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We have studied the properties of quarkonium states in the presence of momentum anisotropy by

correcting the full Cornell potential through the hard-loop resumed gluon propagator. The in-medium

modification to the potential causes less screening, so quarkonium states become more tightly bound than

in isotropic medium. In addition, the anisotropy in the momentum space introduces a characteristic

angular dependence in the potential and as a result the quark pairs aligned in the direction of anisotropy

are bound stronger than those of perpendicular alignment. Since the weak anisotropy represents a

perturbation to the (isotropic) spherical potential, we use the quantum mechanical perturbation theory

to obtain the first-order correction due to the small anisotropic contribution to the energy eigenvalues of

spherically symmetric potential.
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I. INTRODUCTION

Ultrarelativistic heavy-ion experiments have shown
very rich physics which cannot be interpreted by mere
extrapolation from elementary nucleon-nucleon collisions
to nucleus-nucleus collisions. This is evidenced from the
suppression of the high transverse momentum region of
hadron spectra up to a factor of 5 relative to nucleon-
nucleon collisions, which is an indication for strong ab-
sorption of high-energy partons traversing the medium [1].
Also the inclusive production of charm quark bound states
are suppressed by a factor of 3–5 at both Super Proton
Synchrotron and Relativistic Heavy Ion Collider (RHIC)
experiments which hints their dissolution in the medium
[2,3]. These accumulated evidences indicate that a new
form of matter has been produced in the heavy-ion colli-
sion experiments, called quark-gluon plasma (QGP).
Among different experimental observations which may
be served as the signals for the QGP formation, quark-
onium suppression has been proposed a long time ago as a
clear probe of the QGP formation in the collider experi-
ments [4,5]. First, in a pioneering work by Matsui and Satz
[6] and later in a follow-up quantitative calculation [7], it
was shown that the suppression of J=c yields could be
explained by the (color) screening of the potential between
a heavy quark and antiquark by the surrounding deconfined
light quarks and gluons. Theoretically, one can study the
quarkonium states by using the effective field theories.
Since the mass of heavy quark, mQ, is much larger than

the intrinsic scale in the theory of quantum chromodynam-
ics (QCD), �QCD, the heavy quark and antiquark are

expected to move slowly with a relative velocity v � 1
and results in the nonrelativistic version of QCD [8,9].
However, nonrelativistic version of QCD does not fully
exploit the smallness of v which further gives rise to

another effective theory, known as potential nonrelativistic
QCD (pNRQCD) [10,11] by integrating out the momentum
scale.
The heavy quark pairs formed in relativistic nuclear

collisions develop into the physical resonances and tra-
verse the plasma and then hot hadronic matter before
decaying into dilepton pairs. Even before the resonance
is formed it may be absorbed by the nucleons streaming
past it [12] and by the time the resonance is formed, the
screening of the color force in the plasma may inhibit the
formation of bound states. The resonance(s) could also be
dissociated either by hard gluons [13–17] or by comoving
hot hadrons [18]. In order to disentangle these sequential
effects [19], we must know how the properties of quark-
onium states change in medium. The basic tools of the
phenomenological approach to study the properties of
quarkonium states are potential models where the possible
relativistic effects for excited states of charmonium may
also be incorporated there. At zero temperature, the poten-
tial model has made great success. At finite temperature,
the essence of the potential model in the context of decon-
finement is to use a finite temperature extension of the
potential. Quantitative understanding of the bound state
properties needs the exact potential at finite temperature
which, in principle, should be derived directly from QCD,
like the Cornell potential at zero temperature has been
derived from pNRQCD from the zeroth-order matching
coefficient. Such derivations at finite temperature for
weakly coupled plasma have recently come up in the
literature [20,21] but they are, however, plagued by the
existence of temperature-driven hard as well as soft scales,
T, gT, g2T, respectively. Due to these difficulties in finite
temperature extension in effective field theories, the
lattice-based potentials become popular. However, neither
the free energy nor the internal energy can be directly used
as the potential. In fact, what kind of screened potentials
should be used in the Schrödinger equation which*binoyfph@iitr.ernet.in
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describes well the bound states at finite temperature are
still an open question. However, recently more involved
calculations of quarkonium spectral functions and meson
current correlators obtained from potential models have
been performed and compared to first-principle QCD
calculations performed numerically on lattices [22–26].
In addition to the uncertainties of the correct form of the
finite-temperature potential, there is also arbitrariness of
the criteria of dissociation. Besides the binding energy for
a particular potential as an criterion of dissociation, the
decay width is another important quantity to determine the
dissociation of the bound states. The calculation based on a
real-valued potential model does not include the true width
of a state. By performing an analytical continuation of the
Euclidean Wilson loop to Minkowski space, the potential
has an imaginary part due to Landau damping which
clearly broadens the peak [21,27] and facilitates the early
dissociation of the bound states.

In the RHIC or LHC era (small �B), recent lattice
studies have confirmed that the transition from nuclear
matter to QGP is not a phase transition, rather a crossover
[28]. The large distance property of the heavy quark inter-
action is important for our understanding of the bulk
properties of the QCD plasma phase, e.g., the screening
property of the quark gluon plasma [29], the equation of
state [30,31], etc. In these studies, deviations from pertur-
bative calculations and the ideal gas behavior are found
beyond the deconfinement temperature. It is then reason-
able to assume that the string tension does not vanish
abruptly at the deconfinement point [32–34], so one should
study its effects on heavy quark potential even above Tc.
This issue, usually overlooked in the literature where only
a screened Coulomb potential was assumed above Tc and
the linear/string term was assumed zero, was certainly
worth investigation. Recently a heavy quark potential at
finite temperature was derived by correcting the full
Cornell potential, not its Coulomb part alone, with a di-
electric function encoding the effects of the deconfined
medium [35]. This was found to have an additional
long-range Coulomb term, in addition to the conventional
Yukawa term. In the short distance limit, the potential is
reduced to vacuum potential, i.e., the Q �Q pair does not see
the medium, giving rise to the duality between Vðr; T ¼ 0Þ
and Vð0; TÞ. On the other hand, in the large distance limit
(where the screening occurs), potential is reduced to a
long-range Coulomb potential with a dynamically
screened-color charge. Thereafter the binding energies
and dissociation temperatures of the ground and the
lowest-lying states of charmonium and bottomonium spec-
tra have been determined [35,36] which matches with the
finding of recent works based on potential models [37–39]
with the Debye mass extracted from the lattice free energy.
However, when the Debye mass in leading order was used,
the results [35] match with the lattice correlator studies or
with the stronger (lattice) binding potential, i.e., internal

energy [40,41]. In a way, their findings address the reason
of arbitrariness of the results on dissociation temperatures
[42] and ensues a basic question about the nature of
dissociation of quarkonium in a hot QCD medium.
However, all the works described above were limited to

an isotropic medium but the partonic system generated in
an ultrarelativistic heavy-ion collision cannot be homoge-
neous and isotropic because at the very early time of
collision, asymptotic weak coupling enhances the longitu-
dinal expansion substantially more than the radial expan-
sion so the system becomes colder in the longitudinal
direction than in the transverse direction. As a result, an
anisotropy in the momentum space sets in and causes the
parton system produced unstable with respect to the chro-
momagnetic plasma modes [43] which facilitate to iso-
tropize the system [44,45]. In our work, we restricted
ourselves to a weakly anisotropic medium because by the
time (tF ¼ ��F, �F is the quarkonium formation time in its
rest frame) quarkonia are formed in the plasma, the plasma
becomes almost equilibrated. Motivated with this pre-
amble on the anisotropy generated in the very stage of
collision, we wish to investigate the effect of weak anisot-
ropy on the heavy-quark potential and subsequently on the
dissociation of quarkonia states in an anisotropic medium.
Our work is organized as follows. In Sec. II, we will

discuss the medium modifications to a heavy quark poten-
tial both in isotropic and anisotropic medium. In Sec. II A,
we start with the in-medium modification to the heavy
quark potential in an isotropic medium and then extend
it to a medium which exhibits a local anisotropy in mo-
mentum space in Sec. II B. To do that, we first obtain the
self-energy tensor for an anisotropic medium to obtain the
hard-loop resumed gluon propagator. Thereafter the dielec-
tric permittivity obtained in terms of retarded gluon propa-
gator and its Fourier transform at vanishing frequency
gives the desired nonrelativistic potential at finite tempera-
ture. The potential thus obtained depends not only on the
relative separation of the Q �Q pair but also on their relative
orientation with respect to the direction of anisotropy and
is found always deeper than in an isotropic medium. It is
found that in the weak-anisotropy limit, the correction
arising due to anisotropy to the isotropic part of the poten-
tial is small and thus has been treated as a perturbation.
So, using the first-order perturbation theory, we estimate
the shift in energy eigenvalues due to the small anisotropic
correction to the energy eigenvalues from the spherically
symmetric part in the isotropic medium and determine
their dissociation temperatures in Sec. III. Finally, we
conclude in Sec. IV.

II. HEAVY-QUARK EFFECTIVE POTENTIAL

A. For isotropic medium ð�¼ 0Þ
Potential models are based on the assumption that the

interaction between a heavy quark and its antiquark can be
described by a potential. At T ¼ 0, the hierarchy of well
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separated energy scales,mQ � mQv � mQv
2, allows one

to systematically integrate out the different scales and
obtain the nonrelativistic potential QCD (pNRQCD) where
the Cornell potential indeed shows up as the zeroth-order
matching coefficient [10,11]. Inspired by its success at zero
temperature, the potential model has been applied at finite
temperature, with the main assumption that medium effects
can be accounted by a temperature-dependent potential.

Recent lattice results [28] indicate the phase transition in
full QCD appears to be a crossover rather than a ‘‘true’’
phase transition with the related singularities in thermody-
namic observables. In light of the above findings, one
cannot simply ignore the effects of string tension between
the quark-antiquark pairs beyond Tc. This is indeed a very
important effect which needs to be incorporated while
setting up the criterion for the dissociation. Recently this
issue has successfully been addressed for the dissociation
of quarkonium in QGP by one of us [35,36] and we closely
follow their work in brief. Let us now start with a heavy
quark potential (Cornell potential) at T ¼ 0:

VðrÞ ¼ ��

r
þ �r; (1)

where � and � are the phenomenological parameters. The
former accounts for the effective coupling between a heavy
quark and its antiquark and the latter gives the string
coupling. The medium modification enters through the
Fourier transform of heavy quark potential as

~VðkÞ ¼ VðkÞ
�ðkÞ ; (2)

where VðkÞ is the Fourier transform (FT) of the Cornell
potential which requires a regularization. We regulate both
terms in the potential by multiplying with an exponential
damping factor and it is switched off after the FT is eval-
uated. This can be done by assuming r- as distribution
(r! rexpð��rÞÞ. The FTof the linear part�r exp ð��rÞ is

¼ � i

k
ffiffiffiffiffiffiffi
2�

p
�

2

ð�� ikÞ3 �
2

ð�þ ikÞ3
�
: (3)

After putting � ¼ 0, we obtain the FT of the linear term
�r as

~ð�rÞ ¼ � 4�

k4
ffiffiffiffiffiffiffi
2�

p (4)

and for the full Cornell potential, the FT is

VðkÞ ¼ � ffiffiffiffiffiffiffiffiffiffiffiffiffið2=�Þp �

k2
� 4�ffiffiffiffiffiffiffi

2�
p

k4
: (5)

The dielectric permittivity �ðkÞ is given in terms of the
static limit of the longitudinal part of the gluon self-energy
[46]. In the isotropic case, it can be decomposed into
longitudinal (�L) and transverse (�T) components which,
in the static limit, are associated with the screening of
electric and magnetic fields, respectively. However, in the

static limit, the transverse part �Tð0; k ! 0; TÞ vanishes,
i.e., static magnetic fields are not screened. In perturbation
theory, the quantity that enters in the Fourier transform of
the potential at finite temperature is the static limit of the
longitudinal gauge boson self-energy which was calculated
long ago [47] at the one-loop level,

lim
k!0

�Lð0; k; TÞ ¼ g2T2

�
Nc

3
þ Nf

6

�
� m2

D; (6)

wheremD is defined as the screening mass. Since the static
limit of the self-energy is momentum independent, the pole
of the inverse of dielectric permittivity is simply the gauge
invariant Debye mass mD, so it leads to an exponential
damping of the potential VðrÞ � exp ð�mDrÞ=r. In particu-
lar, this form of�L has the consequence that gluons screen
the strong interaction, in contrast to the zero temperature
case, over long-distance scale. If one assumes nonpertur-
bative effects such as the string tension which survives
even above the deconfinement point [48] then the depen-
dence of the dielectric function on the Debye mass may get
modified. However, we assume the same screening mass
scale mD which emerges in the Debye screened Coulomb
potential also appears in the nonperturbative long-distance
contribution due to string. In the following section, we take
over this assumption to anisotropic medium too. However,
different scales for the Coulomb and linear pieces of the
T ¼ 0 potential, rather than a single one, were already
employed in Refs. [49,50]. Moreover, they developed a
theoretical model to include nonperturbative effects
beyond the deconfinement temperature through dimension-
two gluon condensates to calculate the heavy quark-free
energy. Interestingly, their model predicts a duality
between the zero temperature Q �Q potential and the quark
self-energy and explains the lattice data well.
Finally, one can define a dielectric permittivity in one

loop by

�ðkÞ ¼
�
1þ�Lð0; k; TÞ

k2

�
�

�
1þm2

D

k2

�
: (7)

After substituting the dielectric permittivity in the Fourier
transform of Cornell potential (2) and then evaluating its
inverse FT, one obtains the medium modified potential in
the coordinate space [35,36]

Vðr; TÞ ¼
Z d3k

ð2�Þ3=2 e
ik�r ~VðkÞ

¼
�
2�

mD

� �mD

�
exp ð�r̂Þ

r̂
� 2�

mDr̂
þ 2�

mD

� �mD

(8)

with the dimensionless variable r̂ ¼ mDr. The constant
terms are introduced to yield the correct limit of Vðr; TÞ
as T ! 0. Such terms could arise naturally from the basic
computations of real time static potential in hot QCD [51]
and also from the real and imaginary time correlators in a
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thermal QCD medium [52]. The medium modified poten-
tial thus obtained has an additional long-range Coulomb
term with an (reduced) effective charge, in addition to the
conventional Yukawa term.

In the small distance limit, r � 1=mD, the above poten-
tial reduces to the Cornell potential, i.e., Q �Q does not see
the medium. On the other hand, in the screening region
r � 1=mD, the potential (8) reduces to

Vðr; TÞ � � 2�

m2
Dr

� �mD; (9)

which, apart from a constant term, looks like a Coulomb
potential encountered in the hydrogen-atom problem after
identifying the fine structure constant e2 with the effective
charge 2�=m2

D. The binding energies and the dissociation
temperatures for quarkonium states can thus be determined
by solving the Schrödinger equation numerically either
with the full potential (8) or analytically with the approxi-
mated form (9). In addition, one can also exploit the
advantage to demonstrate the flavor dependence of the
dissociation process where the dissociation temperatures
for 2-flavor are found to be higher than the 3-flavor
case [35,36].

B. For anisotropic medium ð� � 0Þ
1. Dielectric permittivity tensor

To study the perturbative potential with an anisotropic
parton distribution, consider a hot QCD plasma which, due
to expansion and finite (momentum) relaxation time, mani-
fests a local anisotropy in momentum space through the
distribution function,

fanisoðkÞ ¼ fiso

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ �ðk:nÞ2

q �
; (10)

i.e., fanisoðkÞ is obtained from an isotropic distribution
fisoðjkjÞ by removing particles with a large momentum
component along the direction of anisotropy, n [43]. We
shall restrict ourselves to a plasma close to equilibrium and
so that fanisoðkÞ is either a Bose-Einstein nBðkÞ or a Fermi-
Dirac nFðkÞ distribution function. This may be true because
by the time quarkonia have been formed in the plasma
medium from theQ �Q pairs produced at very early stages of
the collision, the systemmay not be then highly anisotropic
rather closer to isotropic distribution. In the limit of small
anisotropy, anisotropy parameter � is related to the shear
viscosity-to-entropy density (	=s) through the one-
dimensional Navier-Stokes formula by

� ¼ 10

T�

	

s
; (11)

where 1=� denotes the expansion rate of the fluid element.
However, the degree of momentum-space anisotropy is
generically defined by the parameter

� ¼ hk2
Ti

2hk2Li
� 1; (12)

where kL ¼ k � n and kT ¼ k� nðk � nÞ are the compo-
nents of momentum parallel and perpendicular to the di-
rection of anisotropy, n, respectively. The positive and
negative values of � correspond to the squeezing and the
stretching of the distribution function in the direction of
anisotropy, respectively. In the relativistic nucleus-nucleus
collisions, � is however, found to be positive. The calcu-
lation of the real part of the potential at finite anisotropy
was first obtained in Refs. [43,51,53] and was later ex-
tended to calculate the imaginary part [21,52,54,55] which
is seen as a generic feature of the medium. To study the
effect of anisotropy on the in-medium potential, one need
to calculate first the self-energy in an anisotropic medium.
With the specified anisotropic distribution function, we can
compute the gluon self-energy analytically [56]. We will
restrict our consideration to the spatial part of the self-
energy, ��
, for simplicity and the timelike components
can be easily obtained by using the symmetry and trans-
versality of the gluon self-energy tensor. The spatial com-
ponents of the retarded self-energy tensor reads [53]

�ijðPÞ ¼ �g2
Z

d3kvi @fðkÞ
@kl

�
�jl þ vjpl

P � V þ i�

�
; (13)

where P� � ðp0; pÞ is the four momentum of the external
gluon, p ¼ jpj ¼ is the amplitude of the spatial momen-
tum. The four-velocity, V� (1, v ¼ k=jkj), is a lightlike
four vector with v ¼ jvj and the partial derivative, @f=@kl,
in terms of new variable ~k, is given by

@fðkÞ
@kl

¼ vl þ �ðv � nÞnlffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �ðv � nÞ2p @fð~k2Þ

@~k
; (14)

where ~k2 ¼ k2ð1þ �ðv � nÞ2Þ. After integrating out over

the modified momentum ~k, the self-energy,�ij is simpli-

fied into [53]

�ijðPÞ ¼ m2
D

Z d�

4�
vi v

l þ �ðv � nÞnl
ð1þ �ðv � nÞ2Þ2

�
�jl þ vjpl

P � V þ i�

�
;

(15)

where the square of the Debye mass is defined by

m2
D ¼ � g2

2�2

Z 1

0
dkk2

dfisoðk2Þ
dk

: (16)

Unlike in the isotropic medium, the self-energy �ij shows
an extra dependence on the preferred anisotropic direction
(n), therefore, it can no longer be decomposed into trans-
verse and longitudinal parts; rather it becomes a tensor
[43,57,58] with more basis vectors. So the self-energy
tensor is decomposed into four structure functions as [43]

�ij ¼ �Aij þ �Bij þ �Cij þ �Dij; (17)
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where the coefficients �,�, �, and � can be determined for
any value of � [43]. Using these structure functions, one
can find the gluon propagator in the temporal axial gauge
as [43]

�ijð!; kÞ ¼ ðAij � CijÞ
k2 �!2 þ �

þ ðk2 �!2 þ �þ �ÞBij

ðk2 �!2 þ �þ �Þð��!2Þ � k2~n2�2

þ ð��!2ÞCij � �Dij

ðk2 �!2 þ �þ �Þð��!2Þ � k2~n2�2
:

(18)

In order to see how the anisotropy affects the response to
static electric field, we examine the propagator in the static
limit (! ! 0). Defining the masses in the static limit [43]

m2
� ¼ lim

!!0
�; m2

� ¼ lim
!!0

� k2

!2
�;

m2
� ¼ lim

!!0
�; m2

� ¼ lim
!!0

~nk2

!
Im�;

(19)

the gluon propagator becomes

lim
!!0

�ijð!; kÞ ¼ � ðk2 þm2
� þm2

�Þkikj
!2½ðk2 þm2

� þm2
�Þðk2 þm2

�Þ �m4
��
:

(20)

We can now factorize the denominator of the gluon
propagator as

ðk2 þm2
� þm2

�Þðk2 þm2
�Þ �m4

�

¼ ðk2 þm2þÞðk2 þm2�Þ; (21)

where

2m2� ¼ M2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M4 � 4ðm2

�ðm2
� þm2

�Þ �m4
�Þ

q
;

M2 ¼ m2
� þm2

� þm2
�: (22)

Thus the dielectric permittivity for an anisotropic medium
in the temporal axial gauge can be obtained from the
definition [59]

��1ðkÞ ¼ �lim
!!0

!2
kikj

k2
�ijð!; kÞ

¼ k2ðk2 þm2
� þm2

�Þ
ðk2 þm2þÞðk2 þm2�Þ

: (23)

If the anisotropy is small, the pole masses (19) can be
simplified, by retaining only the linear term in �, into [43]

m2
� ¼ ��

6
ð1þ cos 2�nÞm2

D;

m2
� ¼

�
1þ �

6
ð3 cos 2�n � 1Þ

�
m2

D;

m2
� ¼ �

3
sin 2�nm

2
D;

m2
� ¼ ��

�

4
sin�n cos�nm

2
D;

(24)

where �n is the angle between k and n. So the explicit
dependencies ofm� on the anisotropy, in the small � limit,
are given by

m2þ ¼
�
1þ �

6
ð3 cos 2�n � 1Þ

�
m2

D;

m2� ¼ ��

3
cos 2�nm

2
D:

(25)

In the isotropic limit, all masses become zero except one
(m2

� ¼ m2
� ¼ m2

� ¼ m2� ¼ 0, m2þ ¼ m2
D), which is the

only pole in the isotropic medium (7).

2. Medium modification to heavy quark potential

Once we have obtained the dielectric permittivity in
anisotropic medium (23), we substitute it in the Fourier
transform (2) and then evaluate its inverse Fourier trans-
form to obtain the medium modified potential in an aniso-
tropic medium:

Vðr; �; TÞ ¼ 1

ð2�Þ3=2
Z

d3k ~VðkÞeik�r

¼ � �

2�2

Z
d3k

ðk2 þm2
� þm2

�Þ
ðk2 þm2þÞðk2 þm2�Þ

eik�r

� 4�

ð2�Þ2
Z

d3k
ðk2 þm2

� þm2
�Þ

k2ðk2 þm2þÞðk2 þm2�Þ
eik�r:

(26)

After substituting the pole masses, mþ and m� (in the
small � limit) from (25), the potential becomes

Vðr;�;TÞ¼� �

2�2

Z d3keik�r

k2þm2
Dð1þ �

6 ð3cos2�n�1ÞÞ

� 4�

ð2�Þ2
Z d3keik�r

k2½k2þm2
Dð1þ �

6 ð3cos2�n�1ÞÞ�
�V1ðr;�;TÞþV2ðr;�;TÞ; (27)

where V1ðr; �; TÞ and V2ðr; �; TÞ are the medium-modified
potential corresponding to short-distance Coulombic
and long-distance string term, respectively, which can be
rewritten as
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V1ðr; �; TÞ ¼ � �

2�2

Z
d3keik�r

1

ðk2 þm2
DÞ

	
�
1þ �

6

m2
D

ðk2 þm2
DÞ

ð3 cos 2�n � 1Þ
��1

:

(28)

Expanding the integrand in terms of the anisotropy
parameter (�) and retaining the term linear in �
(weak-anisotropy limit, �<1), V1ðr; �; TÞ can bewritten as

V1ðr; �; TÞ ¼ � �

2�2

Z
d3keik�r

�
1

ðk2 þm2
DÞ

� �

6

m2
D

ðk2 þm2
DÞ2

ð3 cos 2�n � 1Þ
�

� Vð1Þ
1 ðr; � ¼ 0; TÞ þ Vð2Þ

1 ðr; �; TÞ; (29)

where Vð1Þ
1 ðr; � ¼ 0; TÞ and Vð2Þ

1 ðr; �; TÞ are the isotropic
and anisotropic contributions due to the medium modifi-
cation of the Coulomb term, respectively. Similarly
V2ðr; �; TÞ can be decomposed into isotropic and
anisotropic parts:

V2ðr; �; TÞ ¼ Vð1Þ
2 ðr; � ¼ 0; TÞ þ Vð2Þ

2 ðr; �; TÞ; (30)

where Vð1Þ
2 ðr; � ¼ 0; TÞ and Vð2Þ

2 ðr; �; TÞ are the isotropic

and anisotropic contributions due to the medium modifi-
cation of the linear term, respectively. Let us now calculate
them one by one.

The isotropic part Vð1Þ
1 ðr; � ¼ 0; TÞ of the Coulomb term

[already calculated in (8)] is given by (r̂ ¼ rmD)

Vð1Þ
1 ðr; � ¼ 0; TÞ ¼ ��mD

r̂
e�r̂ � �mD; (31)

and the anisotropic part,Vð2Þ
1 ðr; �; TÞ is given by

Vð2Þ
1 ðr; �; TÞ ¼ ��

�m2
D

2�2

Z d3keik�r

ðk2 þm2
DÞ2

�
2

3
� cos 2�n

�
:

(32)

One immediately observes that, unlike the isotropic part

Vð1Þ
1 ðr; � ¼ 0; TÞ, momentum anisotropy (� � 0) causes

the potential to depend on angle, in addition to interparticle
distance (r). Before deriving a general angular dependence
we first illustrate the two cases which are especially inter-
esting to grasp the effect of anisotropy on the heavy-quark
potential. However, they will be used further to derive the
general angular dependence. First, we consider that r is
parallel to the direction of anisotropy, n, where we have
taken the direction of anisotropy n along the z axis and the
angle between the r and k is . So the anisotropic part

Vð2Þ
1 ðr; �; TÞ for the medium modification to the Coulomb

term becomes

Vð2Þ
1 ðr k n; �; TÞ ¼ ��

�m2
D

�

Z d3k eik�r

ðk2 þm2
DÞ2

�
2

3
� cos2 

�
:

(33)

Vð2Þ
1 ðrkn;�;TÞ¼�Vð1Þ

1 ðr;�¼0;TÞ
�
2
er̂�1

r̂2
�2

r̂
� r̂

6
�1

�
:

(34)

V1ðr k n; �; TÞ ¼ Vð1Þ
1 ðr; � ¼ 0; TÞ þ Vð2Þ

1 ðr k n; �; TÞ
¼ ��mD

r̂
e�r̂ � �mD

� �
�mD

r̂
e�r̂

�
2
er̂ � 1

r̂2
� 2

r̂
� r̂

6
� 1

�
:

(35)

Next we consider the other scenario, i.e., when r is trans-
verse to the direction of anisotropy n, where we take r
along the z axis and n lying in the x� y plane, so � is
the azimuthal angle and�n is the angle between n with the

x axis. Then Vð2Þ
1 ðr ? n; �; TÞ becomes

Vð2Þ
1 ðr ? n; �; TÞ ¼ ��

�m2
D

2�2

Z d3k eik�r

ðk2 þm2
DÞ2

	
�
2

3
� cos 2ð���nÞsin 2

�
: (36)

After the angular integration (exploiting the cylindrical
symmetry), it is simplified into

Vð2Þ
1 ðr?n;�;TÞ¼�Vð1Þ

1 ðr;�¼ 0;TÞ
�
1�er̂

r̂2
þ1

r̂
þ r̂

3
þ1

2

�
:

(37)

Thus, the complete in-medium modification to the
Coulomb term [Eqs. (31) and (37)], for the transverse
alignment becomes

V1ðr ? n; �; TÞ ¼ Vð1Þ
1 ðr; � ¼ 0; TÞ þ Vð2Þ

1 ðr ? n; �; TÞ
¼ ��mD

r̂
e�r̂ � �mD

þ �
�mD

r̂
e�r̂

�
er̂ � 1

r̂2
� 1

r̂
� r̂

3
� 1

2

�
:

(38)

Next we calculate the in-medium modification to the linear
term V2ðr; �; TÞ, where the isotropic part [from (8)] is
given by

Vð1Þ
2 ðr; � ¼ 0; TÞ ¼ 2�

mDr̂
e�r̂ � 2�

mDr̂
þ 2�

mD

(39)

and the anisotropic contribution, when r is parallel to the
direction of anisotropy n, is given by
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Vð2Þ
2 ðr k n; �; TÞ ¼ ��

4�

ð2�Þ2
Z d3k eik�r

k2ðk2 þm2
DÞ2

	
�
2

3
� cos 2�n

�
: (40)

After the angular integration, it becomes

Vð2Þ
2 ðrkn;�;TÞ¼��

4�

mDr̂
e�r̂

�
2
ð1�er̂Þ

r̂2
þer̂þ2

3
þ2

r̂
þ r̂

12

�
:

(41)

Thus, the complete in-medium modification to the linear
term [Eqs. (39) and (41)], for r k n becomes

V2ðr k n;�;TÞ ¼ Vð1Þ
2 ðr;�¼ 0;TÞþVð2Þ

2 ðr k n;�;TÞ
¼� 2�

mDr̂
þ 2�

mDr̂
e�r̂þ 2�

mD

þ�
4�

mDr̂
e�r̂

�
2
er̂� 1

r̂2
� er̂þ 2

3
� 2

r̂
� r̂

12

�
:

(42)

On the other hand, when r is transverse to the direction
of anisotropy, n, the anisotropic contribution to the linear
term becomes

Vð2Þ
2 ðr ? n; �; TÞ ¼ ��

4�

ð2�Þ2
Z d3k eik�r

k2ðk2 þm2
DÞ2

	
�
2

3
� cos 2ð���nÞsin2 

�
; (43)

which is simplified into

Vð2Þ
2 ðr?n;�;TÞ¼��

4�

mDr̂
e�r̂

�ðer̂�1Þ
r̂2

þðer̂�7Þ
12

�1

r̂
� r̂

6

�
;

(44)

after the angular integration. Thus, the complete
in-medium modification to the linear term [Eqs. (39) and
(44)] for r ? n becomes

V2ðr?n;�;TÞ¼Vð1Þ
2 ðr;�¼0;TÞþVð2Þ

2 ðr?n;�;TÞ
¼� 2�

mDr̂
þ 2�

mDr̂
e�r̂þ 2�

mD

��
4�

m2
Dr

e�mDr

�ðer̂�1Þ
r̂2

þðer̂�7Þ
12

�1

r̂
� r̂

6

�
:

(45)

Therefore, the full medium-modified potential, consist-
ing of Coulomb and linear term [Eqs. (35) and (42),
respectively], for the quark pairs aligned to the direction
of anisotropy, yields as

Vðr ? n; �; TÞ

¼
�
2�

mD

� �mD

�
e�r̂

r̂
� 2�

mDr̂
þ 2�

mD

� �mD

þ �

�
4�

mDr̂
e�r̂

�
2
er̂ � 1

r̂2
� er̂ þ 2

3
� 2

r̂
� r̂

12

�

� �mD

r̂
e�r̂

�
2
ðer̂ � 1Þ

r̂2
� 2

r̂
� r̂

6
� 1

��

� Visoðr; TÞ þ Vk
anisoðr; �; TÞ: (46)

In the short distance limit (r � 1=mD), the potential
reduces to the vacuum potential (Cornell) for � ¼ 0, i.e.,
Q �Q pairs are not affected by the medium. On the other
hand, in the long-distance limit (r � 1=mD) (where the
screening occurs), we can neglect the Yukawa term and for
large values of temperatures, the product �mD will be
much greater than 2�=mD. Thus, the potential is simplified
into the following form:

Vðr k n; �; TÞ ’r̂� 1 � 2�

m2
Dr

� �mD � 4�

6

�
2�

m2
Dr

�

�r̂ �1
Visoðr̂ � 1; TÞ þ Vk

anisoðr̂ � 1; �; TÞ;
(47)

which clearly shows that the potential forQ �Q pairs aligned
in the direction of anisotropy gets screened less, i.e.,
becomes stronger compared to isotropic medium (9).
On the other hand, when the quark pairs are aligned

transverse to the direction of anisotropy (r ? n), the
medium modification to the Coulombic and linear terms
together [Eqs. (38) and (45), respectively] gives rise to the
following form:

Vðr ? n; �; TÞ

¼
�
2�

mD

� �mD

�
e�r̂

r̂
� 2�

mDr̂
þ 2�

mD

� �mD

� �

�
4�

mDr̂
e�r̂

�ðer̂ � 1Þ
r̂2

þ ðer̂ � 7Þ
12

� 1

r̂
� r̂

6

�

� �mD

r̂
e�r̂

�
er̂ � 1

r̂2
� 1

r̂
� 1

2
� r̂

3

��

� Visoðr; TÞ þ V?
anisoðr; �; TÞ: (48)

Similarly, the Q �Q pair does not see the medium in the
short-distance limit whereas in the long-distance limit,
the potential is simplified into a Coulombic form with a
dynamically screened color charge (2�=m2

D):

Vðr ? n; �; TÞ ’r̂�1 � 2�

m2
Dr

� �mD � �

6

�
2�

m2
Dr

�

�r̂�1
Visoðr̂ � 1; TÞ þ V?

anisoðr̂ � 1; �; TÞ;
(49)
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which again shows that the potential for the transverse
alignment is still stronger than in isotropic medium but
less strong than the former.

Until now we have demonstrated the effects of momen-
tum anisotropy on the heavy-quark interaction for the
special cases viz. the interparticle separation (r) may be
parallel or perpendicular to the direction of anisotropy (n).
We would now like to derive a potential which depends on
both the interparticle separation (r) and the angle (n)
between r and n, explicitly.

Let us assume that r is parallel to the z component of
k and the direction of anisotropy n lies in the y� z
plane (cylindrical symmetry) in the momentum space.
We may further assume that, given the weak anisotropy,
the potential in the anisotropic medium represents a
perturbation to the central potential in the isotropic
medium as

Vðr; n; TÞ ¼ Vðr; TÞ þ Vtensorðr; n; TÞ (50)

¼ Visoðr; TÞ þ �Fðr; n; TÞ; (51)

where the tensorial part Vtensorðr; n; TÞ represents a small
perturbation to the central one Vðr;TÞ and � is the

strength of noncentral component of the potential. The
function Fðr; n; TÞ can be expanded as

Fðr; n; TÞ ¼ f0ðr; TÞ þ f1ðr; TÞ cos 2n: (52)

The potentials for the angles n ¼ 0 and n ¼ �=2 help
us to determine the functions f0ðr; TÞ and f1ðr; TÞ in
terms1 of r̂ð¼rmDÞ as

f0ðr̂; TÞ ¼ 2�

mD

e�r̂

r̂

�
er̂ � 1

r̂2
� 5er̂

12
� 1

r̂
þ r̂

12
� 1

12

�

� �mD

2

e�r̂

r̂

�
er̂ � 1

r̂2
� 1

r̂
þ r̂

6
� 1

2

�
(53)

and

f1ðr̂; TÞ ¼ 2�

mD

e�r̂

r̂

�
3
er̂ � 1

r̂2
� er̂

4
� 3

r̂
� r̂

4
� 5

4

�

� �mD

2

e�r̂

r̂

�
3
er̂ � 1

r̂2
� 3

r̂
� r̂

2
� 3

2

�
: (54)

So after substituting f0 and f1 into Eq. (51), we obtain the
complete angular dependence of the potential in the limit
of weak anisotropy (� � 1):

Vðr; n; TÞ ¼
�
2�

mD

� �mD

�
e�r̂

r̂
� 2�

mDr̂
þ 2�

mD

� �mD

þ �

�
2�

mD

e�r̂

r̂

�
er̂ � 1

r̂2
� 5er̂

12
� 1

r̂
þ r̂

12
� 1

12

�
� �mD

2

e�r̂

r̂

�
er̂ � 1

r̂2
� 1

r̂
þ r̂

6
� 1

2

�

þ
�
2�

mD

e�r̂

r̂

�
3
er̂ � 1

r̂2
� er̂

4
� 3

r̂
� r̂

4
� 5

4

�
� �mD

2

e�r̂

r̂

�
3
er̂ � 1

r̂2
� 3

r̂
� r̂

2
� 3

2

��
cos 2n

�

¼ Vðr; TÞ þ Vtensorðr; n; TÞ: (55)

Thus, the anisotropy in the momentum space introduces an
angular (n) dependence, in addition to the interparticle
separation (r), to the potential in the coordinate space
which was earlier only r dependent in the isotropic me-
dium. We can now identify the �-independent term with
Vðr; TÞ in (50) which depends only on the separation (r)
distance and the �-dependent term with the tensorial com-
ponent Vtensorðr; n; TÞ in (50) which depends on both r and
n. Thus, the full potential in an anisotropic medium,
Vðr; n; TÞ, needs to be solved by the three-dimensional
Schrödinger equation. Since we are restricted in the small
� limit, the tensorial component Vtensorðr; n; TÞ is much
smaller than the (isotropic) central component Vðr; TÞ and
hence may be treated as the perturbation by a first-order
perturbation theory in quantum mechanics. However, the
isotropic component may be solved numerically by the
one-dimensional (radial) Schrödinger equation.

The heavy quark interaction at short and intermediate
distances (rmD 
 1) is important for the understanding of
in-mediummodification of heavy quark bound states and the
large distance property (rmD > 1) helps to understand the
bulk properties of the QGP phase which also affects the in-
medium properties of the quarkonium states. So we wish to
see how the potential in anisotropicmedium behaves in these
(short, intermediate, and long) limiting cases. In the short-
distance limit, the vacuum contribution dominates over the
medium contribution and this is exactly what happens here:

Vðr; n; TÞ ’r̂�1
�r� �

r
(56)

for � ¼ 0. On the other hand, in the long-distance limit
(r̂ � 1), the potential is reduced to a long-range
Coulombic interaction after identifying the factor 2�=m2

D

with the coupling (g2s) of the interaction

Vðr;n;TÞ ’r̂�1� 2�

m2
Dr

��mD�5�

12

2�

m2
Dr

�
1þ3

5
cos2n

�

�Visoðr̂� 1;TÞþVtensorðr̂� 1:n;TÞ: (57)
1The variable r̂ should not be confused with the usual notation

of unit vector in the coordinate system.
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Since the resulting potential is Coulombic plus a subleading
anisotropic contribution, it then has to satisfy the condition
a0mD � 1, where a0 is the Bohr radius andmD is the Debye
mass. Since theBohr radiusa0 is proportional tom

2
D=ðmQ�Þ,

the above condition for the long-distance limit implies that
m3

D=ðmQ�Þ should be greater than 1. Thus, this inequality

results in a condition on the Debye mass and hence on the
temperature. It is seen that the above condition is satisfied for
the temperatures above the critical temperature (>Tc) for the
charmonium states and above 1:6Tc for the bottomonium
states. The temperature ranges (Tc and 1:6Tc) for c �c and b �b
states above which the effective potential looks Coulombic
are smaller than their respective dissociation temperatures
and thus seems justified to approximate the potential in the
long-distance limit. In the intermediate distance (rmD ’ 1)
scale, the interaction becomes complicated and thus the
potential does not look simpler in contrast to the asymptotic
limits, so this limit needs to be dealt numerically with the full
potential in a Schrödinger equation.

We have thus noticed overall that, in the short distance
limit, the potential has not been affected in the isotropic
limit. On the contrary, in the long-distance limit, the mo-
mentum anisotropy transpires an angular dependence in
the potential and gives rise to a characteristic angular (n)
dependence between the relative separation (r) and the
direction of anisotropy (n). As a corollary, the quark pairs
aligned along the direction of anisotropy feel more attrac-
tion than the transverse alignment because the interquark
potential along the direction of anisotropy is screened less
than the transverse alignment. However, the potential in the
anisotropic medium is always stronger than in the isotropic
medium.

To see the effects of anisotropy, we have shown the
potentials for Q �Q pairs in an anisotropic medium in
Figs. 1 and 2, for n ¼ 0 (parallel) and n ¼ �=2 (perpen-
dicular), respectively. The immediate observation common
to all figures is that the interquark potential in anisotropic

medium is always more attractive than in isotropic
medium. This can be understood physically: In the small
anisotropic limit, the anisotropic distribution function may
be obtained from an isotropic distribution fisoðjkjÞ by
removing particles with a large momentum component

along n, i.e., fiso
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 þ �ðk � nÞ2p �
. This transpires in the

reduction of the number of partons (around a static test
heavy quark) more than in isotropic medium, i.e.,
nanisoð�Þ ¼ niso=

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ �

p
. Therefore, the (effective) Debye

mass always becomes smaller and results in less screening
of the potential than in isotropic medium.
The second observation is that the quark pairs aligned

along (n ¼ 0) the direction of anisotropy are stronger than
aligned perpendicular (n ¼ �=2) to the direction of
anisotropy because, for the parallel alignment, the compo-
nent of momentum to be removed is higher than the
transverse alignment so the distribution function for the
parallel alignment case contributing to the Debye mass is
smaller than the transverse alignment. Hence, the potential
for the parallel case will be screened less compared to the
transverse case. However, the difference between the two
scenarios will be not much different because the contribu-
tions to the Debye mass from the partons having higher
momenta are very small.
To understand the effect of the linear term on the

medium modified potential quantitatively, in addition to
the Coulomb term, we have plotted separately the medium
modifications to the linear term, the Coulomb term, and
their sum in the right panels of Figs. 1 and 2, for parallel
and transverse case, respectively. Medium modification to
the Cornell potential contains two parts: one is due to the
medium modifications of the linear term (�r) and the other
one is due to the medium modifications of the Coulomb
term. As usually done in the literature, medium modifica-
tion to the linear term does not arise because the string
tension was assumed to be zero [42,60–62] at or beyond
deconfinement temperature [63]. Since string tension is
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FIG. 1. The left panel represents the potential divided by ðg2CFmDÞ and the right panel represents the contribution of Coulomb,
string, and both together as a function of r̂ð¼ rmDÞ for quark pairs parallel to the direction of anisotropy, n.
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found to be nonzero at Tc rather it approaches zero much
beyond Tc [32–34] and hence the medium modification to
the linear term may be a nonzero contribution to the
potential even at temperatures beyond Tc, although it is
very small. In the isotropic medium, medium modification
to the linear term remains positive up to 2–3 Tc, making the
potential less attractive compared to T ¼ 0. On contrast, in
the anisotropic case medium modification to the linear
term becomes negative and the overall full potential
becomes more attractive.

As mentioned earlier we used the same screening scale
for both the linear and Coulombic terms in our calculation
which does not look plausible. It would thus be interesting
to see the effects of different scales for the Coulomb and
linear pieces of the T ¼ 0 potential [49,50]. To illustrate it
graphically, we have compared our results with their
results (in Fig. 3) for the isotropic case. The difference in

the large distance limit arises due to the difference in the
potential at infinity (� �=mD) so the potential in Ref. [50]
is more attractive than our potential.

III. PROPERTIES OF QUARKONIUM
IN AN ANISOTROPIC MEDIUM

A. Binding energy

To understand the in-medium properties of the quark-
onium states, we need to model the heavy quark potential
as a function of temperature and solve the resulting
Schrödinger equation. The potential thus obtained in
anisotropic medium (55), in contrast to the (spherically
symmetric) potential in isotropic medium, is nonspherical
and so one cannot simply obtain the energy eigenvalues by
solving the radial part of the Schrödinger equation only
because the radial part is no longer sufficient due to the
angular dependence in the potential. Another way to under-
stand is that, because of the anisotropic screening scale, the
wave functions are no longer radially symmetric for � � 0.
So one has to solve the potential in anisotropic medium
through the Schrödinger equation in three dimensions.
However, we have seen in the potential (55) that in the
small � limit, the spherically nonsymmetric component
Vtensorðr; n; TÞ is much smaller in comparison to spheri-
cally symmetric (isotropic) component Vðr; TÞ and thus
can be treated as perturbation. This can be understood
physically: The tensorial (nonsphericity) nature of the
potential in the coordinate space is arisen due to anisotropy
in the momentum space. However, we are restricted to a
plasma which is very much close to equilibrium because,
by the time quarkonium states are formed in the plasma
around ð1–2ÞTc, the plasma becomes almost isotropized.
Thus, this weak (momentum) anisotropy (� � 1) tran-
spires feeble angular dependence in the potential so the
potential will be spherically abundant with a tiny non-
spherical component. So we could treat the anisotropic
component through the perturbation theory in quantum
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E.Megias et al.
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FIG. 3. The dotted circle represents the results from Megias
et al. [50] where different scales were used for linear and
Coulomb terms separately whereas the solid line represents
our work.
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FIG. 2. The notations are the same as in Fig. 1 but for quark pairs perpendicular to the direction of anisotropy, n.
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mechanics and the isotropic part should be handled
numerically by the one-dimensional radial Schrödinger
equation.

There are some numerical methods to solve the
Schrödinger equation either in partial differential form
(time-dependent) or eigenvalue form (time-independent/
stationary) by the finite difference time domain method
or the matrix method [64], respectively. However, we
choose the matrix method to solve the stationary
Schrödinger equation with the isotropic part of the poten-
tial (55) in anisotropic medium. In this method, the
Schrödinger equation can be cast in a matrix form through
a discrete basis, instead of the continuous real-space posi-
tion basis spanned by the states j ~xi. Here the confining
potential V is subdivided into N discrete wells with poten-
tials V1; V2; . . . ; VNþ2 such that for ith boundary potential,
V ¼ Vi for xi�1 < x< xi; i ¼ 2; 3; . . . ; ðN þ 1Þ. Therefore
for the existence of a bound state, there must be an
exponentially decaying wave function in the region
x > xNþ1 as x ! 1 and has the form

�Nþ2ðxÞ ¼ PE exp ½��Nþ2ðx� xNþ1Þ�
þQE exp ½�Nþ2ðx� xNþ1Þ�; (58)

where, PE ¼ 1
2 ðANþ2 � BNþ2Þ, QE ¼ 1

2 ðANþ2 þ BNþ2Þ,
and, �Nþ2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�ðVNþ2 � EÞp

. The eigenvalues can be
obtained by identifying the zeros of QE.

Therefore, the corrected energy eigenvalue comes from
the solution of the Schrödinger equation of the isotropic
component Visoðr; TÞ, using the above-mentioned matrix
method plus the first-order perturbation due to the aniso-
tropic component Vanisoðr; ;�; TÞ (55) through the quan-
tum mechanical perturbation theory. The variations of the
binding energies with the temperature are shown in Fig. 4
for J=c and� for different values of anisotropy parameter
�, to see the effect of anisotropy on the binding energies
compared to the isotropic case.

There are mainly two observations: First, as the anisot-
ropy increases, the binding of Q �Q pairs get stronger with

respect to their isotropic counterpart because the potential
becomes deeper with the increase of anisotropy due to
weaker screening. It seems that the (effective) Debye
mass mDð�; TÞ in an anisotropic medium is always smaller
than in an isotropic medium. As a result the screening of
the Coulomb and string contribution are less accentuated
and hence the quarkonium states become more stronger
than in an isotropic medium. However, the effects of
anisotropy on the excited states are not so pronounced
compared to the ground states because they are generically
weakly bound. Secondly, there is a strong decreasing trend
with the temperature. This is due to the fact that the
screening becomes always stronger with the increase of
temperature, so the potential becomes weaker compared to
T ¼ 0 and results in early dissolution of quarkonia in the
medium. Our results on the temperature dependence of
the binding energies show an agreement with the similar
variations in other calculations [55].
In our calculation, we use the Debye mass (mL

D ¼
1:4mLO

D ) obtained by fitting the (color-singlet) free energy
in lattice QCD [38] where both one- and two-loop expres-
sions [61,65,66] for coupling have been used to explore the
effects of running coupling on the dissociation process.
Thus, the study of the temperature dependence of the

binding energies is poised to provide a wealth of informa-
tion about the dissociation pattern of quarkonium states in
an anisotropic thermal medium that can be used to deter-
mine the dissociation temperatures of different states in the
next section.

B. Dissociation temperatures for heavy quarkonia

Dissociation of a two-body bound state in an thermal
medium can be understood qualitatively: When the binding
energy of a resonance state drops below the mean thermal
energy of a parton, the state becomes feebly bound. The
thermal fluctuation then can easily dissociate by exciting
them into the continuum. The spectral function technique
in potential models defines the dissociation temperature as
the temperature above which the quarkonium spectral
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function shows no resonancelike structures but the widths
shown in spectral functions from current potential model
calculations are not physical. The broadening of states with
the increase in temperature is not included in any of these
models. The authors has argued in Ref. [38] that one need
not to reach the binding energy (Ebin) to be zero for the
dissociation rather a weaker condition Ebin < T causes a
state weakly bound. In fact, when Ebin ’ T, the resonances
have been broadened due to direct thermal activation, so
the dissociation of the bound states may be expected to
occur roughly around Ebin ’ T.

Using the binding energies calculated earlier in Sec. III A,
the dissociation temperatures (TD) (shown in Table I) are
found minimum for the isotropic case and increase with the
increase of anisotropy (� > 0) viz. J=c is dissociated at
1:38Tc in an isotropic medium while in an anisotropic
medium with the anisotropies � ¼ 0:3 and 0.6, they will
survive higher temperatures, 1:41Tc and 1:43Tc, respec-
tively. Similarly the dissociation temperatures of � for
� ¼ 0:3 and 0.6 are 1:71Tc and 1:72Tc, respectively,
corresponding to the value (1:70Tc) in an isotropic medium.

Finally, we wish to explore the effects of perturbative as
well as nonperturbative contributions on the dissociation of
quarkonia states qualitatively in terms of the Debye mass.
Instead of lattice Debye mass (mL

D), if we use the leading-
order Debye mass (mLO

D < mL
D), the screening of the po-

tential will be much smaller and hence the binding energies
(1=m4

D) will be enhanced substantially and result in the
increase of the dissociation temperatures. On the other
hand, if we include the nonperturbative corrections of
order Oðg2TÞ and Oðg3TÞ to the leading-order Debye
mass [67], the dissociation temperatures become unreal-
istically small which looks unfeasible. Thus, this study
provides us a handle to decipher the extent up to which
and how much nonperturbative effects should be incorpo-
rated into the Debye mass.

IV. CONCLUSIONS AND OUTLOOK

In conclusion, we have studied the dissociation of
quarkonia by correcting the full Cornell potential with a
dielectric function embodying the effects of an weakly
anisotropic medium where the in-medium modification
causes less screening of the interaction and hence the
potential gets stronger than in an isotropic medium.
Anisotropy further introduces a characteristic angular ()
dependence to the potential in the coordinate space, in addi-
tion to the interparticle separation r, making it spherically

nonsymmetric and needs to be solved numerically by the
three-dimensional Schrödinger equation. However, in the
small � limit, the spherically nonsymmetric component is
much smaller in comparison to teh spherically symmetric
component and can be treated in a perturbation theory and
the symmetric (isotropic) component is solved numerically
by the one-dimensional radial Schrödinger equation. So the
corrected binding energy is obtained by the direction-
independent shift due to the spherically nonsymmetric
component to the eigenvalues of spherically symmetric
potential.
We have observed that the quarkonia states are always

more bound and as a consequence, they survive higher
temperature compared to the isotropic medium. Our results
are found relatively higher compared to similar calculation
[53], which may be due to the absence of three-
dimensional medium modification of the linear term in
their calculation. In fact, the one-dimensional Fourier
transform of the Cornell potential yields the similar form
used in the lattice QCD in which one-dimensional color
flux tube structure was assumed [68]. However, at finite
temperature that may not be the case since the flux tube
structure may expand in more dimensions [42]. Therefore,
it would be better to consider the three-dimensional form
of the medium modified Cornell potential which has been
done exactly in the present work.
In brief, J=c is found to be dissociated at 1:38Tc and

1:43Tc for � ¼ 0 and 0.6, respectively, whereas the corre-
sponding temperatures for the � state are 1:70Tc and
1:72Tc. Moreover, we explore the effects of perturbative
as well as nonperturbative effects on the dissociation pro-
cess qualitatively. For example, the perturbative result of
Debye mass gives much higher values of dissociation
temperatures whereas the inclusion of nonperturbative
corrections to it gives unrealistically smaller values. It
may be important to note that in the weakly coupled
regime, the effects of (nonperturbative) terms viz. g2T,
g3T etc. may be checked separately but in the strong-
coupling regime, this may not be possible because they
are no longer uncoupled. These findings envisage a basic
question about the nature of dissociation of quarkonium in
an anisotropic hot QCD medium.
Apart from the uncertainty of the correct form of the

potential, there is an arbitrariness in the definition of
dissociation temperature. So, in the future, we wish to
investigate the dissociation through the decay width of
quarkonium bound states calculated from the imaginary
part of the potential because it is now well understood that
potential in thermal medium always has an imaginary
component [51,69].
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TABLE I. Dissociation temperatures (TD) for the quarkonium
states with one-loop QCD coupling.

State � ¼ 0:0 � ¼ 0:3 � ¼ 0:6

J=c 1.38 1.41 1.43

� 1.70 1.71 1.72
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