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I. INTRODUCTION

The potential energy between two heavy quarks is a
fundamental quantity in physics. In fact, the history of
computing loop corrections to the potential of quarks
forming a color singlet configuration goes back to the
mid 1970s with the idea to describe a bound state of
heavy colored objects in analogy to the hydrogen atom
[1]. One-loop corrections were computed shortly after-
ward in Refs. [2,3]. The two-loop corrections were only
evaluated toward the end of the 1990s by two groups
[4–6], and about five years ago, the three-loop corrections
were considered in Refs. [7–9], again in two independent
calculations.

In this paper we consider the potential in momentum
space, which we define as

V½c�ðj ~qjÞ ¼ �4�C½c� �sðj ~qjÞ
~q2

�
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�
þ � � �

�
; (1)

where CA ¼ Nc and CF ¼ ðN2
c � 1Þ=ð2NcÞ are the eigen-

values of the quadratic Casimir operators of the adjoint and
fundamental representations of the SUðNcÞ color gauge
group, respectively. The strong coupling �s is defined in

the MS scheme, and for the renormalization scale, we
choose � ¼ j ~qj in order to suppress the corresponding
logarithms. The general results, both in momentum and
coordinate space, can be found in Appendix A.

In Eq. (1) we have introduced the superscript ½c�, which
indicates the color state of the quark-antiquark system. In
Refs. [4–9] only the singlet configurations (c ¼ 1) have
been considered, which is phenomenologically most im-
portant. However, quarks in the fundamental representa-
tion can also combine to a color octet state. At tree level
and one-loop order, only the overall color factor changes

from C½1� ¼ CF to C½8� ¼ CF � CA=2. Starting from

two loops [10,11], the coefficients a½c�i get additional

contributions. In this paper we compute a½8�3 and compare

the result to a½1�3 [7–9].

The term proportion to ln�2 in Eq. (1) has its origin in
an infrared divergence, which has been subtracted mini-
mally. It appears for the first time at three-loop order [12]
and is canceled against the ultraviolet divergence of the
ultrasoft contributions, which have been studied in
Refs. [13–15]. For the resummation of leading and next-
to-leading ultrasoft logarithms, we refer to Refs. [16–18].
As anticipated in Eq. (1), the ultrasoft contribution for the
color-singlet and color-octet cases differs only by the over-
all color factor, which is confirmed by our explicit
calculation.
Let us for completeness mention that it is possible to

generalize the concept of the heavy-quark potential to
generic color sources, which in principle can also be in
the adjoint representation of SUð3Þ as, e.g., the gluino in
supersymmetric theories. Various combinations of quark,
squark, and gluino bound state systems were considered
in Ref. [11], and the corresponding potential has been
evaluated up to two loops.
A further generalization of the three-loop corrections to

V½1� has been considered in Ref. [19], where it is still
assumed that the heavy sources form a color singlet state;
however, the colour representation is kept general.
The remainder of the paper is organized as follows. In

the next section, we explain in detail how we treat the
diagrams involving pinches. Afterward, we present our
results in Sec. III and conclude in Sec. IV.

II. CALCULATION

As compared to the singlet case, the calculation of the
octet potential is substantially more complicated, which is
connected to the occurrence of so-called pinch contribu-
tions as shall be discussed in the following. Pinch contri-
butions occur in those cases in which a deformation of
the integration contour, needed to circumvent poles in the
complex plane of the zero-component of the integration
momentum, is not possible.
For illustration let us consider the planar ladder diagram

in Fig. 1(a). Since the momentum transfer q between the
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heavy quarks is spacelike and the static propagators only
contain the energy component of the momentum, we
obtain for the loop integral the expression

Z
dDkfðk; ~qÞ 1

ðk0 þ i0Þðk0 � i0Þ ; (2)

where fð ~qÞ collects all prefactors and the contribution from
the gluon propagators, and D ¼ 4� 2� is the space-time
dimension.

There are several possibilities to treat the one-loop
diagram in Eq. (2) and obtain a relation to a well-defined
integral. For example, it is possible to apply the principle
value prescription

1

ðk0 þ i0Þðk0 � i0Þ !
1

2

�
1

ðk0 þ i"Þ2 þ
1

ðk0 � i"Þ2
�
; (3)

which is valid in the soft region for the integration
momenta. With the help of Eq. (3), it is possible to treat
all contributions involving pinches in one-loop momentum
[10,11,20]. The application to diagrams with two or more
pinch contributions in one diagram, a situation that appears
at two loops and beyond, is not obvious.

Another possibility is based on the fact that in QED with
only one (heavy) lepton pair, the potential between the
fermion and antifermion is given by the tree-level term
(see, e.g., the discussions in Refs. [7,21]), which means
that the loop corrections are exactly canceled by the itera-
tion terms of lower-order contributions. The latter arise
from the fact that the potential is proportional to the
logarithm of the quark-antiquark four-point amplitude
which has to be expanded in the coupling constant.
Translating this knowledge to QCD means that the sum
of all one-loop contributions proportional to C2

F has to
vanish, which in turn leads to the graphical equation1

In this way the planar-ladder contribution can be replaced
by the crossed ladder, which is free of pinch contributions.
The same method has successfully been applied at two
loops [10,11,20] [see Ref. [20] for the two-loop analogue
of Eq. (4)].
In the following we provide a general prescription for

the treatment of the pinch contributions, which works to all
loop orders and for an arbitrary number of involved propa-
gators. We formulate the algorithm in a way that is conve-
nient for our application. Alternative formulations can be
found in Refs. [2,21].
It is convenient to formulate the algorithm in coordinate

space. Using the Feynman rules from Appendix B, the
one-loop ladder diagram in Fig. 1(a) takes the form

g4s
Z T

2

�T
2

dw0

Z T
2

�T
2

dx0
Z T

2

�T
2

dy0
Z T

2

�T
2

dz0�ðx0 � w0Þ�ðz0 � y0Þ

�D00ðw0 � y0; ~rÞD00ðx0 � z0; ~rÞ; (5)

FIG. 1. Feynman diagrams up to three-loop order contributing to V½c�. Thick lines represent static quarks, thin solid lines represent
massless fermions, and curled lines represent gluons.

FIG. 2. Generic Feynman diagram involving a pinch contribu-
tion. The blobs A and B may contain further pinches, which
are treated recursively (see the description of the algorithm).
The arrow indicates where the static line is cut at first.

1We denote the static quarks by horizontal thick lines and the
massless modes by thin lines connecting the color sources.
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where the color structure has been ignored. In Eq. (5) the
integration over the spacial components has been per-
formed, and the � functions of the vertices have been
used to restrict the integration limits of the temporal in-
tegrals to ½�T=2; T=2�. Note that �ðx0 � w0Þ refers to the
upper and �ðy0 � z0Þ to the lower source line. In analogy
one obtains for the generic diagram in Fig. 2 the following
combination of � functions:

�ðw0
2 � w0

1Þ . . . �ðw0
i � w0

i�1Þ�ðx01 � w0
i Þ

� �ðx02 � x01Þ . . . �ðx0j � x0j�1Þ: (6)

A crucial ingredient to the algorithm described below is
the cut of a static propagator. This is equivalent to setting
the corresponding propagator to unity; i.e., the associated �
function in Eq. (6) is set to one. Actually, the omission of

�ðx1 � wiÞ from Eq. (6) (see also Fig. 2) relaxes the
original conditions on the zero components

w0
1 < � � �<w0

i < x01 < � � �< x0j (7)

to

w0
1 < � � �<w0

i ^ x01 < � � �< x0j : (8)

The latter is satisfied by all Feynman diagrams, which
are obtained from the original one by permutations of
vertices in the upper source line as long as the order of
the vertices involving w’s and x’s is kept. Thus, the result
for the cut diagram is obtained by summing all such
contributions. Let us illustrate this mechanism by the
following three-loop diagram:

The procedure for cutting an antisource propagator is, of course, in close analogy.
We are now in the position to describe the algorithm, which can be applied to all diagrams involving pinch contributions.

The output of the algorithm is equations that relate pinch diagrams to diagrams without pinches. The latter can be
computed along the lines of Refs. [7–9]. In all steps QED-like color factors are assumed; the multiplication with the proper
color factor happens after applying the obtained relations. In parallel to the description of the algorithm, we illustrate its
principle of operation on explicit two- and three-loop examples.

(1) Consider a diagram with a pinch. In case there is more than one pinch, the following steps have to be applied to each
one consecutively. In case more than one source or antisource propagator is involved [see, e.g., Fig. 1(c)], the
operations are performed for the most left and most right propagator, and the resulting equations are added.

(2) Express the pinch diagram by the corresponding diagram with a cut source propagator and the remaining
contributions according to Eq. (9).
For our three-loop example, the corresponding equation looks like the following:

(3) Replace the diagram with a cut source propagator by the diagram in which both the source and antisource
propagators are cut and the remaining contributions that are obtained in analogy to step 1. Write the diagram
with two cuts as a product of lower-order contributions.
The application of these rules to our example leads to

(4) In a next step, the diagrams with a cut in the source propagator have to be treated. This is done by replacing them by
the sum of diagrams obtained by considering all allowed permutations of the source vertices.
In our example this leads to
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(5) Solve the resulting equation for the considered pinch diagram.
In our example the original diagram appears on the right-hand side with a negative sign. This finally leads to

Note that all diagrams on the right-hand side of this equation are either products of lower-order contributions or are
free of pinches and can thus be computed in the standard way.

(6) It might be that during the described procedure, scaleless integrals appear that are set to zero within dimensional
regularization. This is, in particular, true for nonamputated diagrams.

(7) It is advantageous to add diagrams with the same color factor before applying the described algorithm since in some
cases the pinch diagram appears on the right-hand side and are symmetric to the original one; however, step 2 cannot
be performed.
As an example consider the two two-loop diagrams, which can be written as

In this version the equations cannot be used. However, the sum of the equations leads to

(8) In case there are still pinch contributions on the right-hand side of the equation, the described procedure is applied
iteratively.
Consider, e.g., the two-loop ladder diagram, which, after applying the above steps once, leads to

Using Eq. (15) and the one-loop relation (4) results in the equation

It is straightforward to implement the described algorithm
in a computer program. We have verified that we repro-
duce the two-loop results in the literature [10,11,20].
Furthermore, we have verified the exponentiation of the
singlet potential up to three loops, and we have checked

that all iteration terms predicted from lower-order contri-
butions are reproduced.

Sample Feynman diagrams contributing to V½8� up to
three loops are shown in Fig. 1. We generate the amplitudes
with the help of QGRAF [22] and process the output further
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using Q2E and EXP [23,24] in order to arrive at FORM-
readable results. At that point projectors are applied, traces
are taken, and the scalar products in the numerator are
decomposed in terms of denominator factors. The resulting
scalar expressions are mapped to the integral families
defined in Refs. [25–28].

The algorithm used for the treatment of the pinch
contributions described above is applied to the output file
of QGRAF. While adding the results of all diagrams the
obtained relations are applied, and thus the sum is ex-
pressed in terms of well-defined integrals.

The computation of the integrals proceeds along the
lines of Refs. [7–9]. In particular we use FIRE [29,30] to
reduce the integrals to a minimal set, the so-called master
integrals. Actually, only of the order of one hundred
integrals remains to be reduced after using the tables
generated for the computation of the three-loop singlet
contribution. They are quite simple and require only a few
days of CPU time.

We managed to express the final result for a½8�3 in terms of

the same 41 master integrals as a½1�3 . Thus, our final result

only contains three coefficients (of the � expansion), which
are not yet known analytically. Details on the computation
of the master integrals can be found in Refs. [26–28,31]. For
most of the integrals, even explicit results are provided. For
example, the 14 master integrals containing a massless one-
loop subdiagram can be found in Ref. [28], and 16 integrals
among the most complicated ones are provided in Ref. [27].

We have performed a second calculation of a½8�3 , which is

described in the following. The calculation of the loop
integrals is based on Refs. [9,19], and for the treatment
of the pinch contributions, we follow Refs. [32,33]. The
basic idea outlined in these references is that the color
factor of the diagrams without pinch is changed in such a
way that the pinch contribution is taken into account. At
the same time, the pinch diagrams are set to zero.
To reach this goal, we define for a color diagram x,

EðxÞ :¼ CðxÞ � X
d2Dec0ðxÞ

T�nðdÞEðdÞ; (18)

which corresponds to Eq. (4) of Ref. [32]. In this equation
Dec0ðxÞ represents the set of nontrivial decompositions of
x, and nðdÞ is the number of webs2 in d. T equalsNc for the
singlet case and NcCF for the octet case.
Each Feynman diagram F can be expressed in terms of

a product of the color factor CðFÞ and the momentum
space integral IðFÞ. If the color factor CðFÞ of each
diagram is replaced by the new color factor EðFÞ calcu-
lated with the help of Eq. (18), all contributions from
iterations will be eliminated. Moreover, EðFÞ is zero for
all pinch diagrams, and hence their evaluation is not
needed anymore.
Let us for illustration consider the contribution from the

one-loop planar and crossed ladder diagrams of Figs. 1(a)
and 1(b). For the octet potential, we can write

where the color factors CðFÞ are presented in graphical from after the factor 1=ðNcCFÞ. If one now replaced CðFÞ by EðFÞ
and used Eq. (18), one obtains

which is equivalent to the relation (4) obtained with the
method described above.

We want to remark that V½8� is gauge independent since
this is the case for the ultrasoft contribution, which has to
be added to arrive at a physical result. For this reason we

decided to use Feynman gauge for the practical calcula-
tions, and thus we refrain from using a general QCD gauge
parameter. In the results that we present below, both meth-
ods described in this section lead to the same final expres-
sions, which is a strong check for their correctness.

III. RESULTS FOR V½8�

In this section we present results for the coefficients a½c�i

in Eq. (1) for SUðNcÞ with a generic number of colors, Nc.

2A web is a set of gluons that cannot be partitioned without
cutting at least one of its lines, and a decomposition d of a set of
gluon lines is a classification of the lines into webs such that each
line is precisely in one web [32]. See Ref. [32] for examples.
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Let us for convenience repeat the one- and two-loop
results, which read (the octet results were obtained in
Refs. [10,11])

a½1�1 ¼ 31

9
CA � 20

9
TFnl;

a½1�2 ¼
�
4343

162
þ 4�2 � �4

4
þ 22

3
�ð3Þ

�
C2
A

�
�
1798

81
þ 56

3
�ð3Þ

�
CATFnl

�
�
55

3
� 16�ð3Þ

�
CFTFnl þ

�
20

9

�
2
T2
Fn

2
l ;

a½8�1 ¼ a½1�1 ; a½8�2 ¼ a½1�2 þ N2
c�

2ð�2 � 12Þ: (20)

It is remarkable that the difference between the singlet and
octet contribution at two loops involves only �2 and �4

terms.
At three-loop order, it is convenient to decompose the

coefficient in the form

a½c�3 ¼ a½c�;ð3Þ3 n3l þ a½c�;ð2Þ3 n2l þ a½c�;ð1Þ3 nl þ a½c�;ð0Þ3 ; (21)

where nl is the number of light quarks. For the first two
coefficients, we have

a½1�;ð3Þ3 ¼ �
�
20

9

�
3
T3
F;

a½1�;ð2Þ3 ¼
�
12541

243
þ 368�ð3Þ

3
þ 64�4

135

�
CAT

2
F

þ
�
14002

81
� 416�ð3Þ

3

�
CFT

2
F;

a½8�;ð3Þ3 ¼ a½1�;ð3Þ3 ; a½8�;ð2Þ3 ¼ a½1�;ð2Þ3 : (22)

For the coefficients a½c�;ð1Þ3 and a½c�;ð0Þ3 , we expect a

similar feature as in the two-loop result of Eq. (20), and
thus we write

a½1�;ð1Þ3 ¼�709:717C2
ATFþ

�
�71281

162
þ264�ð3Þþ80�ð5Þ

�

�CACFTFþ
�
286

9
þ296�ð3Þ

3
�160�ð5Þ

�
C2
FTF

�56:83ð1Þd
abcd
F dabcdF

NA

¼�367:319N2
cþ17:3611ð7Þ�12:597ð2Þ 1

N2
c

;

a½8�;ð1Þ3 ¼a½1�;ð1Þ3 þ�a½8�;ð1Þ3 ;

a½1�;ð0Þ3 ¼502:24ð1ÞC3
A�136:39ð12Þd

abcd
F dabcdA

NA

¼�17:049ð7ÞNcþ499:396N3
c ;

a½8�;ð0Þ3 ¼a½1�;ð0Þ3 þ�a½8�;ð0Þ3 ; (23)

with

�a½8�;ð1Þ3 ¼ 6:836ð1Þ þ 40:125N2
c ;

�a½8�;ð0Þ3 ¼ �97:579ð16ÞN3
c :

(24)

By comparing Eq. (24) with the results in Eq. (23)
expressed in terms of Nc, one observes that the coefficients
of nl=N

2
c andNc are identical for the singlet and octet cases,

and differences only occur in nlN
2
c , the Nc-independent nl

term, and theN3
c contribution. In this context it is interesting

to present the complete result for a½8�;ð1Þ3 , which reads

a½8�;ð1Þ3 ¼ �327:193N2
c þ 66133

648
� 112�2

9
� 272�ð3Þ

3

þ 8�4

3
� 32�2�ð3Þ

3
þ 20�ð5Þ � 12:597ð2Þ 1

N2
c

:

(25)

In contrast to the singlet case in Eq. (23), it is possible to
obtain an analytic result for the Nc-independent part.

Unfortunately, the quantities �a½8�;ð0Þ3 and �a½8�;ð1Þ3 are

only available numerically. Thus, it is not immediately
possible to check the analytic structure of the difference
between the singlet and octet coefficient. Nevertheless, it is
possible to show that it contains a factor �2, a feature that
is also observed at two-loop order [10,11] and for N ¼ 4
supersymmetric Yang–Mills theories [20]. The proof of
this claim is based on the observation that the master

integrals that are present in the expressions for �a½8�;ð1Þ3

and �a½8�;ð1Þ3 are of the form

I ¼
ZZZ dDk

ð4�ÞD
dDp

ð4�ÞD
dDl

ð4�ÞD
1

k0 þ i0

1

p0 þ i0
fðk; p; l; qÞ;

(26)

where q is the external momentum. The integrand has the
special property that one can find variable transformations
of k, p, and l, which leave the form invariant except for the
static propagators in front of fðk; p; l; qÞ. In fact, one can
show that the following relations hold:

I¼
ZZZ dDk

ð4�ÞD
dDp

ð4�ÞD
dDl

ð4�ÞD
1

�k0þ i0

1

p0þ i0
fðk;p;l;qÞ

¼
ZZZ dDk

ð4�ÞD
dDp

ð4�ÞD
dDl

ð4�ÞD
1

k0þ i0

1

�p0þ i0
fðk;p;l;qÞ

¼
ZZZ dDk

ð4�ÞD
dDp

ð4�ÞD
dDl

ð4�ÞD
1

�k0þ i0

1

�p0þ i0
fðk;p;l;qÞ:

(27)

Adding the four representations of I leads to

I ¼ 1

4

ZZZ dDk

ð4�ÞD
dDp

ð4�ÞD
dDl

ð4�ÞD
�

1

k0 þ i0
þ 1

�k0 þ i0

�

�
�

1

p0 þ i0
þ 1

�p0 þ i0

�
fðk; p; l; qÞ: (28)
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The expressions in the round brackets can be identified
with ð�2�iÞ�ðk0Þ and ð�2�iÞ�ðp0Þ, respectively, which
immediately leads to an overall factor �2.

In Table I we present numerical results for the coefficients
of ð�s=�Þi (i ¼ 1, 2, 3), both for the singlet and the octet
potentials for which, for the number of light quarks, nl, we
choose the values 3, 4, and 5, which correspond to the
charm, bottom, and top quark cases, and for the renormal-
ization scale, � ¼ j ~qj. At two-loop order, one observes a
compensation of the relatively large two-loop singlet con-
tribution by the additional term present in the octet case.
This term is nl-independent, which even leads to negative

values for a½8�2 for nl ¼ 5. Also at three loops, the additional
term is negative for all considered values of nl and leads to a
significant reduction, for nl ¼ 5 by more than a factor 2.

IV. CONCLUSIONS

In this paper we have computed the potential between
two heavy quarks in a color-octet configuration to three-
loop order. The computation of the underlying integrals
profits from the calculation of the singlet potential per-
formed in Refs. [7–9], However, in contrast to the singlet
case, the octet potential receives contributions from dia-
grams with pinches, which significantly complicates the
calculation. We discussed two algorithms that are used to
obtain the pinch contributions by reducing the calculation
to integrals without pinches.

Our final result is presented in Eqs. (22)–(25). One
observes quite some similarity to the singlet result.

Actually, expressing the coefficients a½1�3 and a½8�3 in terms

of Nc, we observe that two out of five coefficients are
identical.

As a physical application of the octet potential, one can
think of top quarks produced at hadron colliders in a color-
octet state. For the description of the threshold effects, the
octet potential serves as a crucial ingredient (see, e.g.,
Refs. [34,35]). Note, however, that the precision of the
current calculations does not yet require three-loop correc-
tions to the potential. In a further possible application, one

could use V½8� in order to compare with lattice simulations
of the potential (see, e.g., Ref. [36]).
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APPENDIX A: V½c� IN COORDINATE AND
MOMENTUM SPACE FOR GENERAL

RENORMALIZATION SCALE �

In coordinate space Eq. (1) generalized to arbitrary
values of the renormalization scale reads

~V½c� ¼ �C½c��sð�Þ
r

�
1þ �sð�Þ

4�
~c½c�1 ð�rÞ

þ
�
�sð�Þ
4�

�
2
~c½c�2 ð�rÞ þ

�
�sð�Þ
4�

�
3
�
~c½c�3 ð�rÞ

þ 64�2

3
N3

c ln ð�rÞ
�
þ � � �

�
; (A1)

where

~c½c�1 ð�rÞ¼ ~a½c�1 þ8�0 lnð�re	Þ;

~c½c�2 ð�rÞ¼ ~a½c�2 þ64�2
0

�
ln2ð�re	Þþ�2

12

�

þð32�1þ16�0~a
½c�
1 Þlnð�re	Þ;

~c½c�3 ð�rÞ¼ ~a½c�3 þ512�3
0

�
ln3ð�re	Þþ�2

4
lnð�re	Þþ2�ð3Þ

�

þð640�0�1þ192�2
0~a

½c�
1 Þ

�
ln2ð�re	Þþ�2

12

�

þð128�2þ64�1~a
½c�
1 þ24�0~a

½c�
2 Þlnð�re	Þ;

and

~a½c�1 ¼ a½c�1 ; ~a½c�2 ¼ a½c�2 ; ~a½c�3 ¼ a½c�3 þ 64�2

3
N3

c	:

The corresponding relation in momentum space reads

V½c� ¼ � 4�C½c��sð�Þ
~q2

�
1þ �sð�Þ

4�
c½c�1 ð�2= ~q2Þ

þ
�
�sð�Þ
4�

�
2
c½c�2 ð�2= ~q2Þ þ

�
�sð�Þ
4�

�
3
�
c½c�3 ð�2= ~q2Þ

þ 8�2N3
c ln

�2

~q2

�
þ � � �

�
;

where

TABLE I. Numerical values for the coefficients of ½�sð� ¼ j ~qjÞ=��i (i ¼ 1, 2, 3) of the
singlet and octet potential.

a½c�1 =4 a½c�2 =42 a½c�3 =43

nl 3 4 5 3 4 5 3 4 5

Singlet 1.750 1.472 1.194 16.80 13.19 9.740 81.25 49.39 22.83

Octet 1.750 1.472 1.194 4.973 1.366 �2:087 57.33 31.22 10.41
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c½c�1 ð�2= ~q2Þ ¼ a½c�1 þ 4�0 ln

�
�2

~q2

�
;

c½c�2 ð�2= ~q2Þ ¼ a½c�2 þ 16�2
0ln

2

�
�2

~q2

�

þ ð16�1 þ 8�0a
½c�
1 Þ ln

�
�2

~q2

�
;

c½c�3 ð�2= ~q2Þ ¼ a½c�3 þ 64�3
0ln

3

�
�2

~q2

�
þ ð160�0�1

þ 48�2
0a

½c�
1 Þln 2

�
�2

~q2

�
þ ð64�2 þ 32�1a

½c�
1

þ 12�0a
½c�
2 Þ ln

�
�2

~q2

�
;

and

�0 ¼ 1

4

�
11

3
CA � 4

3
TFnl

�
;

�1 ¼ 1

16

�
34

3
C2
A � 4CFTFnl � 20

3
CATFnl

�
;

�2 ¼ 1

64

�
2857

54
C3
A �

1415

27
C2
ATFnl � 205

9
CACFTFnl

�
:

APPENDIX B: COORDINATE-SPACE
FEYNMAN RULES

In coordinate space the QED Feynman rules for a static
lepton interacting with a photon read

The relation between the gs and �s is given by �s ¼ g2s=ð4�Þ.
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