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In a long distance Lagrangian approach to the low lying meson phenomenology, we present and discuss

the most general spin zero multiquark interaction vertices of nonderivative type which include a set of

effective interactions proportional to the current quark masses, breaking explicitly the chiral SUð3ÞL �
SUð3ÞR and UAð1Þ symmetries. These vertices are of the same order in Nc, counting as the ’t Hooft flavor

determinant interaction and the eight quark interactions which extend the original four quark interaction

Lagrangian, leading in Nc, of Nambu and Jona-Lasinio. The Nc assignments match the counting rules

based on arguments set by the scale of spontaneous chiral symmetry breaking. With path-integral

bosonization techniques which appropriately take into account the quark mass differences, we derive

the mesonic Lagrangian up to three-point mesonic vertices. We demonstrate that explicit symmetry

breaking effects in interactions are essential to obtain the correct empirical ordering and magnitude of the

splitting of certain states such as mK <m� for the pseudoscalars and m�0
<ma0 �mf0 in the scalar

sector, and to achieve total agreement with the empirical low lying meson mass spectra. With all

parameters of the model fixed by the spectra, we analyze further a bulk of two-body decays at the tree

level of the bosonic Lagrangian: the strong decays of the scalars � ! ��, f0ð980Þ ! ��, �ð800Þ ! �K,

and a0ð980Þ ! ��, as well as the two photon decays of a0ð980Þ, f0ð980Þ, and � mesons, and the

anomalous decays of the pseudoscalars � ! ��, � ! ��, and �0 ! ��. Our results for the strong

decays are within the current expectations and the pseudoscalar radiative decays are in very good

agreement with data. The radiative decays of the scalars are smaller than the observed values for the

f0ð980Þ and the �, but reasonable for the a0. A detailed discussion accompanies all the results.
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I. INTRODUCTION

A long history of applying the Nambu–Jona-Lasinio
(NJL) model in hadron physics shows the importance of
the concept of effective multiquark interactions for model-
ing QCD at low energies. Originally formulated in terms of
the �5 gauge invariant nonlinear four-fermion coupling
[1,2], the model has been extended to the realistic three
flavor and color case with Uð1ÞA breaking six-quark
’t Hooft interactions [3–17] and an appropriate set of
eight-quark interactions [18]. The last ones complete the
number of vertices which are important in four dimensions
for dynamical SUð3ÞL � SUð3ÞR chiral symmetry breaking
[19,20].

The explicit breaking of chiral symmetry in the NJL
model is described by introducing the standard light quark
mass term of the QCD Lagrangian (light means consisting
of u, d, and s quarks), e.g., [21,22]. The current quark mass
dependence is of importance for several reasons, in par-
ticular for the phenomenological description of meson
spectra and meson-meson interactions, and for the critical
point search in hot and dense hadronic matter, where it has
a strong impact on the phase diagram [23]. The values of
the current quark masses are determined in the Higgs

sector of the standard model. In this regard they are foreign
to QCD and, at an effective description, can be included
through the external sources, interacting with the originally
massless quark fields. This is why the explicit chiral
symmetry breaking (ChSB) by the standard mass term of
the free Lagrangian is only a part of the more complicated
picture arising in effective models beyond leading
order [24]. Chiral perturbation theory [25–28] gives a
well-known example of a self-consistent accounting of
the mass terms, order by order, in an expansion in the
masses themselves. In fact, extended NJL-type models
should not be an exception from this rule. If one considers
multiquark effective vertices, to the extent that 1=Nc

suppressed ’t Hooft and eight-quark terms are included
in the Lagrangian, certain mass dependent multiquark
interactions must be also taken into account.
The aim of the present work is precisely to analyze these

higher order terms in the quark mass expansion. Our
consideration proceeds along the following steps. We start
from the three-flavor NJL-type model with self-interacting
massless quarks. The SUð3ÞL � SUð3ÞR chiral symmetry
of the Lagrangian is known to be dynamically broken to its
SUð3ÞV subgroup at some scale �, with� being one of the
model parameters. There is also explicit symmetry break-
ing due to the bare quark masses �, which are taken to
transform as � ¼ ð3; 3�Þ under SUð3ÞL � SUð3ÞR. Since
the Lagrangian contains, in general, an unlimited number
of nonrenormalizable multiquark and �-quark interactions
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(scaled by some powers of �), we formulate the power
counting rules to classify these vertices in accordance with
their importance for dynamical symmetry breaking. Then
we bosonize the theory by using the path-integral method.
The functional integrals are calculated in the stationary
phase approximation and by using the heat kernel tech-
nique. As a result one obtains the low-energy meson
Lagrangian. At last we fix the parameters of the model
by confronting it with the experimental data. In particular,
we show the ability of the model to describe the spectrum
of the pseudo-Goldstone bosons, including the fine-tuning
of the �-�0 splitting, and the spectrum of the light scalar
mesons: � or f0ð500Þ, �ð800Þ, f0ð980Þ, and a0ð980Þ.

The coupling constants of multiquark vertices, fixed
from mass spectra, enter the expressions for meson decay
amplitudes and lead to a bulk of model predictions. It is
interesting to note that certain multiquark vertices of the
model encode implicitly in the couplings of the tree level
bosonized Lagrangian the signature of q �q and more com-
plex quark structures which are elsewhere obtained by
considering explicitly meson loop corrections, tetraquark
configurations, and so on [29–41]. It seems appropriate,
therefore, to examine the possible physics opportunities
connected with the discovery and study of such multiquark
structures in hadrons. For instance, by calculating the mass
spectra and the strong decays of the scalars, one can realize
which multiquark interactions are most relevant at the
scale of spontaneous ChSB. On the other hand, by analyz-
ing the two photon radiative decays, where a different
scale, associated with the electromagnetic interaction,
comes into play, one can study the possible recombinations
of quarks inside the hadron. We will show, for example,
that the a0ð980Þ meson couples with a large strength of the
multiquark components to the two kaon channel in its
strong decay to two pions, but evidences a dominant q �q
component in its radiative decay. As opposed to this, the �
and f0ð980Þ mesons do not display an enhanced q �q com-
ponent either in their two photon decays or in the strong
decays.

There are several direct motivations for this work. In the
first place, the quark masses are the only parameters of the
QCD Lagrangian which are responsible for the explicit
ChSB, and it is important for the effective theory to trace
this dependence in full detail. In this paper it will be argued
that it is from the point of view of the 1=Nc expansion that
the new quark mass dependent interactions must be
included in the NJL-type Lagrangian already when the
Uð1ÞA breaking ’t Hooft determinantal interaction is con-
sidered. This important point is somehow completely
ignored in the current literature.

A second reason is that nowadays it is getting clear that
the eight-quark interactions, which are almost inessential
for the mesonic spectra in the vacuum, can be important for
the quark matter in a strong magnetic background [42–46].
The simplest next possibility is to add to that picture a set

of new effective quark mass–dependent interactions, dis-
cussed in this work. Such a feature of the quark matter has
not been studied yet, but probably contains interesting
physics.
Further motivation comes from the hadronic matter

studies in a hot and dense environment. It is known that
lattice QCD at finite density suffers from the numerical
sign problem. This is why the phase diagram is notoriously
difficult to compute ab initio, except for the extremely high
density regime where perturbative QCD methods are
applicable. In such circumstances, effective models
designed to shed light on the phase structure of QCD are
valuable, especially if such models are known to be
successful in the description of the hadronic matter at
zero temperature and density. Reasonable modifications
of the NJL model are of special interest in this context
and our work aims also at future applications in that area.
The paper is organized as follows. In Sec. II, the effec-

tive Lagrangian in terms of quark degrees of freedom and
bosonic sources with specific quantum numbers is derived
using a classification scheme which selects all possible
nonderivative vertices according to the symmetries of the
strong interaction and which are relevant at the scale � of
spontaneous chiral symmetry breaking. It is then shown
that this scheme can be equally organized in terms of the
large Nc counting rules, which in turn allow us to attribute
to the couplings of the interactions encoded signatures of
q �q and more complex structures involving four fermions.
We obtain in this section also that a set of interactions leads
to the Lagrangian specific Kaplan-Manohar ambiguity
associated with the current quark masses.
In Sec. III we proceed to bosonize the multiquark

Lagrangian in two steps. First, we introduce in
Sec. III A a set of auxiliary scalar fields. By these new
variables the multiquark interactions can be brought to
the Yukawa form that is quadratic in Fermi fields.
Consequently one obtains a Gauss-type integral over
quarks and a set of integrals over auxiliary fields. The
latter are evaluated by the stationary phase method. We
obtain here the vertices up to the cubic power in the
meson fields, needed for the study of the meson spectra
and of the two-body decays. Then, in section III B, we
integrate over quark fields. The arising quark determinant
of the Dirac operator is a complicated nonlocal functional
of the collective meson fields. We calculate it in the low-
energy regime by using the Schwinger-DeWitt technique,
based on the heat kernel expansion. In this approximation
one can adequately incorporate the effect of different
quark masses contained in the modulus of the one-loop
quark determinant. We derive the kinetic terms of the
collective meson fields, as well as the heat kernel part of
contributions to meson masses and interactions. In the
end of this section we present the complete bosonized
Lagrangian, give the mixing angle conventions used, and
the expressions for the strong decay widths. In Sec. III C
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we obtain the expressions for the radiative widths of the
pseudoscalars and scalars.

In Sec. IV we present the numerical results and
discussion, in IVA for the meson mass spectra and weak
decay constants, in IVB for the strong decays, and in IVC
for the radiative decays.

We conclude in Sec. V with a summary of the main
results.

II. EFFECTIVE MULTIQUARK INTERACTIONS

The chiral quark Lagrangian has predictive power for
the energy range which is of order � ’ 4�f� � 1 GeV
[47]. � characterizes the spontaneous chiral symmetry
breaking scale. Consequently, the effective multiquark
interactions, responsible for this dynamical effect, are sup-
pressed by �, which provides a natural expansion parame-
ter in the chiral effective Lagrangian. The scale above
which these interactions disappear and QCD becomes
perturbative enters the NJL model as an ultraviolet cutoff
for the quark loops. Thus, to build the NJL-type
Lagrangian we have only three elements: the quark fields
q, the scale �, and the external sources �, which generate
explicit symmetry breaking effects—resulting in mass
terms and mass-dependent interactions.

The color quark fields possess definite transformation
properties with respect to the chiral flavor Uð3ÞL �Uð3ÞR
global symmetry of the QCD Lagrangian with three mass-
less quarks (in the large Nc limit). It is convenient to
introduce the Uð3Þ Lie-algebra valued field � ¼ 1

2 ðsa �
ipaÞ�a, where sa ¼ �q�aq, pa ¼ �q�ai�5q, and a ¼
0; 1; . . . ; 8, and �0 ¼

ffiffiffiffiffiffiffiffi
2=3

p � 1, �a being the standard
SUð3Þ Gell-Mann matrices for 1 � a � 8. Under chiral
transformations, q0 ¼ VRqR þ VLqL, where qR ¼ PRq,

qL ¼ PLq, and PR;L ¼ 1
2 ð1� �5Þ. Hence, �0 ¼ VR�V

y
L

and �y0 ¼ VL�
yVy

R . The transformation property of the

source is supposed to be �0 ¼ VR�V
y
L .

Any term of the effective multiquark Lagrangian with-
out derivatives can be written as a certain combination of
fields which is invariant under chiral SUð3ÞR � SUð3ÞL
transformations and conserves C, P, and T discrete
symmetries. These terms have the general form

Li � �gi
�� �

��	; (1)

where �gi are dimensionless coupling constants [starting
from Eq. (21) the dimensional couplings gi ¼ �gi=�

� will
also be considered]. Using dimensional arguments we find
(in four dimensions) �þ 3	� � ¼ 4, with integer values
for �, 	, and �.

We obtain a second restriction by considering only the
vertices which make essential contributions to the gap
equations in the regime of dynamical chiral symmetry
breaking; i.e., we collect only the terms whose contribu-
tions to the effective potential survive at � ! 1. We get
this information by contracting quark lines in Li and

finding that this term contributes to the power counting
of � in the effective potential as ��2	��; i.e., we obtain
that 2	� � � 0 (we used the fact that in four dimensions
each quark loop contributes as �2).
Combining both restrictions we come to the conclusion

that only vertices with

�þ 	 � 4 (2)

must be taken into account in the approximation consid-
ered. On the basis of this inequality, one can conclude that
(i) there are only four classes of vertices which contribute
at � ¼ 0; those are four-, six-, and eight-quark interac-
tions, corresponding to 	 ¼ 2, 3, and 4, respectively
(the 	 ¼ 1 class is forbidden by chiral symmetry re-
quirements); and (ii) there are only six classes of vertices
depending on external sources �. They are � ¼ 1, 	 ¼ 1,
2, 3; � ¼ 2, 	 ¼ 1, 2; and � ¼ 3, 	 ¼ 1.
Let us consider now the structure of multiquark vertices

in detail [48]. The Lagrangian corresponding to the case (i)
is well known:

Lint ¼
�G

�2
trð�y�Þ þ ��

�5
ðdet �þ det�yÞ þ �g1

�8
ðtr�y�Þ2

þ �g2
�8

trð�y��y�Þ: (3)

It contains four dimensionful couplings G, �, g1, g2.
The second group (ii) contains 11 terms:

L� ¼ X10
i¼0

Li; (4)

where

L0 ¼ �trð�y�þ �y�Þ
L1 ¼ � ��1

�
eijkemnl�im�jn�kl þ H:c:

L2 ¼ ��2

�3
eijkemnl�im�jn�kl þ H:c:

L3 ¼ �g3
�6

trð�y��y�Þ þ H:c:

L4 ¼ �g4
�6

trð�y�Þ trð�y�Þ þ H:c:

L5 ¼ �g5
�4

trð�y��y�Þ þ H:c:

L6 ¼ �g6
�4

trð��y��y þ �y��y�Þ

L7 ¼ �g7
�4

ðtr�y�þ H:c:Þ2

L8 ¼ �g8
�4

ðtr�y�� H:c:Þ2

L9 ¼ � �g9
�2

trð�y��y�Þ þ H:c:

L10 ¼ � �g10
�2

trð�y�Þtrð�y�Þ þ H:c:

(5)
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Each term in the Lagrangian L6 is Hermitian by itself, but
because of the parity symmetry of strong interactions,
which transforms one of them into the other, they have a
common coupling �g6.

Some useful insight into the Lagrangian above can
be obtained by considering it from the point of view of
the 1=Nc expansion. Indeed, the number of color compo-
nents of the quark field qi is Nc. Hence, summing
over color indices in� gives a factor of Nc; i.e., one counts
�� Nc.

The cutoff � that gives the right dimensionality to the
multiquark vertices scales as �� N0

c ¼ 1, as a direct
consequence of the gap equations [see Eq. (37) below],
which imply 1� NcG�

2; on the other hand, since the
leading quark contribution to the vacuum energy is known
to be of order Nc, the first term in (3) is estimated as Nc,
and we conclude that G� 1=Nc.

Furthermore, the Uð1ÞA anomaly contribution [the sec-
ond term in (3)] is suppressed by one power of 1=Nc; it
yields �� 1=N3

c .
The last two terms in (3) have the same Nc counting as

the ’t Hooft term. They are of order 1. Indeed, Zweig’s
rule–violating effects are always of order 1=Nc with
respect to the leading order contribution �Nc. This
reasoning helps us to find g1 � 1=N4

c . The term with
g2 � 1=N4

c is also 1=Nc suppressed. It represents the
next-to-leading-order contribution with one internal quark
loop in Nc counting. Such vertex contains the admixture
of the four-quark component �qq �qq to the leading
quark-antiquark structure at Nc ! 1.

Next, all terms in Eq. (5), except L0, are of order 1.
The argument is just the same as before: this part of the
Lagrangian is obtained by successive insertions of the �
field (� counts as �� 1) in place of� fields in the already-
known 1=Nc suppressed vertices. It means that �1, g9,
g10 � 1=Nc; �2, g5, g6, g7, g8 � 1=N2

c ; and g3, g4 � 1=N3
c .

There are two important conclusions here. The first is
that at leading order in 1=Nc only two terms contribute: the

first term of Eq. (3) and the first term of Eq. (5). This
corresponds exactly to the standard NJL model picture,

where mesons are pure �qq states with constituents which

have a nonzero bare mass. At the next-to-leading order,
we have 13 terms additionally. They trace the Zweig’s

rule–violating effects ð�; �1; �2; g1; g4; g7; g8; g10Þ and an

admixture of the four-quark component to the �qq one
ðg2; g3; g5; g6; g9Þ. Only the phenomenology of the last

three terms from Eq. (3) has been studied until now. We
must still understand the role of the other ten terms to be

consistent with the generic 1=Nc expansion of QCD.
The second conclusion is that the Nc counting justifies

the classification of the vertices made above on the basis of
the inequality (2). This is seen as follows: the equivalent
inequality dð�þ 	Þ=2e � 2 is obtained by restricting
the multiquark Lagrangian to terms that do not vanish at
Nc ! 1 [it follows from (1) that 	� d�=2e � 0 by noting

that �gi � 1=Nd�=2e
c , where d�=2e is the nearest integer

greater than or equal to �=2].
The total Lagrangian is the sum

L ¼ �qi�
@
qþ Lint þ L�: (6)

In this SUð3ÞL � SUð3ÞR symmetric chiral Lagrangian
we neglect terms with derivatives in the multiquark inter-
actions, as usually assumed in the NJL model. We follow
this approximation, because the specific questions for
which these terms might be important, e.g., the radial
meson excitations, or the existence of some inhomogene-
ous phases, characterized by a spatially varying order
parameter, are not the goal of this work.
Finally, having all the building blocks conform with the

symmetry pattern of the model, one is now free to choose
the external source �. Putting � ¼ M=2, where

M ¼ diagð
u;
d;
sÞ;
we obtain a consistent set of explicitly breaking chiral
symmetry terms. This leads to the following mass
dependent part of the NJL Lagrangian:

L� ! L
 ¼ � �qmqþX8
i¼2

L0
i; (7)

where the current quark mass matrix m is equal to

m ¼ Mþ ��1

�
ðdetMÞM�1 þ �g9

4�2
M3 þ �g10

4�2
ðtrM2ÞM;

(8)

and

L0
2 ¼

��2

2�3
eijkemnlMim�jn�kl þ H:c:

L0
3 ¼

�g3
2�6

trð�y��yMÞ þ H:c:

L0
4 ¼

�g4
2�6

trð�y�Þtrð�yMÞ þ H:c:

L0
5 ¼

�g5
4�4

trð�yM�yMÞ þ H:c:

L0
6 ¼

�g6
4�4

tr½M2ð��y þ�y�Þ�

L0
7 ¼

�g7
4�4

ðtr�yMþ H:c:Þ2

L0
8 ¼

�g8
4�4

ðtr�yM� H:c:Þ2:

(9)

Let us note that there is a definite freedom in the
definition of the external source �. In fact, the sources

�ðciÞ ¼ �þ c1
�
ðdet�yÞ�ð�y�Þ�1 þ c2

�2
��y�

þ c3
�2

trð�y�Þ�; (10)
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with three independent constants ci, have the same sym-
metry transformation property as �. Therefore, we could

have used �ðciÞ everywhere that we used �. As a result, we
would come to the same Lagrangian with the following
redefinitions of couplings:

��1! ��0
1¼ ��1þc1

2
; �g5! �g05¼ �g5� ��2c1;

�g7! �g07¼ �g7þ ��2

2
c1; �g8! �g08¼ �g8þ ��2

2
c1;

�g9! �g09¼ �g9þc2�2 ��1c1; �g10! �g010¼ �g10þc3þ2 ��1c1:

(11)

Since ci are arbitrary parameters, this corresponds to a
continuous family of equivalent Lagrangians. This family
reflects the known Kaplan-Manohar ambiguity [49–52] in
the definition of the quark mass, which means that several
different parameter sets (11) may be used to represent the
data. In particular, without loss of generality we can use
the reparametrization freedom to obtain the set with
��0
1 ¼ �g09 ¼ �g010 ¼ 0.
The effective multiquark Lagrangian can be written

now as

L ¼ �qði�
@
 �mÞqþ Lint þ
X8
i¼2

L0
i: (12)

It contains 18 parameters: the scale �; three parameters
which are responsible for explicit chiral symmetry
breaking 
u, 
d, 
s; and 14 interaction couplings
�G; ��; ��1; ��2; �g1; . . . ; �g10. Three of them, ��1, �g9, �g10, con-
tribute to the current quark massesm. Seven more describe
the strength of multiquark interactions with explicit sym-
metry breaking effects. These vertices contain new details
of the quark dynamics which have not been studied yet in
any NJL-type models. We shall now see how important
they are.

III. BOSONIZATION: MESON MASSES
AND DECAYS

A. Stationary phase contribution

The model can be solved by path-integral bosonization
of the quark Lagrangian (12). Indeed, following [7] we
may equivalently introduce auxiliary fields sa ¼ �q�aq,
pa ¼ �qi�5�aq, and physical scalar and pseudoscalar fields
� ¼ �a�a, � ¼ �a�a. In these variables, the Lagrangian
is a bilinear form in quark fields (once the replacement has
been done the quarks can be integrated out, giving us the
kinetic terms for the physical fields � and �)

L¼ �qði�
@
 ��� i�5�ÞqþLaux;

Laux ¼ sa�a þpa�a � sama þLintðs;pÞ þ
X8
i¼2

L0
iðs;p;
Þ:

(13)

It is clear that after the elimination of the fields �, � by
means of their classical equations of motion, one can
rewrite this Lagrangian in its original form (12). The
term bilinear in the quark fields in (13) will be integrated
out using the heat kernel technique in the next subsection.
The remaining higher order quark interactions collected in
Laux will be integrated in the stationary phase approxima-
tion (SPA). In terms of auxiliary bosonic variables, one has

Lintðs; pÞ ¼ L4q þ L6q þ Lð1Þ
8q þ Lð2Þ

8q ;

L4qðs; pÞ ¼
�G

2�2
ðs2a þ p2

aÞ;

L6qðs; pÞ ¼ ��

4�5
Aabcsaðsbsc � 3pbpcÞ;

Lð1Þ
8q ðs; pÞ ¼

�g1
4�8

ðs2a þ p2
aÞ2;

Lð2Þ
8q ðs; pÞ ¼

�g2
8�8

½dabedcdeðsasb þ papbÞðscsd þ pcpdÞ
þ 4fabefcdesascpbpd�; (14)

and the quark mass–dependent part is as follows:

L0
2¼

3 ��2

2�3
Aabc
aðsbsc�pbpcÞ;

L0
3¼

�g3
4�6


a½dabedcdesbðscsdþpcpdÞ�2fabefcdepbpcsd�;

L0
4¼

�g4
2�6


bsbðs2aþp2
aÞ;

L0
5¼

�g5
4�4


b
dðdabedcde�fabefcdeÞðsasc�papcÞ;

L0
6¼

�g6
4�4


a
bdabedcdeðscsdþpcpdÞ;

L0
7¼

�g7
�4

ð
asaÞ2; L0
8¼� �g8

�4
ð
apaÞ2; (15)

where

Aabc ¼ 1

3!
eijkemnlð�aÞimð�bÞjnð�cÞkl; (16)

and the Uð3Þ antisymmetric fabc and symmetric dabc
constants are standard.
Our final goal is to clarify the phenomenological role of

the mass-dependent terms described by the Lagrangian
densities of Eq. (15). We can gain some understanding of
this by considering the low-energy meson dynamics which
follows from our Lagrangian. For that we must exclude
quark degrees of freedom in (13), e.g., by integrating them
out from the corresponding generating functional. The
standard Gaussian path integral leads us to the fermion
determinant, which we expand by using a heat kernel
technique [53–56]. The remaining part of the Lagrangian,
Laux, depends on auxiliary fields which do not have kinetic
terms. The equations of motion of such a static system are
the extremum conditions
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@L

@sa
¼ 0;

@L

@pa

¼ 0; (17)

which must be fulfilled in the neighborhood of the uniform
vacuum state of the theory. To take this into account, one
should shift the scalar field � ! �þM. The new � field
has a vanishing vacuum expectation value h�i ¼ 0,
describing small amplitude fluctuations about the vacuum,
with M being the mass of constituent quarks. We seek
solutions of Eq. (17) in the form

ssta ¼ ha þ hð1Þab�b þ hð1Þabc�b�c þ hð2Þabc�b�c þ 	 	 	
pst
a ¼ hð2Þab�b þ hð3Þabc�b�c þ 	 	 	

(18)

Equations (17) determine all coefficients of this expansion
giving rise to a system of cubic equations to obtain ha and
the full set of recurrence relations to find higher order
coefficients in (18). We can gain some insight into the
physical meaning of these parameters if we calculate the
Lagrangian density Laux on the stationary trajectory. In
fact, using the recurrence relations, we are led to the result

Laux ¼ ha�a þ 1

2
hð1Þab�a�b þ 1

2
hð2Þab�a�b

þ 1

3
�a½hð1Þabc�b�c þ ðhð2Þabc þ hð3ÞbcaÞ�b�c� þ 	 	 	

(19)

Indicated are all the terms which are necessary to analyze
the mass spectra and two particle decays. Here ha define

the quark condensates, the quantities hð1Þab , h
ð2Þ
ab contribute to

the masses of scalar and pseudoscalar states, and higher
order h’s are the couplings that measure the strength of the
meson-meson interactions. The transition from the
Lagrangian Lauxðs; pÞ in (13) to its form Lauxð�;�Þ in
(19) can be viewed as a Legendre transformation.

We proceed now to explain the details of determining h.

We address first the coefficients ha, hð1Þab , and hð2Þab . In

particular, Eq. (17) states that ha ¼ 0, if a � 0, 3, 8, while
h� (� ¼ 0, 3, 8), after the convenient redefinition to the
flavor indices i ¼ u, d, s

h� ¼ e�ihi; e�i ¼ 1

2
ffiffiffi
3

p

ffiffiffi
2

p ffiffiffi
2

p ffiffiffi
2

p
ffiffiffi
3

p � ffiffiffi
3

p
0

1 1 �2

0
BB@

1
CCA; (20)

satisfy the following system of cubic equations:

�i þ �

4
tijkhjhk þ hi

2
ð2Gþ g1h

2 þ g4
hÞ þ g2
2
h3i

þ
i

4
½3g3h2i þ g4h

2 þ 2ðg5 þ g6Þ
ihi þ 4g7
h�
þ �2tijk
jhk ¼ 0: (21)

Here �i ¼ Mi �mi; tijk is a totally symmetric quantity,

whose nonzero components are tuds ¼ 1; there is no
summation over the open index i, but we sum over the
dummy indices, e.g., h2 ¼ h2u þ h2d þ h2s , 
h ¼ 
uhu þ

dhd þ
shs.
In particular, Eq. (8) reads in this basis

mi ¼ 
i

�
1þ g9

4

2

i þ
g10
4


2

�
þ �1

2
tijk
j
k: (22)

For the set g9 ¼ g10 ¼ �1 ¼ 0 the current quark mass mi

coincides precisely with the explicit symmetry breaking
parameter 
i.
Note that the factor multiplying hi in the third term of

Eq. (21) is the same for each flavor. This quantity also
appears in all meson mass expressions, and there is no
further dependence on the couplings G, g1, g4 involved for
meson states with a ¼ 1; 2; . . . ; 7. Thus, there is a freedom
of choice which allows us to vary these couplings, con-
densates, and quark masses
i, without altering this part of
the meson mass spectrum.

To obtain the coefficients hðiÞab, (i ¼ 1, 2), in the

Lagrangian Laux (19), it is sufficient to collect in the sta-
tionary phase equations (17) only the terms linear in the
fields, as can be seen from the structure of the solutions
(18). Moreover, for any coefficient multiplying a certain
number n of fields in Laux, it is required to consider terms
only up to order n� 1 in fields in the expansion (18). For

instance, the inverse matrices to hð1Þab and hð2Þab are

�2ðhð1ÞabÞ�1 ¼ ð2Gþ g1h
2 þ g4
hÞ�ab þ 4g1hahb þ 3Aabcð�hc þ 2�2
cÞ þ g2hrhcðdabedcre þ 2dacedbreÞ

þ g3
rhcðdabedcre þ dacedbre þ daredbceÞ þ 2g4ð
ahb þ
bhaÞ þ g5
r
cðdaredbce � farefbceÞ
þ g6
r
cdabedcre þ 4g7
a
b; (23)

�2ðhð2ÞabÞ�1 ¼ ð2Gþ g1h
2 þ g4
hÞ�ab � 3Aabcð�hc þ 2�2
cÞ þ g2hrhcðdabedcre þ 2farefbceÞ

þ g3
rhcðdabedcre þ farefbce þ facefbreÞ � g5
r
cðdaredbce � farefbceÞ þ g6
r
cdabedcre � 4g8
a
b:

(24)

These coefficients are totally defined in terms of ha and the parameters of the model. Equations (23) and (24) can be easily
converted into explicit formulas for hðiÞab, (i ¼ 1, 2).
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Finally, to obtain the hðiÞabc, (i ¼ 1, 2, 3), of the interac-

tions involving three fields in Laux, one equates the factors
of �a�b,�a�b,�a�b in (17) independently to zero. After
some algebra, this results in the following expressions:

hð1Þabc ¼
�
3�

4
A �a �b �c þ g1ðh �a� �b �c þ 2h �c� �a �bÞ

þ g2h �r

�
d �a �b �d �r �c � þ 1

2
d �a �r �d �b �c �

�

þ g3
4
m �rð2d �a �c �d �b �r � þ d �b �c �d �a �r � � f �b �c �f �a �r �Þ

þ g4
2
ðm �a� �b �c þ 2m �c� �a �bÞ

�
hð1Þa �ah

ð1Þ
b �b
hð1Þc �c (25)

hð2Þabc ¼
�
� 3�

4
A �a �b �c þ g1h �a� �b �c

þ g2h �r

�
f �a �b �f �c �r � þ 1

2
d �a �r �d �b �c �

�

� g3
4
m �rð2f �a �c �f �b �r � þ f �b �c �f �a �r � � d �b �c �d �a �r �Þ

þ g4
2
m �a� �b �c

�
hð1Þa �ah

ð2Þ
b �b
hð2Þc �c (26)

hð3Þabc ¼
�
� 3�

2
A �a �b �c þ 2g1h �c� �b �a

þ g2h �rðd �a �b �d �c �r � þ f �r �a �f �c �b � þ f �r �b �f �c �a �Þ
þ g3

2
m �rðd �a �b �d �c �r � þ f �b �c �f �a �r � þ f �a �c �f �b �r �Þ

þ g4m �c� �b �a

�
hð2Þa �ah

ð2Þ
b �b
hð1Þc �c : (27)

Contracting with �b�c in Eq. (19), one sees that the term

going with hð2Þabc is simply half the one going with hð3Þbca, and

Laux simplifies to

Laux ¼ ha�a þ 1

2
hð1Þab�a�b þ 1

2
hð2Þab�a�b

þ �a

�
1

3
hð1Þabc�b�c þ hð2Þabc�b�c

�
þ 	 	 	 (28)

Although there are five parameters �, g1, g2, g3, g4 which

appear explicitly in hðiÞabc, they do not represent new free-

dom to fit the meson interaction dynamics, since they occur

also in the hðiÞab; through the latter, the hðiÞabc depend implic-

itly also on six further parameters G, �2, g5, g6, g7, g8. All
will be fixed by fitting the mass spectra and weak decay
constants; see (38) and Sec. IV below.

B. The heat kernel contribution

We now turn our attention to the total Lagrangian of the
bosonized theory. To write down this Lagrangian we
should add the terms coming from integrating out the quark
degrees of freedom in (13) to our result (28). Fortunately,
the technicalities are known. We use the modified heat

kernel technique [54–56] developed for the case of explicit
chiral symmetry breaking. In the isospin limit, one can find
all necessary details of such calculations, for instance, in
[53]. For future reference, we apply it here to obtain the
result for the more general case in which the strong isospin
symmetry is broken.
From the vacuum to vacuum persistence amplitude in

the spontaneous broken phase

Z½�;�� ¼
Z

DqD �q exp

�
i
Z

d4xLqð�;�Þ
�
;

Lqð�;�Þ ¼ �qði�
@
 �M� �� i�5�Þq;
(29)

the heat kernel result for the integration over the quark
degrees of freedom is

W½Y� ¼ ln j detDj ¼ � 1

2

Z 1

0

dt

t
ðtÞ exp ð�tDy

EDEÞ;
Dy

EDE ¼ M2 � @2 þ Y;

Y ¼ i�
ð@
 þ i�5@
�Þ þ �2 þ fM;�g þ�2

þ i�5½�þM;��; (30)

or

W½Y� ¼ �
Z d4xE

32�2

X1
i¼0

Ii�1 tr½bi�; (31)

whereDE stands for the Dirac operator in Euclidean space.
We consider the expansion up to the third Seeley-DeWitt
coefficient bi

b0 ¼ 1; b1 ¼ �Y;

b2 ¼ Y2

2
þ �3

2
�udY þ �8

2
ffiffiffi
3

p ð�us þ �dsÞY;
(32)

with �ij ¼ M2
i �M2

j . This order of the expansion takes

into account the dominant contributions of the quark one-
loop integrals Ii (i ¼ 0; 1; . . . ); these are the arithmetic
average values Ii ¼ 1

3 ½JiðM2
uÞ þ JiðM2

dÞ þ JiðM2
s Þ� where

Jiðm2Þ ¼
Z 1

0

dt

t2�i
ðt�2Þe�tm2

; (33)

with the Pauli-Villars regularization kernel [57,58]

ðt�2Þ ¼ 1� ð1þ t�2Þ exp ð�t�2Þ: (34)

In the following, we need therefore only to know two of
them (the lowest order �b0 contributes to the effective
potential and is not needed in the present study)

J0ðm2Þ ¼ �2 �m2 ln

�
1þ�2

m2

�
; (35)

and

J1ðm2Þ ¼ ln

�
1þ�2

m2

�
� �2

�2 þm2
: (36)
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While both terms proportional to b1 and b2 have contributions to the gap equations and meson masses, only b2
contributes to the kinetic and interaction terms. The� tadpole term must be excluded from the total Lagrangian. This gives
us a system of gap equations

hi þ Nc

6�2
Mi½3I0 � ð3M2

i �M2ÞI1� ¼ 0: (37)

Here Nc ¼ 3 is the number of colors, and M2 ¼ M2
u þM2

d þM2
s . Combining all terms of the total Lagrangian

L ¼ Lkin þ Lmass þ Lint that contribute to the kinetic terms Lkin and meson masses Lmass, one gets

Lkin þ Lmass ¼ NcI1
16�2

tr½ð@
�Þ2 þ ð@
�Þ2� þ NcI0
4�2

ð�2
a þ�2

aÞ � NcI1
12�2

f½2ðMu þMdÞ2 �MuMd �M2
s �ð�2

1 þ �2
2Þ

þ ½2ðMu þMsÞ2 �MuMs �M2
d�ð�2

4 þ �2
5Þ þ ½2ðMd þMsÞ2 �MdMs �M2

u�ð�2
6 þ �2

7Þ
þ 1

2
½�2

uð8M2
u �M2

d �M2
s Þ þ �2

dð8M2
d �M2

u �M2
s Þ þ �2

sð8M2
s �M2

u �M2
dÞ�

þ 1

2
½�2

uð2M2
u �M2

d �M2
s Þ þ�2

dð2M2
d �M2

u �M2
s Þ þ�2

sð2M2
s �M2

u �M2
dÞ�

þ ½2ðMu �MdÞ2 þMuMd �M2
s �ð�2

1 þ�2
2Þ þ ½2ðMu �MsÞ2 þMuMs �M2

d�ð�2
4 þ�2

5Þ
þ ½2ðMd �MsÞ2 þMdMs �M2

u�ð�2
6 þ�2

7Þg þ
1

2
hð1Þab�a�b þ 1

2
hð2Þab�a�b: (38)

The kinetic term requires a redefinition of meson fields,

�a ¼ g�R
a ; �a ¼ g�R

a ; g2 ¼ 4�2

NcI1
; (39)

to obtain the standard factor 1=4. The flavor and charged
fields are related through

�affiffiffi
2

p �a ¼

�uffiffi
2

p �þ Kþ

�� �dffiffi
2

p K0

K� �K0 �sffiffi
2

p

0
BBBB@

1
CCCCA

�affiffiffi
2

p �a ¼

�uffiffi
2

p aþ0 �þ

a�0
�dffiffi
2

p �0

�� ��0 �sffiffi
2

p

0
BBB@

1
CCCA

(40)

and in particular for the diagonal components,

�u ¼ �3 þ
ffiffiffi
2

p
�0 þ�8ffiffiffi

3
p ¼ �3 þ �ns

�d ¼ ��3 þ
ffiffiffi
2

p
�0 þ�8ffiffiffi

3
p ¼ ��3 þ �ns

�s ¼
ffiffiffi
2

3

s
�0 � 2�8ffiffiffi

3
p ¼ ffiffiffi

2
p

�s;

(41)

and similar for the scalar fields. Here we also introduce the
�ns and �s which stand for the flavor components of the
physical �, �0 states in the nonstrange and strange basis.
In addition to the flavor mixing in the �, �0 channels, the
isospin breaking induces a coupling between the �0 and
these states

�0 ¼ �3 þ ��þ �0�0: (42)

To get the physical �0, �, and �0 mesons and correspond-
ingly the scalar a00ð980Þ, �, and f0ð980Þ mesons, one may
proceed as in [59]. Since�3 couples weakly to the �ns and
�s states (decoupling in the isospin limit) while the �-�0
mixing is strong, it is appropriate to use isoscalar �ns, �s

and isovector �3 combinations as a starting point for a
unitary transformation to the physical meson states �0, �,
�0. In this case, the corresponding unitary matrix U can
be linearized in the �0-� and �0-�0 mixing angles
�1, �2 �Oð�Þ, � 
 1. Precisely [59]

�0

�

�0

0
BB@

1
CCA ¼ Uð�1; �2; c Þ

�3

�ns

�s

0
BB@

1
CCA; (43)

where

U ¼
1 �1 þ �2 cos c ��2 sin c

��2 � �1 cos c cos c �sin c

��1 sin c sin c cos c

0
BB@

1
CCA:
(44)

In particular, in Eq. (42) � ¼ �2 þ �1 cos c , �0 ¼ �1 sin c .
In the isospin limit, we use the mixing angle conventions

summarized in Appendix B of [58]. We have the following
different possibilities of relating the physical states ð �X;XÞ
with the states of the strange-nonstrange basis:

�X

X

 !
¼ Rc

Xns

Xs

 !
¼ R �c

�Xs

Xns

 !
; (45)

where the orthogonal 2� 2 matrix Rc is

A. A. OSIPOV, B. HILLER, AND A.H. BLIN PHYSICAL REVIEW D 88, 054032 (2013)

054032-8



Rc ¼ cos c �sin c

sin c cos c

 !
; (46)

or of the singlet-octet basis

�X

X

 !
¼ R�

X8

X0

 !
: (47)

Here �, being a solution of the equation tan 2� ¼ x, is the
principal value of arctan x; i.e., it belongs to the interval
�ð�=4Þ � � � ð�=4Þ. The angle c is related with � by
the equation c ¼ �þ ��id, where ��id (�id þ ��id ¼ �=2) is

determined by the equations sin ��id ¼
ffiffiffiffiffiffiffiffi
2=3

p
, cos ��id ¼

1=
ffiffiffi
3

p
; therefore, c ¼ �þ arctan

ffiffiffi
2

p ¼ �þ 54:74�. It
means that c is restricted to the range 9:74� � c �
99:74�. If the value of c leaves the range, we must resort
to the angle �c ¼ c � ð�=2Þ ¼ �� �id, taking values in
the interval�80:26� � �c � 9:74�. These two angles cor-
respond to two alternative phase conventions for a strange
�ss component. As a result of the following numerical
calculations, in the case of the pseudoscalars the identifi-
cation of the physical states is �X ¼ �, X ¼ �0 and for the
scalars �X ¼ f0ð980Þ, X ¼ �.

We turn to the interaction terms of the heat kernel action
in (30). The only contribution comes from Y2=2 in the term
proportional to b2 and reads

LðhkÞ
int ¼ � Nc

2�2
I1Ma½dabdce�bð�c�e þ�c�eÞ

þ 2facfbe�b�c�e�; (48)

which must be added to the interaction piece stemming
from (28), yielding the total interaction Lagrangian

Lint ¼ LðhkÞ
int þ �a

�
1

3
hð1Þabc�b�c þ hð2Þabc�b�c

�
: (49)

Note that all dependence on the parameters of the explicit
symmetry breaking quark interactions is explicitly
absorbed in the bosonized Lagrangian through the matrices

hð1;2Þab for the meson mass spectra (38) and through the

hð1;2;3Þabc for the meson interaction Lagrangian (49). In other

words, the formal structure of the Lagrangian (28) in
comparison to the case without these interactions remains
unchanged. This differs from the heat kernel Lagrangian
where the information about the difference in constituent
quark masses leads to a resummation of the heat kernel
series for the modified Seeley-DeWitt coefficients bi
[54–56]. The parameters of these two seemingly separated
sectors of the Lagrangian, i.e., the constituent quark
masses and scale parameter � for the heat kernel
Lagrangian on one hand, and the multiquark interaction
couplings for the SPA piece on the other hand, are con-
nected through the gap equations (37) which must be
solved self-consistently with the SPA equations (21).

In the remainder of this subsection, we discuss the
scheme in which the strong decay widths of the scalar

mesons are calculated. Given the complexity of the
Lagrangian, we will restrict our study of the decays to
the tree level bosonic couplings (48) and (49). To deal in
an approximate way with the proximity of particle thresh-
olds to the resonance mass, we shall resort to the widely
accepted Flatté-type distribution [60]. Other closed
bosonic channel contributions will not be taken into con-
sideration for simplicity, since the ratios of couplings in the
concurring closed channels to the nominal one turn out to
be numerically less relevant in our fits.
The strong decay width of the scalar meson S in two

pseudoscalars P1, P2 are thus obtained as

�	 ¼ j ~p	j
8�m2

S

jg	j2 � �g	j ~p	j (50)

with

j ~p	j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½m2

S � ðm1 þm2Þ2�½m2
S � ðm1 �m2Þ2�

4m2
S

s
;

where index 	 specifies all necessary kinematic character-
istics of the channel S ! P1P2, and the massesmS,m1,m2

of the states. We introduce also a shorthand notation for the
dimensionless quantity �g	 in Eq. (50). In this definition we

include all flavor and symmetry factors associated with the
final state.
The widths so obtained are valid in the Breit-Wigner

resonance scheme, which is known to be an incomplete
description for decays with the resonance mass close to the
threshold of particle emission. We use Flatté distributions
in the cases of the a0ð980Þ and f0ð980Þ decays to accom-
modate the threshold effects associated with the two kaon
production, on grounds of analyticity and unitarity at the
threshold. Close to this threshold, the elastic scattering
cross section for �� in the case of a0 or �� for f0 is
parametrized by a two-channel resonance

�el ¼ 4�jfelj2;

f	el ¼
1

j ~p	j
mR�	

m2
R � s� imRð�	 þ �S

K �K
Þ ;

(51)

with the index 	 designating here either the a0�� or the
f0�� channels and

�S
K �K

¼
8<
:

�gSK

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s
4 �m2

K

q
above threshold

i �gSK

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

K � s
4

q
below threshold

; (52)

where �gSK stands for the coupling of S to the two kaons, in
this case S ¼ a0 or f0. Here mR is the nominal resonance
mass and s ¼ ðp1 þ p2Þ2, where p1, p2 are the 4-momenta
of P1 and P2. Near the K �K threshold only the width �S

K �K
is

expected to vary strongly; the widths �	 are approximated

by a constant value in this region, taken to be (50) eval-
uated at s ¼ m2

R, since the �� and �� thresholds lie
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further away from the resonance. The numerical results are
presented and discussed in Sec. IV.

C. A note on radiative decays

Additional information on the structure of the mesons is
obtained through the study of their radiative decays. We
consider in this work the two photon decays at the quark
one-loop order of the scalar and pseudoscalar mesons.
The corresponding integrals are finite. A direct extension
of the heat kernel Lagrangian to incorporate the coupling
to the electromagnetic interaction shows that there is no
contribution up to the order b2 of the Seeley-DeWitt
coefficients for the scalar decays. The anomalous pseudo-
scalar–two photon decays belong to the imaginary part of
the action and are not contemplated by the heat kernel
techniques considered, which apply only to the real part.
By the Adler-Bardeen theorem [61–63] they are fully
determined by the three-point function Feynman ampli-
tudes involving one quark loop; higher orders only redefine
the couplings. There is however a source of uncertainty
which resides in the model-dependent determination of the
coupling of the � and �0 mesons to the quarks. In our
approach they are calculated within the heat kernel tech-
nique outlined in Sec. III B. Regarding the scalar meson
two photon decays, they are also most simply evaluated
through the three-point Feynman amplitudes, keeping only
the contribution corresponding to the first nonvanishing
order in the heat kernel action, that is, the term involving
the Seeley-DeWitt coefficient b3. From now on we will
consider the case with exact SUð2Þ isospin symmetry,

i.e., 
u ¼ 
d ¼ 
̂ � 
s and Mu ¼ Md ¼ M̂ � Ms.
With the standard electromagnetic coupling to quarks
L� ¼ �e �q�
QqA
, Q ¼ 1

2 ð�3 þ 1ffiffi
3

p �8Þ and using the

Pauli-Villars regularization, the scalar meson to two
photons amplitude A: SðsÞ ! �ðp1; �

�

Þ þ �ðp2; �

�
�Þ is

obtained in terms of the gauge invariant tensor L
� ¼
ðp


2 p
�
1 � 1

2 sg

�Þ, with s ¼ ðp1 þ p2Þ2

A
�
S�� ¼ L
�AS��; S ¼ �; f0ð980Þ; a0ð980Þ

A��� ¼ 5

9
Tu cos �c �

ffiffiffi
2

p
9

Ts sin �c

Af0�� ¼ � 5

9
Tu sin �c �

ffiffiffi
2

p
9

Ts cos �c Aa0�� ¼ 1

3
Tu;

(53)

where

Ti ¼ 32��gMiQ3ðs;MiÞ; i ¼ ðu; sÞ
Q3ðs;MiÞ ¼ iNc

16�2

Z 1

0
dx

Z 1�x

0
dyð1� 4xyÞ

�
Z 1

0
dtðt�2Þe�tðM2

i �xysÞ: (54)

� ¼ e2

4� is the fine structure constant and g the field

normalization defined in (39). The factors of Ti result
from the flavor traces and projection to the physical states
with the angle �c defined in (45). The result for the integral
Q3ðs;MiÞ with the Pauli-Villars kernel ðt�2Þ [Eq. (34)]
has been evaluated in [64]. To obtain the dominant
contribution, i.e., the first nonvanishing order in the heat
kernel series, one needs to express the integrals Q3ðs;MiÞ
as the following averaged sum evaluated at s ¼ 0 [55,56]:

Q3ð0;MiÞ ! Q3ð0;Mu;MsÞ ¼ 1

3
ð2Q3ð0;MuÞ þQ3ð0;MsÞÞ

þOðb3Þ; (55)

where the term Oðb3Þ is discarded as it belongs to the next
order in the heat kernel series (30), and

Q3ð0;MiÞ ¼ � Nc

48�2M2
i

�
�2

�2 þM2
i

�
2
; (56)

or, in the notation of (33), we have that

Q3ð0;MiÞ ¼ � Nc

48�2
J2ðM2

i Þ: (57)

Finally the decay widths for the scalar mesons in the
narrow width approximation are given as [see also (64)]

�S�� ¼ m3
S

64�
jAS��j2: (58)

The anomalous decay of the pseudoscalars P ¼
ð�0; �; �0Þ in two photons PðpÞ ! �ðp1; �

�

Þ þ �ðp2; �

�
�Þ

has the same Lorentz structure in all channels and reads

A

�
P�� ¼ �
��	p1�p2	AP��

A��� ¼ � 5

9
TP
u sin �c P �

ffiffiffi
2

p
9

TP
s cos �c P

A�0�� ¼ 5

9
TP
u cos �c P �

ffiffiffi
2

p
9

TP
s sin �c P

A�0�� ¼ 1

3
TP
u ;

(59)

where �c P stands for the mixing angle in the pseudoscalar
channels [Eq. (45)] and

TP
i ðs;MiÞ ¼ 32��gMiIPðs;MiÞ
IPðs;MÞ ¼ �Nc

16�2

Z 1

0
dx
Z 1�x

0
dy
Z 1

0
dte�tðM2�xysÞ;

(60)

and the contribution to the imaginary part of the heat kernel
action is

IPð0;MÞ ¼ �Nc

32�2M2
: (61)

At this stage one sees that the only parameter dependence
in the radiative decays of the scalars and pseudoscalars
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enters through the wave function normalization g, common
to all decays considered, and through the constituent quark
masses; there is also an explicit dependence on the scale �

in the case of the scalar decays through the factor ð �2

�2þM2Þ2
in (56). The partial conservation of axial current hypothesis
establishes a relation between g, the weak pion and
kaon decay couplings, and the constituent quark masses
[see also (66) below]

f� ¼ M̂

g
; fK ¼ M̂þMs

2g
: (62)

These identities allow us to eliminate all dependence on the
constituent quark masses from the pseudoscalar radiative
decays, leading to

TPð0; M̂Þ ¼ Nc�

�f�
; TPð0;MsÞ ¼ Nc�

�ð2fK � f�Þ : (63)

One then obtains the celebrated relation A��� ¼ �
�f�

for the

�0 decay amplitude [61]. The Adler-Bardeen theorem
allows us to infer that the study and measurement of the
anomalous decays are a reliable means of determination of
the mixing angle of the � and �0 mesons, which must
comply with the mixing angle determination extracted
from the mass spectrum. One should also stress that with
the present model Lagrangian one is able to account prop-
erly for the SUð3Þ breaking effects in the description of the
weak decay constants f� and fK, in addition to having the
correct empirical � and �0 meson masses (see Sec. IV),
which has been an open problem until now. This is impor-
tant for the numerical consistency in the amplitudes (63).

The respective widths are calculated as

�P�� ¼ j ~pj3
8�

jAP��j2; (64)

with j ~pj ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
m2

P=4
q

and mP the pseudoscalar mass.

The numerical results are presented in Sec. IV.

IV. FIXING PARAMETERS, NUMERICAL
RESULTS AND DISCUSSION

A. Meson spectra and weak decays

In the chiral limit, mu ¼ md ¼ ms ¼ 0, the Lagrangian
(38) leads to the conserved vector, V a


, and axial-vector,

Aa

, currents. The matrix elements of axial-vector currents

h0jAa

ð0Þj�b

RðpÞi ¼ ip
f
ab (65)

define the weak and electromagnetic decay constants of
physical pseudoscalar states (see details in [53]). Now let
us fix the values of the various quantities introduced. After
choosing the set �1 ¼ g9 ¼ g10 ¼ 0 we still have to fix 14
parameters: �, m̂, ms, G, �, �2, and g1; . . . ; g8. There are
two intrinsic restrictions of the model, namely, the station-
ary phase (21) and the gap (37) equations, which as men-
tioned above must be solved self-consistently. This is how

the explicit symmetry breaking is intertwined with the
dynamical symmetry breaking and vice versa. We use

(37) to determine ĥ, hs through �, Ms and M̂. The ratio

Ms=M̂ is related to the ratio of the weak decay constants of
the pion, f� ¼ 92 MeV, and the kaon, fK ¼ 113 MeV.
Here we obtain

Ms

M̂
¼ 2

fK
f�

� 1 ¼ 1:46: (66)

Furthermore, the two Eqs. (21) can be used to find the

values of � and M̂ if the parameters m̂, ms, G, �, �2,
g1; . . . ; g7 are known. Thus, together with g8 we have at
this stage 13 couplings to be fixed. Let us consider the
current quark masses m̂ andms to be an input. Their values
are known, from various analyses of the chiral treatment of
the light pseudoscalars, to be around m̂ ¼ 4 MeV and
ms ¼ 100 MeV [65]. Then the remaining 11 couplings
can be found by comparing with empirical data. One
should stress the possibility (which did not exist before
the inclusion of mass-dependent interactions) to fit the low
lying pseudoscalar spectrum, m� ¼ 138 MeV, mK ¼
494 MeV, m� ¼ 547 MeV, m�0 ¼ 958 MeV, the weak

pion and kaon decay constants, f� ¼ 92 MeV, fK ¼
113 MeV, and the singlet-octet mixing angle �p ¼ �15�

to perfect accuracy; see Table I.
One can deduce that the couplings �2 and g8 are essen-

tial to improve the description in the pseudoscalar sector;
in particular, g8 is responsible for fine-tuning the �-�0
mass splitting (see also Table II), where the difference in
g8 between set (b) and sets (a), (c), (d) is due to the input
�P ¼ �15� versus �P ¼ �12�, respectively.
The remaining five conditions are taken from the scalar

sector of the model. Unfortunately, the scalar channel in
the region about 1 GeV became a long-standing problem of
QCD. The abundance of meson resonances with 0þþ
quantum numbers shows that one can expect the presence
of non-q �q scalar objects, like glueballs, hybrids, multi-
quark states, and so forth [41]. This creates known diffi-
culties in the interpretation and classification of scalars.
For instance, the numerical attempts to organize the Uð3Þ
quark-antiquark nonet based on the light scalar mesons, �
or f0ð600Þ, a0ð980Þ, �ð800Þ, f0ð980Þ, in the framework of

TABLE I. The same values for the pseudoscalar and scalar
masses (except for m�) and weak decay constants (all in MeV)
are used as input (marked with *) for different sets of the model.
Parameter sets (a), (b), (c), (d) of all following tables differ by
varying the mixing angles and m�: sets (a), (b), and (d) with
m� ¼ 550 MeV versus set (c) with m� ¼ 600 MeV; sets (a),
(c), and (d) with �P ¼ �12� versus set (b) with �P ¼ �15�. The
scalar mixing angle is kept constant, �S ¼ 25�, in (a), (b), (c)
and increased to �S ¼ 27:5� in set (d).

m� mK m� m�0 f� fK m� ma0 mf0

138* 494* 547* 958* 92* 113* 850* 980* 980*
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NJL-type models, have failed (see, e.g., [8–10,58,66–68]).
The reason is the ordering of the calculated spectrum
which typically is m� <ma0 <m� <mf0 , as opposed to

the empirical evidence: m� < ma0 ’ mf0 .

On the other hand, it is known that a unitarized non-
relativistic meson model can successfully describe the light
scalar meson nonet as �qq states with a meson-meson
admixture [33]. Another model which assumes the mixing
of q �q states with others, consisting of two quarks and two
antiquarks, q2 �q2 [29], yields a possible description of the
0þþ meson spectra as well [38,39]. The well-known model
of Close and Törnqvist [40] is also designed to describe
two scalar nonets (above and below 1 GeV). The light
scalar nonet below 1 GeV has a core made of q2 �q2 states
with a small admixture of a �qq component, rearranged
asymptotically as meson-meson states. These successful
solutions seemingly indicate on the importance of certain
admixtures for the correct description of the light scalars.
Our model contains such admixtures in the form of the
appropriate effective multiquark vertices with the asymp-
totic meson states described by the bosonized �qq fields. We
have found that the quark mass–dependent interactions can
solve the problem of the light scalar spectrum and these
masses can be understood in terms of spontaneous and
explicit chiral symmetry breaking only. Indeed, one can
easily fit the data: m� ¼ 600 MeV, ma0 ¼ 980 MeV,

m� ¼ 850 MeV, mf0 ¼ 980 MeV. In this case we obtain

for the singlet-octet mixing angle �s roughly �s ¼ 19�
[48]. Without changing the mass spectra, better fits for the
strong radiative decays of the scalars are obtained with
�s ¼ 25�  28�, in the next subsection.

We obtain and understand the empirical mass assign-
ment inside the light scalar nonet as a consequence of the
quark mass–dependent interactions, i.e., as the result of
some predominance of the explicit chiral symmetry break-
ing terms over the dynamical chiral symmetry breaking
ones for these states. Indeed, let us consider the difference

m2
a0 �m2

� ¼ 2g2
�

1

Ha0

� 1

H�

�
� 2ðMs þ 2M̂ÞðMs � M̂Þ:

(67)

The sign of this expression is a result of the competition of
two terms. In the chiral limit both of them are zero, since at


̂, 
s ¼ 0 we obtain M̂ ¼ Ms and Ha0 ¼ H�, for Ha0 and

H� being positive. The splitting H� >Ha0 is a necessary

condition to get ma0 >m�. The following terms contribute

to the difference:

H� �Ha0 ¼ �ðhs � ĥÞ þ 2�2ð
s � 
̂Þ
� g2ðh2s þ ĥhs � 2ĥ2Þ
þ g3

2
ð2
shs þ
sĥþ 
̂hs � 4
̂ĥÞ

þ g5
̂ð
s � 
̂Þ þ g6
2
ð
2

s � 
̂2Þ: (68)

Accordingly, from this formula we deduce the ‘‘anatomy’’
of the numerical fit, e.g., for set (d) (see next subsection):

m2
a0 �m2

� ¼ ð½0:006�� þ ½0:046��2
þ ½6� 10�4�g2

þ ½0:938�g3 þ ½0:003�g5 þ ½�0:316�g6
� ½0:44�M ¼ 0:24Þ GeV2; (69)

where the contributions of terms with corresponding
coupling [see Eq. (68)] are indicated in square brackets.
The last number, marked byM, is the value of the last term
from (67). It is a contribution due to the dynamical chiral
symmetry breaking (in the presence of an explicit chiral
symmetry breaking). One can see that the g3 interaction is
the main reason for the reverse ordering ma0 >m�, the

coupling g6 being responsible for the fine-tuning of the
result.
We now briefly comment on the role of parameters

regarding the successful fit of f� and fK, as well as the
ordering mK <m�. For these cases, many parameters are

at work simultaneously. To illustrate this trend, we deviate
(arbitrarily) the values of fK and m� from their empirical

values, keeping the remaining observables fixed.
Let us consider first the weak decays. We take set (d)

as a reference and change in the input data only fK ¼
116 MeV. As a result we obtain that the constituent quark

masses both decrease to M̂ ¼ 351 MeV and Ms ¼
533 MeV, thus decreasing as well the normalization g in
order to fulfill Eq. (62). Regarding the interaction coupling
strengths, the largest deviation in absolute value is for g2,
which increases by 50%, followed by g1 which decreases
by 40%. The parameters fg7; �2; g3; g4; g6; �g decrease in
the given order by f27; 25; 25; 22; 18; 15g parts in 100, and
g8 increases by 28%. The remaining parameters have much
less significant changes. We conclude that a very subtle
interplay takes place involving parameters related with and
without the explicit symmetry breaking in this case.
As formK <m�, we take again set (d) as a reference and

change in the input only the � mass, lowering it to � ¼
490 MeV. In this case, the largest changes are observed in
fg7; g8; g2g, with an increase of f168; 162; 93g percent and a
decrease in �2 by 73%, while a lesser increase in fg4; g6; �g
of f29; 25; 20g and decrease of g3 by 16% is registered.

TABLE II. Parameter sets of the model: m̂, ms, and �
are given in MeV. The couplings have the following units:
½G� ¼ GeV�2, ½�� ¼ GeV�5, ½g1� ¼ ½g2� ¼ GeV�8. We also
show here the values of constituent quark masses M̂ and Ms in
MeV. See also the caption of Table I.

Sets m̂ ms M̂ Ms � G �� g1 g2

a 4.0* 100* 372 541 830 9.74 121.1 3136 133

b 4.0* 100* 372 542 829 9.83 118.5 3305 �158
c 4.0* 100* 370 539 830 10.45 120.3 2081 102

d 4.0* 100* 373 544 828 10.48 122.0 3284 173
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B. Strong decays

Let us now show the result of our global fitting of the
model parameters. We study the effect of having a slightly
different m� mass, sets (a), (b), and (d) with m� ¼
550 MeV versus set (c) with m� ¼ 600 MeV, as well as
having different pseudoscalar and scalar mixing angles, as
described in the caption of Table I, with all other meson
masses and weak decay constants remaining fixed to the
values indicated there.

Table II contains the standard set of parameters, which
are known from previous considerations. Their values are
not much affected by the quark mass effects. We have
already learned (as seen again in Table II) that higher
values of g1 lead to the lower � mass [53]. This eight-
quark interaction violates Zweig’s rule, since it involves q �q
annihilation.

Table III contains the couplings which are responsible
for the explicit chiral symmetry breaking effects in the
interactions. Largest variations are observed in the cou-
plings g4 and g7 in set (d) as compared to sets (a)–(c) and in
g8 between set (b) and the other sets. In the former case, it
is related with the change of the scalar mixing angle and in
the latter with the change in the pseudoscalar mixing angle.

The coupling g7 is seen to occur only in ðhð1ÞabÞ�1; thus it

probes the mass spectrum of the scalars, whereas g8
appears only in ðhð2ÞabÞ�1, related to the mass spectrum of

the pseudoscalars. With all observables kept fixed, except
the mixing angle, changes in these couplings are obviously
related to them. Regarding g4 it enters in both mass spec-
tra. Comparing sets (a) and (c) where both �S and �P are
the same, but the � mass is different, shows that g4 also
responds to the change in the � mass.

The calculated values of quark condensates are

approximately the same for all sets: �h �uui13 ¼ 232 MeV,

and �h�ssi13 ¼ 204 MeV. Our calculated values for
the constituent quark masses agree with the ones found
in [8–10,47], showing their insensitivity to the new
mass-dependent corrections.

In Table IV are shown the results for the strong decay
widths of the scalar mesons for the four different sets.
The experimental status is as follows. The mass and width
of the � meson quoted until recently had a large
uncertainty, m� ¼ ð400 1200Þ MeV and a full width

�� ¼ ð600 1000Þ MeV. Presently [65], it has been
narrowed to m� ¼ ð400 550Þ MeV and �� ¼
ð400 700Þ MeV. The result based on the average over
the dispersion analysis of [69–72] even leads to a very
sharp value for the pole positionM� i�=2 ¼ ð446� 6Þ �
ð276� 5Þ MeV. The mass and full width of the f0ð980Þ
meson are quoted as mf0ð980Þ ¼ 990� 20 MeV and

�f0ð980Þ ¼ 40 100 MeV and for the a0ð980Þ meson as

ma0ð980Þ ¼ 980� 20 MeV and �a0ð980Þ ¼ 50 100 MeV.

The results for the �ð800Þ quoted in the Particle Data
Group (PDG) table from a Breit-Wigner fit have the pole
at ð764� 63þ71

�54Þ � ið306� 149þ143
�82 Þ MeV.

We obtain that the�mass and� ! �� decay are within
the recent limits for sets (a)–(b) and (d) while set (c) has a
mass larger than the upper limit by �50 MeV. While in
sets (a)–(b) and (d) the calculated width is smaller than the
nominal mass of the resonance, the opposite behavior is
seen in set (c). The coupling strength �g��� increases
comparing, e.g., set (a) to (c), explaining the larger width;

however, the ratio R� ¼ �g�K
�g���

of the � to kaon and to the

pion couplings also increases by 20%. The obtained ratio
for R� is in agreement with the experimental value R�

exp ¼
0:5� 0:1 in [73] for sets (a)–(c) and slightly below that for
set (d). We expect some effect on the width if these
channels were taken into account, but only a moderate
one since the coupling to pions dominates,R� � 0:3 0:5.
The decay width for �ð800Þ ! K�� 310 MeV is

smaller roughly by a factor of 2 than the quoted central
value but still lies within the limits. The ratio of the

couplings �g�K�

�g���

m2
�

m2
�
¼ 1:5 (the ratio of meson masses cor-

rects for the different definitions of the couplings in [73]) is

TABLE III. Explicit symmetry breaking interaction couplings.
The couplings have the following units: ½�1� ¼ GeV�1, ½�2� ¼
GeV�3, ½g3� ¼ ½g4� ¼ GeV�6, ½g5� ¼ ½g6� ¼ ½g7� ¼ ½g8� ¼
GeV�4, ½g9� ¼ ½g10� ¼ GeV�2. See also the caption of Table I.

Sets �1 �2 �g3 g4 g5 �g6 �g7 g8 g9 g10

a 0* 6.14 6338 657 210 1618 105 �65 0* 0*

b 0* 5.61 6472 702 210 1668 100 �38 0* 0*

c 0* 6.12 6214 464 207 1598 133 �66 0* 0*

d 0* 6.17 6497 1235 213 1642 13.3 �64 0* 0*

TABLE IV. Strong decays of the scalar mesons; mR is the
resonance mass in MeV, �BW and �Fl are the Breit-Wigner width

and the Flatté distribution width in MeV, RS ¼ �gSK
�g	
. The mixing

angles are in degrees.

Set Decays mR �BW �Fl �g	 �gSK RS �P �S

a � ! �� 550 465 1.95 0.97 0.497 �12 25

f0 ! �� 980 108 60 0.23 0.32 1.397

� ! K� 850 310 1.2 0

a0 ! �� 980 419 45 1.32 2.69 2.05

b � ! �� 550 465 1.955 0.986 0.504 �15 25

f0 ! �� 980 108 60 0.230 0.312 1.356

� ! K� 850 310 1.2 0

a0 ! �� 980 459 50 1.44 2.805 1.944

c � ! �� 600 635 2.39 1.52 0.61 �12 25

f0 ! �� 980 108 61 0.23 0.30 1.32

� ! K� 850 310 1.2 0

a0 ! �� 980 419 46 1.31 2.67 2.03

d � ! �� 550 461 1.94 0.63 0.33 �12 27.5

f0 ! �� 980 62 30 0.23 0.30 3.90

� ! K� 850 310 1.2 0

a0 ! �� 980 420 46 1.32 2.73 2.07
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within the experimental values in [73], as opposed to the
q �q and q2 �q2 model approaches considered in the same
paper.

The widths of the a0ð980Þ ! �� and f0ð980Þ ! ��
decays are well accommodated within a Flatté description.
We read the width at half maximum of the elastic cross
section in Figs. 1 and 2, respectively. Note the huge reduc-
tion in width in the case of the a0ð980Þ meson when the
kaon channels are taken into account. This possibility was
already noticed by Flatté in his analysis [60]. This is
explained in our description by the ratio Ra0 � 2 showing
the dominant component to be in the coupling to the kaons.

As demonstrated in [74], the ratio RS ¼ �gSK
�g	

of the cou-

plings is a relatively stable quantity in spite of the large
fluctuations in the experimental values extracted for the
individual couplings. Our calculated RS are compatible
with the indicated values in [74]. It should be emphasized

that the ratio Rf0 ¼ �g
f0
K

�gf0��
is strongly dependent on the

mixing angle �S of the scalar sector. As can be seen
comparing sets (a)–(c) with set (d), the increase in �S is
responsible for the larger ratio Rf0 ¼ 3:9 in set (d), which

agrees well with the experimental value R
f0
exp ¼

4:21� 0:46 of BES Collaboration [75]. An often consid-

ered quantity is the crossed ratio r ¼ Rf0

Ra0
, usually assumed

to be larger than unity. The a0ð980Þ does not depend on the
�S mixing angle [an eventual correlation with the f0ð980Þ
meson through isospin mixing is discarded here] but does
depend on the pseudoscalar �P angle through its decay into
the ��. The �P is fixed in the pseudoscalar sector to yield
the correct � and �0 masses, as well as their radiative two
photon decay widths. Therefore the ratio Ra0 of the a0
couplings to kaons and to the �� channels remains ap-
proximately constant for all parameter sets ðRa0Þ�1 � 0:5.
This value is not too bad in comparison with the
experimental quoted ratio ðRa0

exp Þ�1 ¼ 0:75� 0:11 [76].

Requiring the ratio r > 1 further constrains the angle to
be larger than �S � 26�.
On the other hand, the ratio Rf0 increases until �S

reaches ideal mixing. In the interval �id < �S � �
4 , it

decreases but stays much larger than the experimental
accepted ratio; e.g., at �S ¼ 44�, one has Rf0 � 11. The

combined requirements r > 1 and Rf0
exp confine the mixing

angle to the narrow window 27� < �S < 28�. From the
point of view of the calculated strong decay widths, how-
ever, the somewhat smaller angle �S ¼ 25� is also accept-
able. Our interval of values for the mixing angle
25� < �S < 28�, corresponding to �10:3� < �c <�7:3�,
are within the values �14� < �c <�3� estimated in [77],
more specifically �c ��9� if a Flatté distribution is used
in a complementarity approach of chiral perturbation
theory and the linear sigma model.

C. Radiative decays

The two photon decays of the pseudoscalars are in very
good agreement with data (Table VI); the �0 and � in two
photons are within the experimental error bars; and the �0
decay lies 10% above the upper limit for sets (a), (c) and
(d), i.e., �P ¼ �12�. In the case of set (b), �P ¼ �15�, the
result for the �0 decay is at the upper margin, and for �
about 10% above the upper boundary.
For the radiative widths of � (see Table V), there is a

large spread in the experimental data from different facili-
ties. Our results for� ! �� only account for about 20% of
the value ð1:2� 0:4Þ KeV [78] obtained from the nucleon
electromagnetic polarizabilities, which is one of the lowest
estimates for this width. For the f0ð980Þ ! ��, the PDG
average is quoted as ð0:29þ0:07

�0:06Þ KeV. Sets (a)–(c) yield

approximately 20% and set (e) 30% of this value. These
results meet the current expectations that a direct coupling
to the photons via a quark loop are not sufficient to account
for the observed radiative widths of these mesons.

FIG. 1 (color online). The �� cross section as function E¼ffiffiffi
s

p �2mK for the a0 resonance channel from the Flatté distribu-
tion (solid line) with parameters of set (b), �ga0�� ¼ 1:44, �g

a0
K ¼

2:8, Ra0 ¼ 1:944. The width read at half peak value is �Fl ¼
50 MeV. The dashed line corresponds to the single �� channel.

FIG. 2 (color online). The �� cross section as function E ¼ffiffiffi
s

p � 2mK for the f0 resonance channel from the Flatté distri-
bution (solid line) with parameters of set (b), �gf0�� ¼ 0:23,

�g
f0
K ¼ 0:31, Rf0 ¼ 1:36. The width read at half peak value is

�Fl ¼ 60 MeV. The dashed line corresponds to just the two pion
channel.
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A natural question arises then why in our approach the
strong widths can be described reasonably well in all
channels and the radiative ones fall short of the empirical
values for the �, f0 decays. This can be understood: only
the strong decays probe directly the multiquark couplings
gi contained in the stationary phase (SPA) piece (28) of the
total interaction Lagrangian (49). Since this part of the
Lagrangian has no derivative terms, only the heat kernel
(HK) Lagrangian involves the electromagnetic interaction,
after minimal coupling. The information of the SPA
conditions which leaks through the gap equations to the
electromagnetic sector is rather weak; it is contained only
in the wave function normalization which is the same for
all mesons, and the quark constituent masses and scale �
which remain approximately constant in all parameter sets.
Thus, effectively, the two photon decays of the scalars
yield a clean signature whether the electromagnetic decay
of the mesons proceeds dominantly through a q �q channel
or not.

This in turn ties up with the strength distribution in the
HK and SPA contributions to the coupling gSPP shown in
Tables VII and VIII for set (d). The HK piece relates
directly to the meson-q �q channel, the SPA part to the
higher order multiquark interactions.

Consider first the a0 meson: the calculated a0ð980Þ !
��� 0:39 KeV overestimates the present average PDG
value 0:21þ0:08

�0:04 and points within our approach to the

dominance of the direct one quark loop coupling to
photons of this meson.

This is corroborated by the fact that the large bare width
that we obtain for the a0 ! �� decay is shown to stem
mainly from the HK coefficient represented with 80% of
the total strength; see Table VII. The a0 meson in the q �q
picture is composed only of u and d quarks; thus, its
coupling to the K �K mesons requires a flavor change at
the kaon vertices, as opposed to the �� case. As can be
seen from a similar decomposition in HK and SPA

contributions of the a0K �K coupling in Table VIII, it is
much more favorable to couple to the kaons through the
multiquark vertices, which now represent 80% of the total
strength instead. Therefore for the overall strong decay
width, it is important to take this mode into account
through the two-channel Flatté distribution. From the point
of view of the two photon decay of a0, we note that a ��
loop does not couple directly to two photons [79] and the
decay proceeds through the quark loop of u or d quarks
with the large strength of the corresponding HK compo-
nent. To access the dominant SPA component the two
photon decay would have to proceed through coupling to
the K �K loop, a subleading process in Nc counting as
compared to the direct q �q loop. Furthermore, due to the
relatively large mass of the kaons, this loop is not expected
to contribute significantly.
Now let us analyze the �, f0 channels: there are sub-

stantial contributions or cancellations from the SPA part.
For the f0�� and f0K �K cases, one sees that the strength in
the SPA coefficient is in magnitude about 2

3 of the HK

coefficient for both cases, but changes relative sign in the
latter. In the ��� and �K �K cases, the cancellations occur
in both cases, with the SPA piece contributing about half of
the HK part. There is a subtle interplay about the HK and
SPA coefficients which finally add up to the correct de-
scription of the mass spectra and strong decays of these
mesons. The lack of a pronounced dominance of the HK
has as a consequence that the q �q coupling of these mesons
to the photons represents only a fraction of the total width.
The remaining strength must derive from the multiquark
channels which should be included in an extra step, taking
into account explicitly meson loop contributions.
Regarding the strong decay of the f0, one can further

infer that because of the stronger participation of the multi-
quark interactions and because of cancellations in the kaon

TABLE VI. Anomalous decays �P�� for sets (a) and (c) in
KeV, corresponding to �P ¼ �12�; mR is the particle mass in
MeV. [For set (b), corresponding to �P ¼ �15�, we have
���� ¼ 0:6 KeV, ��0�� ¼ 4:8 KeV.]

Decays mR �P�� �
exp
P�� [65]

�0 ! �� 136 0.00798 0:00774637 0:00810933

� ! �� 547 0.5239 ð39:31� 0:2Þ%�tot ¼ 0:508 0:569

�0 ! �� 958 5.225 ð2:18� 0:08Þ%�tot ¼ 3:99 4:70

TABLE V. Radiative decays of the scalar mesons �S�� in KeV; mR is the resonance mass in MeV.

Set a mR �S�� Set b mR �S�� Set c mR �S�� Set d mR �S��

� ! �� 550 0.212 � ! �� 550 0.212 � ! �� 600 0.277 � ! �� 550 0.210

f0 ! �� 980 0.055 f0 ! �� 980 0.055 f0 ! �� 980 0.055 f0 ! �� 980 0.080

a0 ! �� 980 0.389 a0 ! �� 980 0.386 a0 ! �� 980 0.392 a0 ! �� 980 0.383

TABLE VII. The coefficients coefHK and coefSPA of the heat
kernel and of the SPA contributions to the total value of the
coupling gSP1P2

resulting from the interaction Lagrangian for the

open decay channels. Values are for the neutral channels. Units
are in GeV.

gSP1P2
coefHK=g3 coefSPA=g3 Total=g3

��0�0 �0:0450 0.0215 �0:0235
f0�

0�0 �0:0061 �0:0047 �0:0109
�0 �K0�0 0.0660 �0:0257 0.0403

a00��
0 �0:0666 �0:0178 �0:0844
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channel as opposed to the pion channel, a coupling to the
kaon channel through the Flatté approach is not imperative
to obtain a reasonable magnitude of the width, as seen from
Table IV.

Rescattering effects have been shown in several
approaches to yield the main contribution, e.g., for the
� ! �� extracted from the dispersion analysis of �� !
�0�0 [81]. Claims for a tetraquark structure [29] of the �
meson were forwarded, e.g., in [82], and in [83] interpreted
as pion and kaon loop contributions. Our approach sheds
light on these phenomena from a different angle.

Finally we mention that the radiative decays of the scalar
mesons have been calculated a long time ago in a variant of
the NJL model, with and without meson loop contributions
[84]. The amplitudes differ from ours in two key aspects:
we use the unified description for all nonanomalous decays
based on the generalized heat kernel approach which leads
(i) to a common wave function normalization for all
mesons that implies the reduction factor of � 2

3 in the

amplitude and in the case of the radiative decays to
(ii) the regularized one loop integrals carrying the factors

ð �2

�2þM2
i

Þ2, in spite of the integrals being finite. The latter

reduces the amplitude by approximately half. The com-
bined effect is a dramatic reduction by a factor �10 in the
decay widths, as compared to [84] for the quark loop
contribution. Thus, caution must be used when it comes
to interpreting and comparing our numerical results with
seemingly related model calculations, e.g., [85,86].

Summarizing the results of Secs. IVB and IVC, the
strong decays calculated from our tree level meson cou-
plings encode leading and higher order Nc and multiquark
effects in combinations that account for the main bulk of
the empirical widths. The two photon decays of the scalars
at leading order of the bosonized Lagrangian yield com-
plementary information, testing whether the direct one
quark loop coupling to photons is the dominant decay
process. We obtained that the a0 meson decay into two
photons proceeds mainly through the q �q loop, whereas for
the �, f0 mesons we conclude that higher order multiquark
interactions are necessary to account for the observed
widths. This does not mean that the a0 meson is mainly a
q �q state, but that the multiquark component with the large
strength in the two kaon channel, important for the reduc-
tion of the a0�� strong decay width, is not the leading
process in the two photon decay of this meson.

V. CONCLUDING REMARKS

In this paper, we have generalized the effective multi-
quark Lagrangians of the NJL type by including higher
order terms in the current quark-mass expansion. The
procedure is based on the very general assumption that
the scale of spontaneous chiral symmetry breaking deter-
mines the hierarchy of local multiquark interactions. As a
consequence, one can distinguish a finite subset of vertices
which are responsible for the explicit chiral symmetry
breaking at each order considered. We have classified
these vertices at next-to-leading order and studied the
phenomenological consequences of their inclusion in the
Lagrangian.
We are led to a subset of ten quark mass–dependent

interactions which enter the Lagrangian at the same order
as the ’tHooft determinant and eight quark terms previously
analyzed in the literature. From these, three are related with
the Manohar-Kaplan ambiguity, and the remaining seven
with genuinely new vertices. These new terms carry either
signatures of violation of Zweig’s rule or of admixtures of
q2 �q2 states to the quark-antiquark ones and are thus poten-
tially interesting candidates in the quest to analyze the
structure and interaction dynamics of the low lyingmesons.
We have derived the bosonized Lagrangian up to

cubic order in the meson fields, from which we obtain
the meson spectra and their two-body strong, weak, and
electromagmetic decays. Here are our main conclusions.
(1) We fit the low lying pseudoscalar spectrum

(the pseudo-Goldstone 0�þ nonet) and weak decay
constants of the pion and the kaon to perfect accu-
racy. The fitting of the �-�0 mass splitting together
with the overall successful description of the whole
set of low-energy pseudoscalar characteristics is
actually a solution for a long-standing problem of
NJL-type models. We have found that the quark
mass–dependent interaction terms mainly respon-
sible for the fit belong to the class of Okubo-
Zweig-Iizuka (OZI)-violating interactions. They
represent additional corrections to the ’t Hooft
UAð1Þ breaking mechanism. In the interaction terms
independent of the quark masses, we observe, how-
ever, that the g2 coupling of the non-OZI-violating
8q interactions carrying the signature of the q2 �q2

states are also relevant in fitting the f�, fK values as
well as for the ordering mK <m�.

(2) We are also capable of describing the spectrum of
the light scalar nonet. In this case, we identify the
quark-mass interaction terms related with the four
quark admixtures to be the main source of the fit
associated with the a0ð980Þ and �ð800Þ meson
masses. The primary term responsible for the correct
ordering carries interaction strength g3, and some
fine-tuning is due to the g6 term.

(3) Regarding the mixing angle of the singlet-octet
scalar states �S, we have found that its value is

TABLE VIII. The coefficients coefHK and coefSPA of the heat
kernel and of the SPA contributions to the total value of the
coupling gSK �K resulting from the interaction Lagrangian. Values
are for the neutral channels. Units are in GeV.

gSK �KP2
coefHK=g3 coefSPA=g3 Total=g3

�K �K �0:041 0.0178 �0:0232
f0K �K 0.118 �0:081 0.0372

a00K
�K 0.0246 0.0968 0.121
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particularly sensitive to the interaction terms pro-
portional to g4 and g7, which are OZI-violating.
Together with the result that the strength g1 of
the eight quark OZI-violating and quark mass–
independent interaction terms studied in earlier pa-
pers dictates the mass of the �ð500Þ meson, we
conclude that these states are strongly affected by
OZI-violating short range forces.

(4) The calculation of the strong decays of the scalar
mesons has revealed that the present Lagrangian is
capable of accounting for the decay widths within
the actual margins of empirical data. We corroborate
other model calculations in which the coupling of
the f0ð980Þ and a0ð980Þ mesons to the K �K channel
is needed for the description of the decays
f0ð980Þ ! �� and a0ð980Þ ! ��. We find that
this coupling is most crucial for the latter process.

(5) The radiative decays of the scalar mesons into two
photons show that the main channel for the a0ð980Þ

decay proceeds through coupling to a quark-
antiquark state, while the radiative decays of
singlet-octet states �, f0 must proceed through
more complex structures. We refer to the full
discussion given in Secs. IVB and IVC.

(6) Finally, the radiative decays of the pseudoscalars are
in very good agreement with data.
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