strangeness of the nucleon on the MILC
Asqtad ensembles using the direct method with a propagator
length of 10a, as a function of �ss insertion time T1. Vertical
dashed lines represent the sink for the propagator, while the
horizontal lines show the average using the improved hybrid
method with the ‘‘conservative’’ padding choice.

FIG. 11 (color online). The intrinsic strangeness of the nucleon
on the MILC Asqtad ensembles using the direct method for
multiple propagator lengths, as a function of �ss insertion time T1.
Vertical dashed lines represent the source and sink for the
various propagators, with the symbol used to indicate the result
using that propagator length indicated above the sink. The
horizontal lines show the average using the improved hybrid
method on these ensembles with the ‘‘conservative’’ padding
choice.
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calculation like the present one that uses staggered fermions.
The interpolating operators used to create and annihilate the
nucleon also overlap with states with negative parity whose
propagators come with a factor of ð�1ÞT . In particular, the
overlap amplitude with the lowest-lying alternating state is
often larger than that of the nucleon itself. In the hybrid
method, this state is included explicitly in the fit forms used
to determine MN; however, the direct method offers no
such mechanism. Telltale oscillatory behavior is visible,
for instance, in the T ¼ 11 data in Fig. 11.

While these states have masses greater than that of the
nucleon and thus will become irrelevant for condensate
measurements taken from sufficiently long propagators at
points sufficiently far from source and sink, their influence
can be significant for the propagator lengths accessible in
the current data set. The splitting between these states and
the nucleon is generally less than the splitting with the
lowest-lying positive parity excited state, so it will cause a
more substantial pollution of the result. This influence can
appear in two places: either as an alternating trend in the
value of hNj�ssjNi as a function of the location T1 of the
condensate measurement, or as a function of the length T
of the propagator used. Figure 11 shows some evidence for
this phenomenon.

To reduce the influence of these alternating states, and
to reduce statistical error by making use of more of the
available data, it is useful to consider the condensate on
two (or more) adjacent time slices, and to consider two
adjacent propagator lengths. While this does not ensure
that there will be no influence from the neglected oscillat-
ing staggered-fermion state, it should reduce it, while
simultaneously improving the statistics.

Figure 12 shows the resulting values for hNj�ssjNi from
the direct method, averaging over two adjacent propagator
lengths and considering the strange quark condensate on
multiple time slices. The result using the improved hybrid
method is shown for comparison. While there is no defini-
tive plateau fromwhich an authoritative value can be taken,
the peak values (corresponding to condensate measure-
ments intermediate between source and sink) agree quite
well with those from the improved hybrid method.

These results are not conclusive enough to give a
quotable result for hNj�ssjNi. However, there is strong
agreement between the direct and improved hybrid meth-
ods on this set of ensembles. As the direct method has been
favored by most other recent high-quality calculations of
this quantity, its use provides a useful comparison with
those results, and its agreement with the hybrid methods
(which are admittedly somewhat convoluted) lends strong
support to their validity.

J. Validation from the spectrum method

As discussed previously, the spectrum method cannot be
used to produce a reliable calculation of hNj�ssjNi using the
MILC Asqtad data. The main difficulty is the tendency to

change � between ensembles to keep the lattice spacing,
defined via a Sommer scale [33] and thus dependent onml,
constant.
However, in the event that several ensembles are avail-

able with different quark masses but the same � and other
lattice parameters (i.e. the lattice size and tadpole improve-
ment factor u0), then some information can be gleaned
from calculatingMN on them. There is only one instance in
the Asqtad library where two ensembles have the same �
and different ms (and ml). Due to a mistake in lattice
generation, two ensembles were run with � ¼ 7:10.
The first has aml ¼ 0:0093, ams ¼ 0:031, and the second
has aml ¼ 0:0062, ams ¼ 0:0186. These ensembles both
have the same dimension (283 	 96) and tadpole factor
u0 ¼ 0:8785.
This comparison is made more complicated by the fact

that these ensembles differ in both the light and strange
quark masses. Thus, we cannot independently determine
@MN

@ms
or @MN

@ml
, only a linear combination of the two.

FIG. 12 (color online). Results for the nucleon strangeness
hNj�ssjNi from the direct method. The results are averaged
over four adjacent condensate measurements at locations cen-
tered on the value of t1 shown, and averaged over two adjacent
propagator lengths. The intrinsic strangeness of the nucleon on
the MILC Asqtad ensembles using the direct method for multiple
propagator lengths, as a function of �ss insertion time T1. The
results are averaged over four adjacent condensate measure-
ments at locations centered on the value of t1 shown, and
averaged over two adjacent propagator lengths. Dotted vertical
lines indicate the source and sink locations, with the sink
position shown equidistant between the sinks of the two adjacent
propagators that are averaged. Symbols above these dotted lines
indicate the plot symbols corresponding to that propagator
length. The horizontal lines show the average using the improved
hybrid method on these ensembles with the ‘‘conservative’’
padding choice.
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Nonetheless, this provides sufficient information to
compare with the larger result from the hybrid method.

Referring to these ensembles as A and B and applying
the Feynman-Hellman theorem, we should have

MN;A �MN;B ¼ ð0:0093� 0:0062Þ
�
@MN

@ml;sea

þ @MN

@ml;val

�

þ ð0:031� 0:0186Þ @MN

@ms

: (12)

Since @MN

@ml;sea
¼ 2hNj �uujNidisc and @MN

@ms
¼ hNj�ssjNi, both

of which have been calculated using the improved hybrid
method, this suggests a constraint on MN;A �MN;B.

However, we have no such estimate for @MN

@ml;val
. To eliminate

this contribution, we have calculated partially quenched
propagators on the aml ¼ 0:0093, ams ¼ 0:031 ensemble
with amval ¼ 0:0062, giving the masses of two nucleons
with the same valence quark mass that differ only in their
sea quark masses. Partially quenched propagators were run
on only 1020 configurations out of the 1137 equilibrated
configurations in the ensemble; the aml ¼ 0:0062,
ams ¼ 0:0186 ensemble has 948 configurations.

Referring to the former mass as MN;A0 , we have

MN;A0 �MN;B ¼ 2ð0:0093� 0:0062ÞhNj �uujNidisc
þ ð0:031� 0:0186ÞhNj�ssjNi (13)

where the values of hNj �uujNi and hNj�ssjNi should be
evaluated not at the physical point but at quark masses

intermediate between ensembles A and B, and the factor of
two is due to the presence of two degenerate light quark
flavors in the sea.
Figure 13 shows the result of a two-state fit to the

nucleon propagator on these two ensembles as a function
of the minimum fit distance.
On both ensembles, both fits produce the expected

plateau starting at around Tmin � 10. Tmin ¼ 11
represents the best compromise between statistical error
and possible excited-state pollution for determining
the difference in MN; this gives the values MN;A0 ¼
0:519ð4Þ for the aml ¼ 0:0093, amval ¼ 0:0062
ensemble and MN;B ¼ 0:506ð3Þ for the aml ¼ 0:0062
ensemble. Combining the errors in quadrature, we get
MN;A0 �MN;B ¼ 0:013ð5Þ.
To test this against the hybrid method, we calculate

ð0:0093� 0:0062ÞhNj �uujNi þ ð0:031� 0:0186ÞhNj�ssjNi
which should give a similar result. First, it is simplest to
average the values of hNj �uujNi and hNj�ssjNi on these two
ensembles. Results from the hybrid method with Tmin ¼ 7
are given in Table IV.
Note that ensemble B has hNj�ssjNi< hNj �uujNi,

which is unexpected; this difference, however, is not sta-
tistically significant (hNj�ssjNi � hNj �uujNi ¼ 0:24ð28Þ,
with the error bar computed in the proper way via
jackknife).
These values give ð0:0093�0:0062ÞhNj �uujNiþð0:031�

0:0186ÞhNj�ssjNi¼0:011ð4Þ, in reasonable agreement with
the 0.013(5) estimated from the difference of the nucleon
masses. This agreement between the hybrid and spectrum
methods on these two ensembles lends support to the valid-
ity of the former.

V. hNj�ssjNi FROM THE MILC HISQ DATA

The hybrid method can also be applied to the newer
HISQ data with no significant modification, although none
of the measurements required to apply the improved hybrid
method are available. Several features of the HISQ data set
make it somewhat less suitable for analysis. There is a
more limited range of light quark masses available, ranging
from the physical value to 0:2ms. This greatly reduces the
‘‘lever arm’’ available to determine the slope of the chiral
extrapolation compared to the Asqtad ensembles, where
each nominal lattice spacing had runs with ml ¼ 0:4ms,

FIG. 13 (color online). Results for MN on the two ensembles
with � ¼ 7:10, aml ¼ 0:0093, ams ¼ 0:031, amval ¼ 0:0062
(black octagons) and � ¼ 7:10, aml ¼ 0:0062, ams ¼ 0:0186
(red squares), at varying values of Tmin , using a two-state fit
method. Symbol size indicates fit quality. Absent data indicate
fits that failed to converge or converged to nonsensical values.

TABLE IV. Results for heavy and light quark content of the
nucleon on � ¼ 7:10, aml ¼ 0:0093, ams ¼ 0:031 and � ¼
7:10, aml ¼ 0:0062, ams ¼ 0:0186 ensembles, and a weighted
average.

Ensemble hNj�ssjNi hNj �uujNi
aml ¼ 0:0093, ams ¼ 0:031 1.09(18) 1.75(28)

aml ¼ 0:0062, ams ¼ 0:0186 0.77(22) 0.53(36)

Weighted average 0.96(14) 1.29(22)
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and one ensemble with a � 0:09 fm has ml ¼ ms (three
degenerate heavy quarks). The HISQ ensembles are all
limited to 1000 equilibrated gauge configurations, and
the gauge generation program is still ongoing, limiting
the statistics available.

Nonetheless, essentially the same analysis can be carried
out. The form of the chiral and continuum extrapolations
will be unchanged, although the value of the constant
controlling the continuum extrapolation should be smaller
since taste breaking, the dominant discretization error in
the Asqtad action, is reduced roughly by two-thirds in
HISQ. Since the continuum extrapolation does not have
much of an effect, we keep the prior with a width corre-
sponding to a 10% discretization effect from a ¼ 0:12 fm
to the continuum; while this effect should be reduced in
HISQ, we have no basis for estimating towhat extent that is

the case. The values of Zm to convert to the MS (2 GeV)
regularization are, to sufficient accuracy, the same for
HISQ and Asqtad.

The same minimum distance to consider for the nucleon
fits in order to avoid excited state pollution is also still
sensible; nothing in the physics which controls excited state
pollution is affected by the further improved fermion action.
Applying the same analysis described in detail

previously, we obtain nonsensical results due to the lack
of sufficient lever arm to constrain the slope of the chiral
extrapolation, due to the lack of ensembles with heavier
light quarks. While we may omit the ml dependence from
the fit, a somewhat more sophisticated approach is to
constrain the slope of the chiral fit. We use a Gaussian
Bayesian prior whose central value is taken from the
Asqtad fit and whose width is equal to the error of the
Asqtad slope. The constant fit and the fit with a constrained
slope are shown in Fig. 14.
These two fits are very similar; we consider the fit with

the constrained slope to be more physical.
The systematic errors should be similar to those in

the Asqtad case. Since the HISQ ensembles have larger
physical volumes, we use 2% as an estimate of the system-
atic error from finite-volume effects. The error budget is
summarized in Table V.
Thus, our result extrapolated to the physical point is

hNj�ssjNi ¼ 0:44ð8Þstatð5Þsys.

VI. hNj �ccjNi FROM THE MILC HISQ DATA

The intrinsic charm of the nucleon can also be measured
on the lattice. This is interesting both in its own right
and because it can be compared with the perturbative

FIG. 14 (color online). The intrinsic strangeness of the nucleon on the MILC HISQ ensembles, using the hybrid method. The
left pane shows a constant fit; the right pane shows a linear chiral fit, with the slope constrained using a Bayesian prior from the
Asqtad fit. Ensembles with a � ð0:15; 0:12; 0:09; 0:06Þ fm are shown as violet fancy squares, red octagons, green diamonds, and blue
squares, respectively. Symbol area is proportional to the number of gauge configurations in the ensemble. The fit at the continuum
is shown as a black dotted line, while the fit evaluated at a ¼ 0:12 fm is shown as a red dashed line. The fit evaluated at the con-
tinuum is shown as a black cross, and the quoted error includes the uncertainty in the continuum extrapolation with the prior as
discussed in the text.

TABLE V. Error budget for the measurement of hNj�ssjNi
using the unimproved hybrid method on the HISQ data.

Source Error

Statistical 0.08

Higher order �PT 0.03

Excited states 0.02

Finite volume 0.01

Renormalization 0.03
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prediction. Since the lattice calculation directly measures
hNj �ccjNi, we convert Kryjevski’s perturbative com-
putation [23] to this form. Using xuds ¼ 0:14 and mc ¼
1:2 GeV, the perturbative prediction is hNj �ccjNi ¼ 0:057.
Due to the smaller absolute magnitude of the intrinsic
charm, and the lower statistics of the HISQ ensembles
used to determine it, it is even more difficult to extract
than the nucleon strangeness.

A. The lattice result

The application of the hybrid method to the nucleon
intrinsic charm proceeds identically to the nucleon strange-
ness, except that the charm quark condensate is used.
Pollution due to excited states should have a similar impact
on the intrinsic charm and the intrinsic strangeness, so for a
first analysis we use the same set of minimum fit distances
for MN as before. The results on the various HISQ ensem-
bles are shown in Fig. 15, along with the fit. The results are
broadly consistent with the perturbative prediction, but in-
distinguishable from zero due to the large fractional statis-
tical errors. We thus do not attempt a chiral extrapolation.
For the continuum extrapolation, we use the same procedure
as for the nucleon strangeness, by adding a term proportional
to a2 to the fit. Since the coefficient of such a term would be
extremely poorly determined given the high statistical errors,
we use the same procedure as before to constrain it (see
Sec. IVG) by the imposition of a Bayesian prior with a
width corresponding to a 10% effect between a ¼ 0:12 fm
and the continuum. (Note however that as the 10% figure

was obtained from Asqtad lattices, smaller lattice discretiza-
tion effects might be expected on HISQ if these effects stem
from taste-breaking interactions.) This difference is not
terribly meaningful, of course, given the size of the statistical
errors involved. However, in this case the fit value of the
nucleon intrinsic charm is very nearly zero, so the allowance
for a 10% effect would lead to an artificially tight prior.
Thus, we impose a prior that allows for an 0.02 shift between
a ¼ 0:12 fm and the continuum, which is roughly 1=3 the
perturbative prediction. (In practice, the width of this prior
has essentially no effect on such a noisy fit.)
Recall that the choice of the minimum propagator length

tmin used to fit the nucleon propagator was made to provide
the best available balance between the statistical error
(reduced for lower values of tmin ) and the potential for
systematic error due to excited-state pollution (larger at
lower values of tmin ). The balance between these two errors
struck for the nucleon strangeness was appropriate for a
quantity with smaller statistical errors, but when dealing
with the nucleon charm the impact of additional excited
state pollution is not as meaningful when dealing with a
quantity with such a large statistical error. Additionally, per
the perturbative argument [29,23], excited-state pollution
should matter less when dealing with heavy quarks, since
the effect of altering the mass of a quark well above
the scale �QCD affects all low-energy quantities (i.e. the

masses of the nucleon and its excited states) in the same
way, interpreted as an overall rescaling of the lattice. This
is not strictly true, of course, since the charm quark is
not that much greater in mass than �QCD; otherwise, the

FIG. 15 (color online). The intrinsic charm content of the nucleon on the MILC HISQ ensembles using the hybrid method. The left
pane shows the result using the larger minimum propagator distances tmin used for the strangeness calculation; the right pane shows the
result using the smaller minimum propagator distances discussed in the text. Ensembles with a � ð0:15; 0:12; 0:09; 0:06Þ fm are shown
as violet fancy squares, red octagons, green diamonds, and blue squares, respectively. Symbol area is proportional to the number of
gauge configurations in the ensemble. The fit at the continuum is shown as a black dotted line, while the fit evaluated at a ¼ 0:12 fm is
shown as a red dashed line. The fit evaluated at the continuum is shown as a black cross, and the quoted error includes the uncertainty
in the continuum extrapolation with the prior as discussed in the text.
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inclusion of dynamical charm in simulations of low-energy
quantities would be meaningless, since by the same argu-
ment all they would do is change the lattice spacing.
Nonetheless, it suggests that the effect due to excited
state pollution is less for the intrinsic charm than for the
strangeness.

It is thus appropriate to use smaller minimum distances
in evaluating the nucleon intrinsic charm. As before, we
should choose a minimum distance that is relatively con-
stant in physical units across lattice spacings. No methodi-
cal evaluation of the systematic errors due to excited state
pollution can really be made with these data, so we choose
(in a rather ad hoc way) to use minimum distances that are
roughly 2=3 those used for the strangeness. (A somewhat
artificial lower bound on the minimum distances used,
especially for the coarser ensembles, is provided by fitter
convergence; if there is too much excited state pollution,
the nucleon mass fits may behave unpredictably.) We thus
choose tmin ¼ ð3a; 3a; 5a; 7aÞ for the a � ð0:15; 0; 12;
0:09; 0:06Þ fm ensembles, respectively.

Using the same minimum distances that were used in for
hNjs�sjNi, (10a for a � 0:06 fm, 7a for a � 0:09 fm, 5a
for a � 0:12 fm, and 4a for a � 0:15 fm), we would find
that hNj �ccjNi ¼ 0:017ð37Þstat. Using the smaller minimum
distances discussed above, we obtain hNj �ccjNi ¼
0:056ð27Þstat if the coarsest ensembles are included, and
hNj �ccjNi ¼ 0:054ð27Þstat if they are omitted. This result
has, as expected, lower statistical error, in agreement with
the perturbative prediction [23]. We make no estimates of
systematic errors because of the large size of the statistical
uncertainty. These values are broadly consistent with the
perturbative predictions given by Kryjevski [23].

VII. CONCLUSIONS

Early lattice work on the nucleon strangeness was
prompted in part by early �PT calculations suggesting
that its value might be large [3], and thus provide a sig-
nificant enhancement to the WIMP-on-baryon scattering
cross-section. While there is no reason to expect the per-
turbative method in Refs. [29,23] to apply accurately to the
strange quark, that result can be used to set a natural scale

for @MN

@ms
� 2

29
MN

ms
� 0:7. Early lattice calculations suffered

from large uncontrolled systematics, leading to wildly
varying estimates for the nucleon strangeness, some of
which were large. This work, as well as our previous
work on the nucleon strangeness in Ref. [22] and many
other recent calculations [9–12], however, all conclude that
the nucleon strangeness is approximately at its natural
scale, substantially smaller than the early work suggested
that it might be. While the uncertainty in the value of
hNj�ssjNi is still large compared to other lattice quantities,
it is no longer a dominant contribution to the uncertainty in
dark matter scattering amplitudes; from the perspective of
direct dark matter detection experiments, the problem pre-
sented in Refs. [1,2], of whether the nucleon strangeness is

‘‘small’’ or ‘‘large’’ has been answered in favor of the
former. In fact, the contribution to the dark matter scattering
cross section from strange quark loops in the nucleon,
coming from diagrams of the type shown in Fig. 1, is
actually smaller than that from the heavy quarks for which
the perturbative method is valid.
We apply the ‘‘hybrid method,’’ outlined in Sec. III C, to

the large library of improved staggered gauge configura-
tions (roughly 26000 Asqtad and 14000 HISQ) generated
by the MILC Collaboration. Improved staggered fermions
are well suited to this project, since they are very fast,
allowing for large gauge ensembles with which to beat
down the inherently noisy disconnected diagrams involved
here, and they preserve a remnant chiral symmetry, allow-
ing for a straightforward application of the Feynman-
Hellman theorem without the concerns about additive
renormalization or operator mixing which plague Wilson-
based computations of this quantity, as discussed in
Ref. [7].
We present an improvement on this method which, due

to historical averaging over sources and time slices when
measuring �qq and the nucleon propagator, required repeat-
ing the lattice measurements of these quantities; this was
thus only performed on the coarser lattices in the Asqtad
library (some 14000 configurations out of 26000 total) to
economize on computer time. We determine that the con-
densate should be considered out to a distance of approxi-
mately 0.7 fm from the source and sink of the nucleon
propagator. This results in an approximately 40–50%
decrease in the statistical error.
Using the improved hybrid method where the needed

measurements are available, we conclude that hNj�ssjNi ¼
0:637ð55Þstatð74Þsys after continuum and chiral extrapola-

tion. The leading uncertainties are statistical, mainly in the
continuum extrapolation, and in the systematic error due to
excited state contamination. Since smaller statistical errors
allow the use of larger minimum distances (to reduce
excited state errors) or allow the justification of smaller
systematic error estimates for the minimum distances
chosen, improvements in statistics will also lead to im-
provements in this systematic error. Availability of the
needed measurements to apply the improved hybrid
method on more of the finer ensembles would help with
this, as well as helping to reduce the large contribution to
the statistical error from the continuum extrapolation. We
note that the systematic errors quoted here represent one-
standard-deviation uncertainties rather than worst-case
upper bounds on the size of the systematic effects, as the
aim in estimating them is to construct estimates which can
be combined in quadrature with each other and with the
statistical error in the normal way; it is possible that the
true size of the systematic effects may be larger.
This method can also be used to calculate the nucleon

strangeness using the HISQ fermion action. Due to the lack
of large-ml ensembles in the HISQ program, we constrain
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the slope of the chiral extrapolation using a Gaussian
Bayesian prior whose central value and width are taken
from theAsqtad fit.We obtain hNj�ssjNi ¼ 0:437ð8Þstatð5Þsys.

The same methods can be used to compute the intrinsic
charm of the nucleon. This provides a connection to per-
turbative QCD. A simple argument involving the running
of the QCD coupling constant and the fact that the low-
energy QCD scale is set by the running of g can be used to
estimate hNj �ccjNi [3,29]; that result has been improved
to four-loop order by Kryjevski [23], who calculates
hNj �ccjNi ¼ 0:058.

Using the MILC HISQ ensembles with dynamical
charm, we apply similar methods as with the intrinsic
strangeness. Excited-state pollution is less of a problem
for this quantity; by Kryjevski’s perturbative argument, the
effect of altering the charm quark mass mostly just rescales
the lattice, so the intrinsic charm of the excited states of
the nucleon interpolating operator should be similar to that
of the ground state. Moreover, we are dealing with frac-
tional statistical errors that are about an order of magnitude
larger. Thus, we choose smaller minimum propagator fit
distances Tmin to improve the statistics. Similarly, because
the overall statistical error is so high, we do not attempt a
chiral extrapolation.

Doing the continuum fit in the same manner as before,
we obtain hNj �ccjNi ¼ 0:056ð27Þstat, essentially the same
as the perturbative result albeit with large fractional error
due to the lower value. As this error is dominated by
statistics, we do not present a systematic error budget.
This result can be improved by the simple availability of
more HISQ data, as the MILC HISQ lattice generation
project progresses.

Taken together, these results for the scalar strange and
charm quark content of the nucleon, similar results for the
strange quark content from other groups (Fig. 2), and the

perturbative calculation, lead to the amusing conclusion
that the scattering of a low-momentumHiggs particle (as in
dark matter interactions in the MSSM) is not dominated by
the strange quarks in the nucleon, but instead receives more
or less equal contributions from all heavy quarks.

ACKNOWLEDGMENTS

This work was supported by the Department of Energy
Grants No. DE-FG02-04ER-41298 and No. DE-FG02-
95ER-40907. Computer time was provided through the
National Energy Resources Supercomputing Center
(NERSC), which is supported by the Office of Science of
the U.S. Department of Energy under Contract No. DE-
AC02-05CH11231. Computer resources were also pro-
vided by the USQCD Collaboration, the Argonne
Leadership Computing Facility, and the Los Alamos
National Laboratory Computing Center. which are funded
by the U.S. Department of Energy. Computer resources
were also provided by the National Science Foundation’s
NRAC, Teragrid and XSEDE programs, including the
National Center for Supercomputing Applications
(NCSA), the Texas Advanced Computing Center
(TACC), the Pittsburgh Computer Center (PSC), the
National Institute for Computational Sciences (NICS),
and the San Diego Supercomputer Center (SDSC).
Computer time at the National Center for Atmospheric
Research was provided by NSF MRI Grant No. CNS-
0421498, NSF MRI Grant No. CNS-0420873, NSF MRI
Grant No. CNS-0420985, NSF sponsorship of the National
Center for Atmospheric Research, the University of
Colorado, and a grant from the IBM Shared University
Research (SUR) program. We thank David Kaplan, Ulf
Meissner, Michael Engelhardt, and our MILC collabora-
tion colleagues for helpful discussions and suggestions.

[1] E. A. Baltz, M. Battaglia, M. E. Peskin, and T. Wizansky,
Phys. Rev. D 74, 103521 (2006).

[2] J. Ellis, K. Olive, and C. Savage, Phys. Rev. D 77, 065026
(2008).

[3] A. Nelson and D. Kaplan, Phys. Lett. B 192, 193 (1987);
D.B.Kaplan andA.Manohar,Nucl. Phys.B310, 527 (1988).

[4] M. Fukugita, Y. Kuramashi, M. Okawa, and A. Ukawa,
Phys. Rev. D 51, 5319 (1995).
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