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We address several aspects of lattice QCD calculations of the hadronic vacuum polarization and the

associated Adler function. We implement a representation derived previously which allows one to access

these phenomenologically important functions for a continuous set of virtualities, irrespective of the flavor

structure of the current. Secondly, we present a theoretical analysis of the finite-size effects on our

particular representation of the Adler function, based on the operator product expansion at large momenta

and on the spectral representation of the Euclidean correlator at small momenta. Finally, an analysis of the

flavor structure of the electromagnetic current correlator is performed, where a recent theoretical estimate

of the Wick-disconnected diagram contributions is rederived independently and confirmed.
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I. INTRODUCTION

The hadronic vacuum polarization, that is, the way
hadrons modify the propagation of virtual photons, is of
great importance in precision tests of the Standard Model
of particle physics. It enters, for instance, the running of the
QED coupling constant. Together with the Higgs mass, the
latter can be used to predict the weak mixing angle, which
can also be measured directly, thus providing for a test.
Secondly, it currently represents the dominant uncertainty
in the Standard Model prediction of the anomalous mag-
netic moment of the muon. Given the upcoming experi-
ment at FermiLab that is expected to improve the accuracy
of the direct measurement by a factor of 4, it is important to
reduce the uncertainty on the prediction by a comparable
factor. While the phenomenological determination of the
leading hadronic contribution is still the most accurate
approach, a purely theoretical prediction is both concep-
tually desirable and provides for a completely independent
check. Since the vacuum polarization is inserted into an
integral that is strongly weighted to the low-energy do-
main, calculating the hadronic vacuum polarization has
become an important goal for several lattice QCD collab-
orations performing nonperturbative simulations [1–6].

One of the features of the numerical lattice QCD frame-
work is that the theory is formulated in Euclidean space of
finite extent. Typically the theory is set up on a four-
dimensional torus. The limitation of Euclidean correlation
functions in finite volume to discrete values of the mo-
menta has drawn considerable attention recently [7–9].
Many low-energy quantities defined in infinite volume,
such as the slope of the Adler function at the origin or
the proton radius defined from the slope of its electric form
factor atQ2 ¼ 0, do not have a unique, canonical definition
in finite volume. Instead, different finite-volume represen-
tations can be defined, all of which converge to the desired
infinite-volume quantity. From the point of view of
lattice QCD simulations, a desirable feature of such a

representation is that it converges rapidly to the infinite-
volume quantity. A different representation can, in general,
be obtained by deriving an equivalent formulation of the
infinite-volume quantity, and then carrying it over to the
finite-volume theory.
Even if a new representation provides a definition of

the vacuum polarization or a form factor for a continuous
set of momenta, clearly it only represents progress if the
finite-size effect on the final target quantity is reduced.
Therefore, the merit of a new representation can only be
evaluated once some theoretical understanding of the
finite-size effects is reached.
Here we explore a representation of the hadronic vac-

uum polarization based on the time-momentum represen-
tation of the vector correlator. The starting point is Eq. (8),
which was previously derived in [10]. It suggests a way to
compute the hadronic vacuum polarization for any value of
the virtuality. In this paper we apply the idea in a lattice
QCD calculation with two light quark flavors. From the
appearance of a power of the time coordinate in the inte-
gral, it is manifest that a derivative with respect to the
Euclidean frequency has been taken. With a finite and
periodic time extent T, the function x20 is not uniquely

defined. However, since it is multiplied by a vector corre-
lation function, which falls off exponentially, the ambigu-
ity is parametrically small. How precisely we deal with this
issue is presented in Sec. V.
We address the finite-size effects on our representation

of the Adler function in Sec. IV. We use the operator
product expansion to analyze the finite-size effects at large
Q2, and we use the known connection between the finite-
volume and the infinite-volume spectral function at low
energies to study the finite-size effects at small virtualities.
Even if our analysis does not apply to intermediate dis-
tances, we expect the finite-size effect coming from the
long-distance part of the correlator to be the dominant one.
Our results suggest that the slope of the Adler function at
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the origin is approached from below in the large volume
limit.

An important feature of our method is that it applies
irrespective of the flavor structure of the current. The
method of partially twisted boundary conditions has so far
been limited to isovector quantities (see for instance [6]).
Here we present a lattice calculation of the isovector con-
tribution, which allows us to compare our results with those
obtained by the commonly used momentum-space method
on the same ensemble. The isovector correlator does not
require the calculation of Wick-disconnected diagrams,
whose standard estimators are affected by a large statistical
variance. Recently, a useful estimate of the size of the latter
was derived in chiral perturbation theory [11,12]. Here we
revisit this relation and show that it can be understood in
terms of the higher threshold at which the isosinglet channel
opens compared to the isovector channel.

During the final stages of this work, a preprint by
Feng et al. [9] appeared with which the present paper has
an overlap. The authors of [9] emphasized the attractive
option of accessing the hadronic vacuum polarization at
small momenta with a very similar method. They also
explored the interesting possibility of analytically continu-
ing the vacuum polarization function into the timelike
region below threshold.

The structure of this paper is as follows. Our definitions
are collected in the next section. The finite-volume effects
are analyzed in Sec. IV, with technical details to be found
in the Appendix. The numerical calculation is described in
Sec. V, and the results are given in Sec. VI.

II. DEFINITIONS

In this section we consider QCD in infinite Euclidean
space. The vector current is defined as j�ðxÞ ¼
�c ðxÞ��c ðxÞ, where the Dirac matrices are all hermitian

and satisfy f��; ��g ¼ 2���. The flavor structure of the

current will be discussed in the next section. We use capital
letters for Euclidean four-momenta and lowercase letters
for Minkowskian four-momenta. In Minkowski space
we choose the ‘‘mostly-minus’’ metric convention. In
Euclidean space, the natural object is the polarization
tensor

���ðQÞ �
Z

d4x eiQ�x hj�ðxÞj�ð0Þi; (1)

and O(4) invariance and current conservation imply the
tensor structure

���ðQÞ ¼ ðQ�Q� � ���Q
2Þ�ðQ2Þ: (2)

With these conventions, the spectral function

�ðq2Þ � � 1

�
Im�ðQ2ÞjQ0¼�iq0þ�;Q¼q (3)

is non-negative for a flavor-diagonal correlator. For the
electromagnetic current, it is related to the R ratio via

�ðsÞ ¼ RðsÞ
12�2

; RðsÞ � �ðeþe� ! hadronsÞ
4�	ðsÞ2=ð3sÞ : (4)

The denominator is the tree-level cross section
�ðeþe� ! �þ��Þ in the limit s � m2

�, and we have

neglected QED corrections.
Relation (3) can be inverted. The Euclidean correlator is

recovered through a dispersion relation,

�̂ðQ2Þ
4�2

� �ðQ2Þ ��ð0Þ ¼ Q2
Z 1

0
ds

�ðsÞ
sðsþQ2Þ : (5)

Finally we introduce the mixed-representation Euclidean
correlator,

Gðx0Þ�k‘ ¼ �
Z

d3x hjkðxÞj‘ð0Þi; (6)

which has the spectral representation [10]

Gðx0Þ ¼
Z 1

0
d!!2�ð!2Þe�!jx0j; x0 � 0: (7)

The vacuum polarization can be expressed as an integral
over Gðx0Þ [10],

�ðQ2
0Þ ��ð0Þ ¼

Z 1

0
dx0Gðx0Þ

�
x20 �

4

Q2
0

sin 2

�
1

2
Q0x0

��
:

(8)

From here, the Adler function is given by

DðQ2
0Þ � 12�2Q2

0

d�

dQ2
0

¼ 12�2

Q2
0

Z 1

0
dx0Gðx0Þð2� 2 cos ðQ0x0Þ

�Q0x0 sin ðQ0x0ÞÞ: (9)

The slope of the Adler function at the origin is of particular
interest,

D0ð0Þ ¼ lim
Q2!0

DðQ2Þ
Q2

¼ �2
Z 1

0
dx0 x

4
0 Gðx0Þ: (10)

For instance, in the case of the electromagnetic current, the
hadronic contribution aHLO‘ to the anomalous magnetic

moment of a lepton is given, in the limit of vanishing
lepton mass, by [10]

lim
m‘!0

aHLO‘

m2
‘

¼ 1

9

�
	

�

�
2
D0ð0Þ: (11)

III. ON THE FLAVOR STRUCTURE
IN THE Nf ¼ 2 THEORY

For simplicity we consider isospin-symmetric two-
flavor QCD. The electromagnetic current is then given by
j�� ¼ j�� þ 1

3 j
!
� with
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j���1

2
ð �u��u� �d��dÞ; j!��1

2
ð �u��uþ �d��dÞ: (12)

For each of these currents f ¼ �, !, �, we define polar-

ization tensors �ff0
�� as in Eq. (1). Obviously, only two are

linearly independent, and in particular

���
��ðqÞ ¼ �

��
��ðqÞ þ 1

9
�!!

�� ðqÞ: (13)

A very interesting relation was recently obtained [11]
between the contributions of the Wick-connected diagrams
and the Wick-disconnected diagrams in���

��ðqÞ, similar to
Eq. (19) below. The derivation was based on an NLO
calculation in chiral perturbation theory (ChPT), and ex-
tended to include the strange quark [12]. Here we rederive
the result in a different way without relying on ChPT. In
terms of Wick contractions, the Euclidean correlators are
given by

�
��
��ðqÞ ¼ 1

2
�wc

��ðqÞ; (14)

�!!
�� ðqÞ ¼ 1

2
�wc

��ðqÞ þ�wd
��ðqÞ; (15)

���
��ðqÞ ¼ 5

9
�wc

��ðqÞ þ 1

9
�wd

��ðqÞ; (16)

where ‘‘wc’’ and ‘‘wd’’ stand for Wick-connected and
Wick-disconnected diagrams, respectively.

By linearity, spectral functions corresponding to �wc
��

and �wd
�� can be defined as in Eqs. (2) and (3) although

�wdðsÞ is then not necessarily positive definite. In the
isovector channel, the threshold opens at

ffiffiffi
s

p ¼ 2m�, there-
fore by Eq. (14), �wcðsÞ becomes nonzero at the same
center-of-mass energy. In the isosinglet channel it opens
at

ffiffiffi
s

p ¼ 3m�,

�!!ðsÞ ¼ 0; 0<
ffiffiffi
s

p
< 3m�: (17)

In terms of the Wick contractions, this means, from
Eq. (15)

�wdðsÞ ¼ � 1

2
�wcðsÞ; ffiffiffi

s
p

< 3m�: (18)

In particular, from Eq. (16), the contribution of the
Wick-disconnected contribution to the Wick-connected
contribution in the electromagnetic current spectral
function is given by

1
9�

wdðsÞ
5
9�

wcðsÞ ¼ � 1

10
; 2m� <

ffiffiffi
s

p
< 3m�: (19)

This result is exact in two-flavor QCD with isospin sym-
metry. The derivation shows that it stems essentially from
the higher energy threshold at which it becomes possible to
produce an isosinglet state. Because experimental eþe�
data shows that the three-pion channel opens rather slowly

(the ! resonance is very narrow), relation (19) can be
expected to be a good approximation at least up to
700 MeV. For instance the contribution to the R ratio of
the �þ���0 channel to the RðsÞ ratio is of order 0.01 atffiffiffi
s

p ¼ 700 MeV [13], while the RðsÞ ratio itself lies
between 4.0 and 5.0 at the same center-of-mass energy.
The smallness of the ratio (19) stems mainly from the small
charge factor multiplying the Wick-disconnected contribu-
tion in (16).
The relation (18) between the Wick-disconnected and

the Wick-connected contribution can be translated back
into the Euclidean correlator via the dispersion relation (5).
A stronger statement can be made in the time-momentum
representation (6), since the low-energy part of the spectral
function dominates exponentially at large Euclidean time
separations. For x0 ! 1 we have

Gwdðx0Þ ¼ � 1

2
Gwcðx0Þð1þ Oðe�m�x0ÞÞ: (20)

Unlike at short distances, where Gwd=Gwc is of order 	3
s

[14], the Wick-disconnected diagram is thus of the same
order as the Wick-connected diagram at long distances.
The argument just presented can be made for other

symmetry channels and can be extended to include the
other quark flavors.

IV. FINITE-SIZE EFFECTS ON
THE ADLER FUNCTION

In this section we investigate the finite-size effects on the
Adler function specifically for the representation (9),
although the methods used are more generally applicable.

A. Large momenta

We denote by ���ðQ;L; TÞ the polarization tensor on

an T � L3 torus to distinguish it from its infinite-volume
counterpart ���ðQÞ, and by ����ðQ;L; TÞ �
���ðQ;L; TÞ ����ðQÞ the finite-size effect (we will

use the same notational convention for other quantities).
Although the polarization tensor itself contains a logarith-
mic ultraviolet divergence, its finite-size effect is ultravio-
let finite. When discussing finite-size effects, the specific
finite-volume representation used must be specified [10].
Consider then the Fourier transform of Gðx0Þ. At large
frequency, its finite-size effect is given by the operator
product expansion,

1

3
��kkððQ0; 0Þ; L; TÞ

¼ 1

Q2
0

X4
i¼1

CiðQ2
0; �

2ÞðhOðiÞ
4 ð�ÞiðL;TÞ � hOðiÞ

4 ð�Þi1Þ

þ Oð1=Q4
0Þ: (21)

Dimension-four operators that contribute are the Lorentz

scalar, renormalization group invariant operators 
ðgÞ
2g G2
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and m �c c , but also the (00) component of the two-flavor
singlet, twist-two, dimension-four operators familiar from
deep inelastic scattering. TheQ2 dependence of theWilson
coefficients CiðQ2; �2Þ is logarithmic. The coefficients of
the Lorentz scalar operators are known to next-to-leading
order [15], while the coefficients of the traceless tensor
operators are known at leading order [16]. The latter can be
taken from the calculation [16] performed for thermal field
theory in infinite volume, since on the T � L3 torus, the
expectation value of a traceless rank-two tensor operator
only has one independent nonvanishing component in spite
of the lack of rotational invariance in a time slice.

We thus see that the relative volume effect on the polar-
ization tensor is suppressed by a factor Q4. Furthermore,
the finite-size effect on the expectation value of a

local operator OðiÞ
4 ð�Þ appearing in Eq. (21) is of order

e�m�L for sufficiently large L. This fact is familiar from
finite-temperature QCD. The leading finite-size effect
is due to a one-particle state, so that the prefactor of
e�m�L can be related to a pion matrix element [17].

The lesson is that for momenta sufficiently large that the
Fourier-transformed product of currents can be represented
by a local operator, the asymptotic finite-size effects on the
polarization tensor are of order e�m�L. This statement
about the finite-size effect on ��� then carries over to

the Adler function at large Q2.

B. Long-distance contribution to D0ð0Þ
One of the most important observables is the slopeD0ð0Þ

of the Adler function at Q2 ¼ 0 (which up to a numerical
factor coincides with the slope of the vacuum polarization).
It determines the leading hadronic contribution to the
anomalous magnetic moment of the electron [10], and a
large fraction of the muon’s anomalous magnetic moment
[18]. It is theoretically attractive, because it involves no
energy scale external to QCD. In the representation given
in Eq. (10), the dominant contribution comes from
Euclidean time separations x0 > 1 fm. We, therefore, find
it useful to define

D0
t � �2

Z 1

t
dx0 x

4
0 Gðx0Þ; (22)

so that D0
0 ¼ D0ð0Þ. In the infinite-volume theory, the

contribution of the j�þ��iout states with an energy up
to and including the � mass completely dominates this
contribution. Given the argument made above on the
finite-size effects on the short-distance contribution to
the Adler function, and the form of the finite-size effects
in free field theory (see Sec. A 3), we expect the finite-
size effects on D0ð0Þ to be dominated by the finite-size
effects on D0

t for t ¼ 1 fm. We are therefore led to discuss
the latter. We first consider the case where the pion mass
is set to its physical value. By assuming a specific model
for the timelike pion form factor F�ð!Þ, we extend our

analysis to the pion mass at which we later present
numerical lattice QCD results.
If a temporal extent T ¼ 2L is chosen, as is common

practice, the dominant finite-size effect comes from the
finite spatial box extent. In the following theoretical analy-
sis, we therefore set T to infinity. How to proceed in
practice where T is finite is discussed in Sec. VI.
One source of finite-size effects are the polarization

effects on single-particle states. They have been analyzed
in detail in the past [19]. The upshot is that the properties of
these states are only affected by corrections that are ex-
ponential in the linear torus size. In the following, we will
neglect these finite-size corrections. In lattice QCD calcu-
lations, this assumption will have to be checked explicitly.
In [10], an analysis of the finite-size effects onGðx0Þwas

carried out using the relation between the finite-volume
spectral function and the infinite-volume spectral function
[20,21]. This relation is only firmly established up to the
inelastic threshold of ! ¼ 4m�. Here we will be less
rigorous and assume that even somewhat above this thresh-
old, the relation remains a good approximation. The main
justification for this assumption is that the � decays almost
exclusively into two pions. We also neglect possible con-
tributions from �� scattering in the ‘ ¼ 3 and higher
partial waves.
Before using the full machinery of Lüscher’s finite-

volume formalism, it is worth understanding the qualitative
behavior of �D0

t in two simple, opposite limits. In one
limit, we have noninteracting pions, F�ð!Þ ¼ 1 and Gðx0Þ
can be computed exactly both in finite and in infinite
volume. The ratio of the finite-volume to the infinite-
volume correlation function is diplayed in Fig. 1. Clearly
the finite-size effects are large for a typical value of
m�L ¼ 4.

 0.85

 0.9

 0.95

 1

 1  1.5  2  2.5  3  3.5

t [fm]

Gρ(t,L) / Gρ(t) :  ππ contribution

GS: mπ=140MeV, mπL=4
GS: mπ=140MeV, mπL=3
GS: mπ=324MeV, mπL=4
GS: mπ=324MeV, mπL=3

free, mπ=140MeV, mπL=4

FIG. 1 (color online). Relative finite-size effect on the
Euclidean correlator (6) for a pion form factor given by the
Gounaris-Sakurai (GS) parametrization [once with parameters
ðm�¼140MeV;m�¼773MeV;��¼130MeVÞ and once with

parameters ðm�¼324MeV;m�¼894MeV;��¼61MeVÞ], and
for free pions. For details see Appendix A.
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In the other limit, the pion interactions are such that the
vector current only couples to a stable � meson, �ðsÞ ¼
F2
��ðs�m2

�Þ. This limit correspond to the expected behav-

ior at very large number of colorsNc. In this case,Gðx0; LÞ ¼
1
2F

2
�m�e

�m�x0 . The only finite-volume effect in this case

stems from the finite-size effects on m� and F�, which are

exponentially small in the volume. Thus in this limit the
finite-size effects are expected to be much more benign.

Experimental eþe� data shows that QCD lies some-
where in between these two extremes, but is somewhat
closer to the narrow resonance limit. Using the Gounaris-
Sakurai parametrization of the timelike pion form factor
[22] at the physical pion mass, we have calculated the eight
lowest energy eigenstates for m�L ¼ 3 and 4 and their
coupling to the isospin current using the results of [20,21]
(see Table I). For details of the calculation, we refer the
reader to Appendix A. Together these states saturate the
correlator beyond 1 fm to a high degree of accuracy (see
the last column of Table I). The ratio Gðx0; LÞ=Gðx0Þ is
displayed in Fig. 1. Although the relative finite-size effect
grows rapidly at long distances, for m�L ¼ 4 it is of
acceptable size at the distances which dominate D0ð0Þ
(compare with Fig. 4). Finally, Table II gives the finite-
size effect on D0

t for t ¼ 1 fm. With m�L ¼ 4, the effect
amounts to 7%, which is a larger effect than is observed for
many mesonic observables.

We also note that at the heavier quark masses currently
studied in the simulations, the � is narrower and the finite-
size effect for the same value ofm�L is therefore smaller in
the Euclidean time range where the � dominates. This
point is illustrated in Fig. 1 for m� ¼ 324 MeV, where
we used the Gounaris-Sakurai parametrization with the
parameters m� ¼ 894 MeV and �� ¼ 61 MeV. The latter

value is obtained by assuming that �� / k3�=m
2
� [20],

where k� is the momentum of a pion in the decay � ! ��.

V. NUMERICAL SETUP

In this and the following sections, we describe a numeri-
cal implementation of the representation of the vacuum
polarization and Adler function given in Eqs. (8) and (9).
In particular, we show how the integral over the time
coordinate can be treated without introducing unnecessa-
rily large finite time-extent effects. We restrict ourselves
to one value of the light quark mass and one lattice
spacing for which we can directly compare the results
obtained with the new method to those obtained with the
momentum-space method [23].
All our numerical results were computed on dynamical

gauge configurations with two mass-degenerate quark fla-
vors. The gauge action is the standard Wilson plaquette
action [24], while the fermions were implemented via the
OðaÞ improved Wilson discretization with nonperturba-
tively determined clover coefficient csw [25]. The configu-
rations were generated using the DD-HMC algorithm
[26,27] as implemented in Lüscher’s DD-HMC package
[28] and were made available to us through the coordinated
lattice simulations (CLS) effort [29]. We calculated corre-
lation functions using the same discretization and masses
as in the sea sector on a lattice of size 96� 483 (labeled F6
in [30]) with a lattice spacing of a ¼ 0:0631ð21Þ fm [31]
and a pion mass of m� ¼ 324 MeV, so that m�L ¼ 5:0.
Regarding the flavor structure, we restrict ourselves to

the isovector current j��, normalized as in Eq. (12). On the
lattice we implement the correlation function (6) as a
mixed correlator between the local and the conserved
current,

Gbareðx0; g0Þ�kl ¼ �a3
X
x

hJckðxÞJl‘ð0Þi; (23)

where

Jl�ðxÞ ¼ �qðxÞ��qðxÞ; (24)

Jc�ðxÞ ¼ 1

2
ð �qðxþ a�̂Þð1þ ��ÞUy

�ðxÞqðxÞ
� �qðxÞð1� ��ÞU�ðxÞqðxþ a�̂ÞÞ: (25)

We have renormalized the vector correlator using

Gðx0Þ ¼ ZVðg0ÞGbareðx0; g0Þ (26)

with the nonperturbative value of ZV ¼ 0:750ð5Þ [32]. We
have not includedOðaÞ contributions from the improvement
term proportional to the derivative of the antisymmetric

TABLE I. The first eight energy levels and matrix elements
on a torus of linear size L ¼ 4=m� for the Gounaris-Sakurai
parametrization of F�ð!Þ at the physical pion mass

(see Appendix A; ! � 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

� þ k2
p

). The ‘‘Lellouch-Lüscher’’’
factor LðkÞ and the pion form factor at the corresponding
energies are given in columns 3 and 4. The last column gives,
for the nth state, the sum of the contributions of the n first
states to Gðt; LÞ for t ¼ 1 fm and m�L ¼ 4, normalized by the
infinite-volume correlator GðtÞ.
k=m� jAj2=m3

� LðkÞ jF�ð!Þj2 G�nðt;LÞ
GðtÞ

1.548 0.0737 6.606 3.507 0.092

2.133 0.4702 11.53 12.85 0.378

2.559 1.1333 28.95 42.52 0.772

2.831 0.7509 23.09 16.21 0.954

3.171 0.1124 62.41 4.558 0.971

3.581 0.1452 25.13 1.615 0.984

3.912 0.1335 19.36 0.867 0.9916

4.459 0.0192 91.10 0.391 0.9921

TABLE II. The relative finite-size effect D0
tðLÞ=D0

t for t ¼
1 fm and m� ¼ 140 MeV [see Eqs. (22) and (9)].

m�L GS Free pions

3 0.853 0.429

4 0.927 0.671

5 0.961 0.828
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tensor operator [33,34]. A quark-mass dependent improve-
ment term of the form ð1þ bVðg0ÞamqÞ [34] was also

neglected. These contributions should eventually be
included to ensure a smooth scaling behavior as the con-
tinuum limit is taken. Here, our primary goal is to test the
method on a single ensemble.

VI. NUMERICAL RESULTS

We begin by analyzing results for the correlator Gðx0Þ,
and then show how the latter can be used to compute the
subtracted vacuum polarization and the Adler function.

A. Correlator data

In Fig. 2 we show the local-conserved vector correlation
function. One virtue of this discretization is that in infinite
volume it leads to the propertyZ 1

�1
dx0Gðx0Þ ¼ 0: (27)

The correlator must drop to negative values for very small
time separations in order to fulfill the above identity.
Indeed we observe this negative contact term for very small
time separations jx0j � a, and Eq. (27) is satisfied by our
data.

The goal is to compute �̂ðQ2Þ and its derivative from the
lattice correlation function using the continuum relation
Eq. (8). To achieve this one has to carry out the integral
over all time separations. On the lattice this is not
straightforward, since only a finite number of points are
available. In addition, the signal deteriorates rapidly at
large time separations. It is known however that the corre-
lation function decays exponentially for large times.
Therefore, it is natural to extrapolate the local-conserved
correlator with an exponential that decays with the lowest
lying ‘‘mass’’ [35]. This mass can be fixed by fitting the
lattice data to an ansatz of the form

GAnsatzðx0Þ ¼
X2
n¼1

jAnj2e�mnx0 ; (28)

for x0 sufficiently below T=2 that the ‘‘backward’’ prop-
agating states make a negligible contribution. To ensure a
reliable determination of this mass, we have extracted it
from a separate correlation function, computed on the same
configurations using smeared operators at the source
and sink [31]. This correlator has greater overlap with
the ground state and yields very precise data. The mass
parameter determined in this way is then carried over to
the local-conserved correlator and the corresponding
exponential is smoothly connected to the lattice data by
fitting jA1j2 to the data around x0 ¼ T=4.

The resulting correlation function is shown as the red-
shaded band in Fig. 2, where the error estimates were
obtained via a jackknife procedure. In the transition region
from the data dominated to the extrapolation-dominated

result, the errors increase for a small number of time steps
on the whole; however, reasonably small errors are
achieved in this way.

B. Computing �̂ðQ2Þ and its slope

In order to obtain �̂ðQ2Þ given the local-conserved
correlation function of Fig. 2, one has to compute its
convolution with the kernel

Kðx0; Q0Þ ¼ x20 �
4sin 2ðQ0x0=2Þ

Q2
0

: (29)

Using Eq. (8), derivatives are directly accessible [see for
instance Eq. (10)].

In Fig. 3 we show the result for �̂ðQ2Þ and the slope

d�̂ðQ2Þ=dQ2, as computed from the red-shaded correlator
in Fig. 2. Here all errors were computed using a jackknife
method on a total of 392 measurements. Turning first to

�̂ðQ2Þ, for comparison we show the result obtained on the
same lattice using the standard method [23] with the same
local-conserved discretization and comparable statistics.
The latter method consists in employing Eqs. (1) and (2)
to obtain first �ðQ2Þ and then determining �ð0Þ via ex-
trapolation. In this approach, the number of data points at
small Q2 was significantly increased using twisted-
boundary conditions [36–38]. Still, the extrapolation
�ðQ2 ! 0Þ is difficult to constrain as the signal deterio-
rates in this limit. The results obtained via Eq. (8) do not
suffer directly from these issues, as the physically relevant

quantity, �̂ðQ2Þ, is computed directly.
Clearly the results obtained using our new method

are very well compatible with the standard method. It
should be noted that the larger errors for large Q2 only
play a small role when computing aHLO� , as the large Q2

FIG. 2 (color online). Local-conserved and smeared-smeared
isovector vector correlation functions. The red-shaded area
shows the correlator entering Eq. (8) for the computation of
�̂ðQ2Þ; the blue shaded area correlator is used to fit the lowest
lying mass for extrapolation to all time beyond x0 ’ T=4.
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region is highly suppressed in the relevant integral. Using

Eq. (9) we also display the slope d�̂ðQ2Þ=dQ2 as a blue
shaded band in Fig. 3. Throughout the result exhibits small
statistical errors and the intercept at Q2 ¼ 0 can be deter-

mined relatively precisely. We find D0ð0Þ ¼ 3�̂0ð0Þ ¼
5:8ð5Þ GeV�2.

The factor x40 in the integral representation Eq. (10) of

the derivative of the Adler function at the origin suppresses
the small time region of the correlator. The impact of each
x0 region can be visualized by displaying the integrand, see
Fig. 4. Here we also show the results using three different
values of the transition point between the data and the
extrapolation. This gives us a handle to study the effect
of the onset of the fitted pure exponential described above.
The effect is seen to lie within the error band, while the

impact on the resulting �̂ðQ2Þ and d�̂ðQ2Þ=dQ2 was
checked and found to be negligible. Examining the central
value curve we observe that the dominant contribution to
the integrand is in fact given by the region 0:5 fm � x0 �
1:5 fm. Consequently, to precisely pin down D0ð0Þ and the
closely related aHLO� , very accurate lattice data in this

region are desirable.
In Fig. 5, where we show the Adler function and the

vacuum polarization as a function of the virtuality, we
follow the approach [4,10] of rescaling the horizontal
axis using the vector meson mass. In this way one hopes
to achieve an approximate scaling at small Q2, in the sense
that the curves corresponding to different quark masses
approximately lie on top of each other. We compare our
result to a phenomenological model (Eq. (93) of [10]) for
the isovector channel, which predicts in particular D0ð0Þ ¼
9:81ð30Þ GeV�2. It is an approximate parametrization of
the data compiled by the Particle Data Group [39]. We

estimate its overall uncertainty to be on the order of
3%–4%. The comparison is shown in Fig. 5 for the low

Q2 region of �̂ðQ2Þ and the Adler function DðQ2Þ. Even
after the rescaling, the lattice data lie visibly below
the phenomenological curve. A plausible origin for
the remaining difference is the spectral density below the
� mass, since the integrand to obtain D0ð0Þ is R1ðsÞ=s2,
where R1 is the R ratio restricted to isovector final hadronic
states.

FIG. 3 (color online). The subtracted vacuum polarization
�̂ðQ2Þ and d�̂ðQ2Þ=dQ2 computed from the red-shaded corre-
lator in Fig. 2. The data shown in black were obtained using the
momentum-space method on the same ensemble with compa-
rable statistics [23].

FIG. 4 (color online). The integrand needed to compute the
slope D0ð0Þ of the Adler function at Q2 ¼ 0. The bands of
different color are the results obtained by replacing the data by
a pure exponential falloff around the value x0 ¼ cut ½fm�. The
area under this curve (divided by 3� ð0:197Þ2) is equal to the
intercept of the blue curve in Fig. 3.

FIG. 5 (color online). The functions �̂ðQ2Þ and DðQ2Þ
from our analysis and a phenomenological model [10].
The horizontal axis has been rescaled by the ground-state mass
m1 ¼ 894ð2Þ MeV on the lattice and the physical � meson mass
(770 MeV), respectively. For reference the free result DðQ2Þ ¼ 3

2

is shown as a dotted line.

NEW REPRESENTATION OF THE ADLER FUNCTION FOR . . . PHYSICAL REVIEW D 88, 054502 (2013)

054502-7



VII. CONCLUSION

We have tested a new representation of the vacuum
polarization and the Adler function DðQ2Þ, which can be
used in lattice QCD (see also [9]). For the isovector con-
tribution, we have verified that it agrees well with the
widely used method in four-momentum space. In the latter
case, we have data [23] generated with twisted boundary
conditions, giving access to a discrete but dense set of
virtualities. By employing a representation that allows for
continuous values of the momenta, it is no more difficult to
extract the Adler function than the subtracted vacuum
polarization. The former has the advantage of being local
in Q2, which facilitates the comparison with perturbation
theory at large Q2.

A theoretical analysis of the finite-size effects associated
with D0ð0Þ suggests that the latter can be brought down to
about 5% at the physical pion mass for spatial volumes
m�L between 4 and 5. The infinite-volume quantity is
approached from below. At fixedm�L the finite-size effect
depends strongly on the width of the � meson, implying
that it rapidly becomes a more critical issue when the pion
mass is lowered towards its physical value. If the masses
and couplings of the low-lying vector states can be deter-
mined on the lattice, the bulk of the finite-size effect can be
corrected for [10].

In the near future we plan to combine the extensive set of
data that we have generated with the standard method with
the method presented here to extract the Adler function at
the origin and aHLO� . Subsequently, the calculation of the

Wick-disconnected diagrams can be taken up with our new
representation.

ACKNOWLEDGMENTS

We are grateful to Michele Della Morte and Andreas
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APPENDIX A: FINITE-SIZE EFFECTS ON THE
EUCLIDEAN CORRELATOR

In this appendix we present the details of the calculation
that underlies Tables I and II and Fig. 1. It is based on the
two-pion contribution to the spectral function.

The �� contribution to the spectral function is given by
(see for instance [40])

�ð!2Þ ¼ 1

48�2

�
1� 4m2

�

!2

�3
2jF�ð!Þj2: (A1)

Charge conservation implies that F�ð0Þ ¼ 1. Above the
threshold ! ¼ 2m�, the phase of the pion form factor is

equal to the p-wave pion phase shift, F�ð!Þ ¼
jF�ð!Þjei�11ðkÞ (Watson theorem).

1. Interacting pions

In infinite volume, the Euclidean correlation function is
obtained using Eqs. (7) and (A1). For the finite-volume
correlator, we proceed as follows.
The discrete energy levels in the box and the infinite-

volume phase shifts are related by [20,41]

�11ðkÞ þ�

�
kL

2�

�
¼ n�; n ¼ 1; 2; . . . ; (A2)

! � 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

� þ k2
q

: (A3)

The function �ðzÞ, tabulated in [20], is defined by

tan�ðzÞ ¼ � �3=2z
Z00ð1;z2Þ , where Z00ð1; z2Þ is the analytic

continuation in s of Z00ðs; z2Þ ¼ 1ffiffiffiffiffi
4�

p P
n2Z3

1
ðn2�z2Þs . The

corresponding finite-volume matrix elements for unit-
normalized finite-volume states are given by [21]

jF�ð!Þj2 ¼ LðkÞ 3�!
2

2k5
jAj2; (A4)

LðkÞ � ½z�0ðzÞ�z¼kL
2�
þ k

@�1ðkÞ
@k

: (A5)

The correlation function is then obtained as

Gðx0; LÞ ¼
X
n

jAnj2e�!nx0 : (A6)

We thus only need a realistic model for the timelike pion
form factor, F�ð!Þ.

2. The Gounaris-Sakurai model of F�

The GS parametrization [22] contains two free parame-
ters characterizing the � resonance—m� and ��. Defining

k� via m� ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2� þm2

�

q
, the phase shift is written

k3

!
cot�11ðkÞ ¼ k2hð!Þ � k2�hðm�Þ þ bðk2 � k2�Þ; (A7)

b ¼ � 2

m�

�
2k3�
m���

þ 1

2
m�hðm�Þ þ k2�h

0ðm�Þ
�
; (A8)

hð!Þ ¼ 2

�

k

!
log

!þ 2k

2m�

: (A9)

The form factor is then given by

F�ð!Þ ¼ f0
k3

! ðcot ½�11ðkÞ� � iÞ ; (A10)

FRANCIS et al. PHYSICAL REVIEW D 88, 054502 (2013)

054502-8



f0 ¼ �m2
�

�
� k2�hðm�Þ � b

m2
�

4
: (A11)

By analytic continuation, F�ð!Þ is guaranteed to be unity
at the origin. In all numerical applications, we have set
m� ¼ 139:57, m� ¼ 773, and �� ¼ 130 MeV. These val-

ues were chosen so as to approximately match the 2010
KLOE data [42]. We have not tried to correct for isospin-
breaking effects in the experimental data.

3. Noninteracting pions

We consider here the case of noninteracting pions of
mass m�. The isovector current takes the form

ja�ðxÞ ¼ �abc�bðxÞ@��cðxÞ (A12)

for pion fields with a canonically normalized kinetic term.
Then one finds in finite volume, with E2

k ¼ k2 þm2
�,

Gðx0; LÞ ¼ 1

L3

X
k

k2z
e�2Ekjx0j

E2
k

: (A13)

To evaluate the finite-volume correlator at large times,
Eq. (A13) is an adequate representation. At small times,
however, it is more efficient to use a different representa-
tion obtained using the Poisson formula,

Gðx0; LÞ ¼ m3
�

6�2

X
n

Z 1

0
dx

x4

x2 þ 1

� sin ðm�LjnjxÞ
m�Ljnjx e�2m�jx0j

ffiffiffiffiffiffiffiffi
x2þ1

p
: (A14)

The n ¼ 0 term coincides with the infinite-volume result,
which as a consistency check can also be obtained using
Eqs. (7) and (A1) by setting F�ð!Þ ¼ 1. In a saddle point
approximation, we have

Gðx0; LÞ �Gðx0Þ ’
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m�

�3jx0j5
s

e�2m�jx0j

48

X
n�0

�
3�m�L

2n2

2jx0j
�

� exp

�
�m�L

2n2

4jx0j
�
: (A15)

In this form it is clear that for fixed L, the expansion
converges rapidly as long as jx0j is substantially smaller
than m�L

2. Conversely, the finite size effect is exponential

for any fixed x0, but only once L is a multiple of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijx0j=m�

p
.

Numerically, if we require that the absolute value of the
exponent in the last exponential be at least 4, we get

xmax
0 ½fm� ’ 197

m�½MeV� ðm�L
4 Þ2. We also note that the finite-

size effect is negative for large L.

[1] T. Blum, Phys. Rev. Lett. 91, 052001 (2003).
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[26] M. Lüscher, Comput. Phys. Commun. 165, 199 (2005).
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