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We investigate the effects of pairing fluctuations in fermionic superfluids/superconductors where pairing

occurs among three species (colors) of fermions. Such color superfluids/superconductors can be realized in

three-component atomic Fermi gases and in dense quark matter. The superfluidity/superconductivity is

characterized by a three-component order parameter which denotes the pairing among the three colors of

fermions. Because of the SU(3) symmetry of the Hamiltonian, one color does not participate in pairing. This

branch of fermionic excitation is gapless in the naive BCS mean-field description. In this paper, we adopt a

pairing fluctuation theory to investigate the pairing fluctuation effects on the unpaired color in strongly

coupled atomic color superfluids and quark color superconductors.At low temperature, a large pairing gap of

the paired colors suppresses the pairing fluctuation effects for the unpaired color, and the spectral density of

the unpaired color shows a single Fermi-liquid peak, which indicates the naive mean-field picture remains

valid. As the temperature is increased, the spectral density of the unpaired color generally exhibits a three-

peak structure: The Fermi-liquid peak remains but gets suppressed, and two pseudogaplike peaks

appears. At and above the superfluid transition temperature, the Fermi-liquid peak disappears completely

and all three colors exhibit pseudogaplike spectral density. The coexistence of Fermi liquid and

pseudogap behavior is generic for both atomic color superfluids and quark color superconductors.
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I. INTRODUCTION

Color superconductivity in dense quark matter, in gen-
eral, appears due to the attractive interactions in certain
diquark channels [1–3]. Taking into account only the
screened (color) electric interaction which is weakened at
the Debye mass scale g� (g is the QCD coupling constant
and� is the quark chemical potential), the early studies [1]
predicted a rather small pairing gap �� 1 MeV for mod-
erate density where ���QCD (�QCD � 300 MeV is the

QCD energy scale). The breakthrough in this field of
research was made in [2] where it was observed that the
pairing gap is about 2 orders of magnitude larger than the
previous prediction using the instanton-induced interac-
tions and the phenomenological four-fermion interactions.
On the other hand, it was first pointed out by Son that at
asymptotic high densities, the unscreened magnetic
interaction dominates [4]. This leads to a non-BCS gap

���g�5 exp ð�c=gÞ [5] where c ¼ 3�2=
ffiffiffi
2

p
, which

matches the large magnitude of � at moderate density
predicted by the instanton-induced interactions and the
phenomenological four-fermion interactions.

Such gaps at moderate density are so large that they may
fall outside of the applicability range of the usual BCS-like
mean-field theory. It was estimated that the size of the
Cooper pairs or the superconducting coherence length �c

becomes comparable to the averaged interquark distance

d [6] at moderate density where ���QCD. This feature is

highly contrasted to the standard BCS superconductivity in
metals where �c � d. Qualitatively, we can examine the
ratio of the superconducting transition temperature Tc to
the Fermi energy EF, � ¼ Tc=EF [7]. We have �� 10�5

for ordinary BCS superconductors and �� 10�2 for high
temperature superconductors. For quark matter at moder-
ate density, taking EF ’ 400 MeV and Tc ’ 50 MeV [8],
we find that � is even higher, �� 10�1, which is close to
that for the resonant superfluidity in strongly interacting
atomic Fermi gases [7]. This indicates that the color super-
conducting quark matter at moderate density is in the
strongly coupled region or the BCS-Bose-Einstein conden-
sation (BCS-BEC) crossover [9–11]. It is known that
the pairing fluctuation effects play important role in the
BCS-BEC crossover [12]. The effects of the pairing fluc-
tuations on the quark spectral properties including possible
pseudogap formation in heated quark matter (above the
color superconducting transition temperature) were first
elucidated by Kitazawa, Koide, Kunihiro, and Nemoto
[13]. One purpose of this paper is to extend these works
to the superfluid/superconducting phase, namely, below the
critical temperature.
Many efforts have been made in understanding the

single-particle properties and equations of state in the
strongly interacting region of the s-wave Fermi superfluids
[14,15] where pairing occurs between two components of
fermions. Satisfactory agreement with the experimental
data from trapped fermionic atoms has been achieved*lianyi@th.physik.uni-frankfurt.de
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[16,17]. Recently, the single-particle spectral density in the
strongly interacting region has been measured in cold atom
experiments. It was found that a pseudogap phase appears
above the critical temperature [18–20], where the system
retains some of the characteristics of the superfluid phase
such as a BCS-like dispersion and a partially gapped density
of states but does not exhibit superfluidity. The pseudogap
behavior of the single-particle excitationswas also found by
quantum Monte Carlo calculations [21]. The agreement
between the theoretical predictions and the experimental
data in the equations of state and the single-particle spectral
functions indicates that the pairing fluctuation effect is
significant in the strongly interacting region, which defies
the conventional BCS-like mean-field theory.

In this paper, we investigate the pairing fluctuation
effects in the systems where pairing occurs among three
species (colors) of fermions, in contrast to the ordinary
BCS-BEC crossover problem where pairing occurs be-
tween two fermion components. Such color superfluidity/
superconductivity can be realized in three-component
atomic Fermi gases [22] and two-flavor dense quark matter
which appears around �� 400 MeV in the quark matter
phase diagram [23].

The color superfluidity/superconductivity is generally
characterized by a three-component order parameter ¼
ð�1;�2;�3Þ, where �1 � hc rc gi, �2 � hc gc bi, and

�3 � hc rc bi. Here we use red (r), green (g), and blue
(b) to denote the three species of fermions. In QCD, they
are the color degrees of freedom for quarks. If the
Hamiltonian of the system has an SU(3) color symmetry,
the nonvanishing order parameter breaks the SU(3) sym-
metry group down to a subgroup SU(2). However, due to
the SU(3) symmetry of the Hamiltonian, the effective
potential V ð�Þ should depend only on the combination
��y ¼ j�1j2 þ j�2j2 þ j�3j2. Therefore, we can choose
a specific gauge for the three-component order parameter,
such as � ¼ ð�; 0; 0Þ without loss of generality. This
simple argument shows that there exists a branch of fer-
mion which does not participate in the pairing. For the
gauge � ¼ ð�; 0; 0Þ, only the red and green fermions
participate in the pairing, while the blue fermions do not.
A schematic plot of this pairing pattern is shown in Fig. 1.
In the naive BCS-like mean-field description, the unpaired
blue fermions possess a free energy dispersion and are
gapless. However, we note that even though the red-blue
and green-blue pairs do not condense, their pairing fluctu-
ations do exist. For weak attraction, the pairing fluctuation
effects on the single-particle excitations can be safely
neglected and the BCS-like mean-field description is ap-
plicable. In this paper, we are interested in the strongly
interacting systems, where the pairing fluctuation effects
become significant. Two systems will be considered: (i) a
resonantly interacting three-component Fermi gas and
(ii) a two-flavor quark color superconductor at quark
chemical potential �� 400 MeV.

The beyond-mean-field approach for the study of the
pairing fluctuation effects adopted in this paper is a
generalization of the T-matrix theory for two-component
(spin- 12 ) fermionic systems [14] to three-component sys-

tems and is also a generalization of the T-matrix theory for
heated quark matter [13] to the low temperature domain.
We will focus on the pairing fluctuation effects on the
unpaired fermions in the color superfluids/superconduc-
tors, which is absent in the two-component systems. The
paper is organized as follows. In Sec. II, we study the
pairing fluctuation effects in atomic color superfluids,
which may be realized in three-component atomic Fermi
gases. In Sec. III, the pairing fluctuation effects in two-
flavor color superconductors will be discussed. We sum-
marize in Sec. IV. The natural units c ¼ ℏ ¼ kB ¼ 1 will
be used throughout the paper.

II. COLOR SUPERFLUIDITY IN ATOMIC
FERMI GASES

In this section we study the pairing fluctuation effects in
an atomic color superfluid [24–34], a cold atom analogue
of color superconductivity in dense QCD [31]. We consider
a dilute Fermi gas composed of three species of fermions
with a common mass m. Such a system can be realized in
cold atom experiments by trapping the lowest three hyper-
fine states of the 6Li or 40K atoms in the atomic trap [22].
We assume that there exist short-range attractive interac-
tions among difference species. The attraction strength can
be tuned from weak to strong by means of the Feshbach
resonance. In the dilute limit, the attractive interactions
can be modeled by contact interactions. The Hamiltonian
density of the system is given by

fluctuation fluctuation

red greenfluctuation

condensation

blue

FIG. 1 (color online). A schematic plot of the pairing pattern in
color superfluids/superconductors, corresponding to the order
parameter gauge � ¼ ð�; 0; 0Þ. Only the red and green fermions
participate in pairing and their pairs condense. Even though the
blue fermions do not participate in pairing, pairing fluctuations
exist for red-blue and green-blue pairs, in addition to the red-
green pairs.
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H ¼ X3
�¼1

c �
�

�
�r2

2m
���

�
c �

� X3
�>�¼1

g��c
�
�c

�
�c �c �; (1)

where �1, �2, and �3 are the chemical potentials for the
three species, and g12, g23, g13 are the contact interactions
among them.

In the following, we assume that the total particle num-
ber is fixed and the chemical potentials become equal,
�1 ¼ �2 ¼ �3 ¼ �. Further, we assume that the three
coupling constants also equal each other, g12 ¼ g13 ¼
g23 ¼ g. Then the Hamiltonian (1) has a global SU(3)
symmetry. To show this explicitly, we define a three-
component fermion field c � ðc 1; c 2; c 3ÞT. Then the
Hamiltonian density (1) can be expressed as [26]

H ¼ c y
�
�r2

2m
��

�
c þ g

4

X
a¼2;5;7

ðc y�ac
�Þðc T�ac Þ;

(2)

where �a are the Gell-Mann matrices in the ‘‘color space’’
spanned by the three fermion species. The contact coupling
constant g can be renormalized by introducing the s-wave
scattering length as of the short-range potential via the
equation

1

gð�Þ ¼ � m

4�as
þ X

jkj<�

1

2�k
: (3)

Here �k ¼ k2=ð2mÞ is the free dispersion of the fermions,
and the integral over the momentum k is associated with a
cutoff �. We can set � ! 1 in the physical equations
since all UV divergences are removed by Eq. (3). In
general, by tuning the scattering length from small to large
negative values, we can realize an evolution from a weakly
coupled BCS-like color superfluid to a strongly coupled
color superfluid.

A. BCS mean-field theory

Because of the attractive interactions among the unlike
colors, at low temperature the system is in a color super-
fluid phase. Different to the two-component (spin- 12 ) fer-

mionic systems where the superfluidity is characterized by
a single-component order parameter�� hc "c #i, the color
superfluidity in the present three-component Fermi gas
is characterized by a three-component order parameter
� ¼ ð�1;�2;�3Þ, where

�1 ¼ g

2
hc T�2c i ¼ ighc 1c 2i;

�2 ¼ g

2
hc T�5c i ¼ ighc 2c 3i;

�3 ¼ g

2
hc T�7c i ¼ ighc 3c 1i:

(4)

Since the Hamiltonian (2) has an exact SU(3) symme-
try, we can show that the effective potential V ð�Þ
depends only on the combination [26]

��y ¼ j�1j2 þ j�2j2 þ j�3j2: (5)

Therefore, different pairing configurations are physically
equivalent and we can choose a specific gauge �1 ¼
� � 0, �2 ¼ �3 ¼ 0 without loss of generality. In this
gauge, only the red and green fermions participate in
the pairing and the red-blue pairs condense, leaving the
blue fermions unpaired. For a general gauge where all
three components are nonzero, the unpaired branch is a
linear combination of the three colors. Because of the
SU(3) symmetry of the Hamiltonian, different choices
of the order parameter lead to the same physical results.
For convenience, we use the gauge � ¼ ð�; 0; 0Þ in the
following.
Before going on, we should mention that the BCS-BEC

crossover in the present three-component Fermi gases is
somewhat different from the two-component systems due
to the possibility of the appearance of a trionic phase,
which is a Fermi-liquid state of three-fermion bound states
[25,32]. Based on an attractive Fermi Hubbard model, it
was shown that there exists a quantum phase transition
from the color superfluid phase to the trionic phase when
the attraction strength exceeds a critical value [25]. On the
other hand, it was shown that large three-body losses in
three-component Fermi gases confined in optical lattices
can stabilize the color superfluid phase by suppressing
the formation of trions [29]. Therefore, in this paper we
neglect the possibility of the trionic phase and consider the
color superfluid phase only.
Now we turn to the general formalism. It is convenient

to work with the Nambu-Gor’kov basis c NG ¼ ðc ; c �ÞT.
In the Nambu-Gor’kov representation, the fermion self-
energy �ðKÞ and the dressed fermion propagator SðKÞ are
2� 2 matrices. They satisfy Dyson’s equation

S11ðKÞ S12ðKÞ
S21ðKÞ S22ðKÞ

 !�1

¼ i!n��k 0

0 i!nþ�k

 !
� �11ðKÞ �12ðKÞ

�21ðKÞ �22ðKÞ

 !
: (6)

Here and in the following, K ¼ ði!n;kÞ with !n ¼
ð2nþ 1Þ�T (n integer) being the fermionic Matsubara
frequency, and �k ¼ �k ��. From the Green’s function
relation we have the gap equation

� ¼ g

2

X
K

Tr½�2S12ðKÞ� (7)

and the number equation

n ¼ X
K

Tr½S11ðKÞ�: (8)
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Here and in the following, the notation
P

K ¼ T
P

n

P
k

with
P

k ¼ R
d3k=ð2�Þ3 is used.

In the BCS mean-field theory, the fermion self-energy is
chosen as

�ðKÞ ¼ �BCSðKÞ ¼ 0 ��2

��2 0

 !
(9)

and hence is momentum independent. Here we have set �
to be real without loss of generality. Then the dressed
fermion propagator SðKÞ can be evaluated as

SBCS
11 ðKÞ ¼ G�ðKÞ�rg þ G0ðKÞ�b;

SBCS
12 ðKÞ ¼ F �ðKÞ�2;

SBCS
22 ðKÞ ¼ �SBCS

11 ð�KÞ;
SBCS
21 ðKÞ ¼ SBCS

12 ðKÞ:

(10)

Here we have defined two matrices, �rg ¼ diagð1; 1; 0Þ and
�b ¼ diagð0; 0; 1Þ, in the color space. The Green’s func-
tions G�ðKÞ;F �ðKÞ and G0ðKÞ are analytically given by

G�ðKÞ ¼ i!n þ �k

ði!nÞ2 � E2
k

;

F �ðKÞ ¼ �

ði!nÞ2 � E2
k

;

G0ðKÞ ¼ 1

i!n � �k

;

(11)

where Ek ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2
k þ�2

q
is the BCS-like dispersion.

In the above BCS mean-field description, it is clear that
the paired colors possess BCS-like dispersions and obtain
an excitation gap �, while the unpaired color has a free
dispersion and remains gapless (for �> 0). The physical
value of the pairing gap � is determined by the BCS gap
equation

� m

4�as
¼X

k

�
1� 2fðEkÞ

2Ek

� 1

2�k

�
; (12)

where fðEÞ ¼ 1=ðeE=T þ 1Þ is the Fermi-Dirac distribu-
tion. However, we note that there exists a serious problem
for the naive BCS mean-field approach. If we consider
another system with the couplings, g12 ¼ g and g13 ¼
g23 ¼ 0, i.e., the blue color is really free, we find no
difference in comparison with the present system with
g12 ¼ g13 ¼ g23 ¼ g. Therefore, the pairing fluctuation
effects are likely significant in the color superfluid, espe-
cially when the attractive coupling g is not weak.

B. Fermion self-energy beyond BCS

Now we take into account the pairing fluctuations and
study their effects on the single-particle excitation spectra.
To this end, we first construct the particle-particle ladder
DðQÞ or the ‘‘pair propagator,’’ which is diagrammatically

represented in Fig. 2(a). In the color superfluid phase it is a
2� 2 matrix,

Dab
11ðQÞ Dab

12ðQÞ
Dab

21ðQÞ Dab
22ðQÞ

 !
¼ 	ab

11ðQÞ 	ab
12ðQÞ

	ab
21ðQÞ 	ab

22ðQÞ

 !�1

; (13)

where 	ðQÞ is the pair susceptibility. Note that the matrix
elements ofDðQÞ and 	ðQÞ are also matrices in an adjoint
space of the SU(3) group spanned by the indices a, b ¼ 2,
5, 7. The explicit form of the pair susceptibility 	ðQÞ is
given by

	ab
11ðQÞ ¼ 
ab

g
� 1

2

X
K

Tr½�aS11ðQ� KÞ�bS11ðKÞ�;

	ab
12ðQÞ ¼ 1

2

X
K

Tr½�aS12ðQ� KÞ�bS12ðKÞ�;

	ab
22ðQÞ ¼ 	ab

11ð�QÞ; 	ab
21ðQÞ ¼ 	ab

12ðQÞ:

(14)

Here and in the following, Q ¼ ði�n;qÞ with !n ¼ 2n�T
(n integer) being the bosonic Matsubara frequency. The
fermion self-energy beyond the BCS approximation (9)
can be considered by taken into account the self-energy
�LðKÞ shown in Fig. 2(b). Now the full fermion self-
energy in our consideration is given by

�ðKÞ ¼ �L
11ðKÞ �L

12ðKÞ
�L

21ðKÞ �L
22ðKÞ

 !
þ �BCSðKÞ; (15)

where �L
ij ðKÞ can be expressed as

�L
11ðKÞ ¼ �X

a;b

X
Q

Dab
11ðQÞ�aS11ðQ� KÞ�b;

�L
12ðKÞ ¼ �X

a;b

X
Q

Dab
12ðQÞ�aS12ðQ� KÞ�b;

�L
22ðKÞ ¼ ��L

11ð�KÞ; �L
21ðKÞ ¼ �L

12ðKÞ:

(16)

We note that for two-component systems, the above
T-matrix approach is the same as that developed in [14].
Above the superfluid transition temperature, it also recov-
ers the T-matrix approach adopted in [20].

(a)

(b)

FIG. 2. The diagrammatic representation of the particle-
particle ladder DðQÞ and the self-energy �LðKÞ. The dashed
lines denote the coupling constant g.
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In general, the above equations together with the gap and
number equations (7) and (8) form a closed set of integral
equations for the superfluid order parameter �, the chemi-
cal potential �, and the dressed fermion propagator SðKÞ.
However, to keep the Goldstone’s theorem and recover the
correct pair excitation spectrum at strong coupling, we
adopt the following prescriptions suggested in [14]: (i) In
evaluating the pair susceptibility 	ðQÞ and the self-energy
�LðKÞ, we use the fermion propagator SðKÞ of its BCS
mean-field form (10); (ii) the off-diagonal fermion propa-
gator S12ðKÞ in the gap equation (7) is also replaced by its
BCS mean-field form, while in the number equation (8) we
take into account the pairing fluctuation effects on the
diagonal fermion propagator S11ðKÞ. Therefore, the gap
equation (7) for the superfluid order parameter � still takes
its BCS form (12), which ensures a gapless pair excitation
spectrum, i.e., the Goldstone’s theorem. The beyond-
mean-field corrections for the pairing gap � and chemical
potential � are reflected in the full number equation (8).
The pairing fluctuation effects on the single-particle exci-
tation spectra are included in the self-energy �LðKÞ.

After some simple matrix algebras, we find that the pair
susceptibility 	ðQÞ and the particle-particle ladder DðQÞ
are both diagonal in the adjoint space, i.e.,

	ab
ij ðQÞ ¼ 	a

ijðQÞ
ab; Dab
ij ðQÞ ¼ Da

ijðQÞ
ab: (17)

For the a ¼ 2 sector which represents the red-green pair-
ing, the pair susceptibility 	2ðQÞ can be evaluated as

	2
11ðQÞ ¼ � m

4�as
�X

k

�
T
X
n

G�ðKÞG�ðQ� KÞ � 1

2�k

�
;

	2
12ðQÞ ¼ X

K

F �ðKÞF �ðQ� KÞ: (18)

The corresponding particle-particle ladder D2ðQÞ reads

D2
11ðQÞ ¼ 	2

11ð�QÞ
	2
11ðQÞ	2

11ð�QÞ � ½	2
12ðQÞ�2 ;

D2
12ðQÞ ¼ 	2

12ðQÞ
	2
11ðQÞ	2

11ð�QÞ � ½	2
12ðQÞ�2 :

(19)

Using the BCS gap equation (12), we can show that

	2
11ð0; 0Þ ¼ 	2

12ð0; 0Þ: (20)

Therefore, the pair excitation from the a ¼ 2 sector is
gapless, corresponding to one broken generator �rg. We

note that this Goldstone mode is essentially the same as the
Anderson-Bogoliubov mode in the conventional two-
component fermionic superfluids [35]. It possesses a linear
dispersion!ðqÞ / jqj in the low momentum and frequency
limit. In the strong coupling limit, it recovers the
Bogoliubov excitation spectrum for a weakly interacting
Bose gas [14,35].

The sectors a ¼ 5 and a ¼ 7 represent the red-blue and
green-blue pairings, respectively. They are degenerate,

corresponding to the residual SU(2) symmetry group.
Since these pairs do not condense according to our order
parameter gauge, the off-diagonal components vanish. We
have

	5
12ðQÞ ¼ 	7

12ðQÞ ¼ 0; D5
12ðQÞ ¼ D7

12ðQÞ ¼ 0: (21)

The nonvanishing diagonal component of the pair suscep-
tibility can be evaluated as

	a
11ðQÞ ¼ � m

4�as
�X

k

�
T
X
n

G�ðKÞG0ðQ� KÞ � 1

2�k

�
:

(22)

The particle-particle ladder is also diagonal and is given by

Da
11ðQÞ ¼ 1

	a
11ðQÞ ; a ¼ 5; 7: (23)

Using the BCS gap equation (12), we find that

	a
11ð0; 0Þ ¼ 0; a ¼ 5; 7; (24)

which indicates some additional Goldstone modes corre-
sponding to the broken generators �4, �5, �6, �7 of the
SU(3) group [26]. They possess a quadratic dispersion
!ðqÞ � q2 at low momentum and frequency due to the
asymmetry between the paired and unpaired colors [26].
Using the above matrix structure of the particle-particle

ladder DðQÞ, we find that the diagonal component of the
self-energy �L

11ðKÞ takes the form
�L

11ðKÞ ¼ �rgðKÞ�rg þ �bðKÞ�b; (25)

where �rgðKÞ and �bðKÞ correspond to the beyond-BCS

self-energies for the paired and unpaired colors, respec-
tively. Their explicit forms are given by

�rgðKÞ ¼�X
Q

½D2
11ðQÞG�ðQ�KÞþD5

11ðQÞG0ðQ�KÞ�;

�bðKÞ ¼�2
X
Q

D5
11ðQÞG�ðQ�KÞ: (26)

These results manifest the schematic plot in Fig. 1: Each
color couples to the other two colors via the corresponding
particle-particle ladders. The off-diagonal component
�L

12ðKÞ can be evaluated as

�L
12ðKÞ ¼

X
Q

D2
12ðQÞF �ðQ� KÞ�2: (27)

We can neglect this off-diagonal contribution since it is gen-
erally much smaller than the BCS self-energy �BCS [14].
However, this approximation has no effect on the spectrum
of the unpaired color we are interested in the following.
It is worth comparing the self-energy�rgðKÞ with that in

the two-component (spin- 12 ) system. In the two-component

system, the self-energy �rgðKÞ reads [14]
�rgðKÞ ¼ �X

Q

D2
11ðQÞG�ðQ� KÞ: (28)
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The additional contribution �PQD
5
11ðQÞG0ðQ� KÞ is

absent in two-component systems. On the other hand, in
the normal phase T � Tc, the SU(3) symmetry is restored
and the three color becomes degenerate. For the three-
component system we have

�rgðKÞ ¼ �bðKÞ ¼ �2
X
Q

D0ðQÞG0ðQ� KÞ; (29)

whereD0ðQÞ is the common particle-particle ladder in the
normal state with � ¼ 0. However, for the two-component
system, the self-energy in the normal phase is [14,20]

�rgðKÞ ¼ �X
Q

D0ðQÞG0ðQ� KÞ: (30)

Therefore, the self-energy induced by the pairing fluctua-
tion effects in the normal phase is enhanced by a factor of 2
in comparison with the two-component system.

C. Fermion spectral density

To study the pairing fluctuation effects on the fermionic
excitations, we investigate the single-particle spectral den-
sity functionAð!;kÞ. It can be obtained from the dressed
fermion Green’s function S11ðKÞ. Ensured by the residual
SU(2) symmetry, the paired and unpaired colors decouple
even though the pairing fluctuation effects are taken into
account. We have

S11ðKÞ ¼ GrgðKÞ�rg þ GbðKÞ�b; (31)

where GrgðKÞ and GbðKÞ are the dressed propagators for

the paired and unpaired colors, which can be expressed as

Grgði!n;kÞ ¼ 1

i!n��k��rgði!n;kÞ� �2

i!nþ�kþ�rgð�i!n;kÞ

(32)

and

Gbði!n;kÞ ¼ 1

i!n � �k ��bði!n;kÞ ; (33)

respectively. We emphasize that the expression for
Gbði!n;kÞ holds even though the off-diagonal self-energy
�L

12ðKÞ is taken into account. In the BCS mean-field ap-
proximation the pairing fluctuation effects are absent and
we have GrgðKÞ ¼ G�ðKÞ and GbðKÞ ¼ G0ðKÞ.

The spectral functions A�ð!;kÞ for the paired and
unpaired colors are defined as

A�ð!;kÞ ¼ � 1

�
ImGR

�ð!;kÞ; � ¼ rg; b: (34)

Here and in the following, the retarded Green’s functions
are denoted by the subscript R, i.e., XRð!Þ � Xð!þ i�Þ
where � ¼ 0þ. In the BCS mean-field approximation we
have

ABCS
rg ð!;kÞ ¼ u2k
ð!� EkÞ þ �2

k
ð!þ EkÞ (35)

and

ABCS
b ð!;kÞ ¼ 
ð!� �kÞ: (36)

Here u2k ¼ ð1=2Þð1þ �k=EkÞ and �2
k¼ð1=2Þð1��k=EkÞ

are the BCS distribution functions. Since the paired colors
obtain a large pairing gap �� at strong coupling, their
spectral density function Argð!;kÞ remains gaplike even

though the pairing fluctuation effects are taken into ac-
count. While there exists an additional contribution in the
self-energy �rgðKÞ which is absent in the two-component

systems, we expect that the qualitative feature of the
spectral density Argð!;kÞ is similar to the results for the

two-component systems [14]. In general, pairing fluctua-
tion and temperature effects leads to broadening of the
gaplike peaks.
In the following, we will focus on the spectrum of the

unpaired blue color, which is unique in the present three-
component Fermi system. It is interesting to study how the
pairing fluctuation effects influence the spectrum of the
unpaired color which takes a free dispersion in the naive
BCS mean-field description. The spectral density function
Abð!;kÞ can be expressed as

Abð!;kÞ

¼ � 1

�

Im�R
b ð!;kÞ

½!� �k � Re�R
b ð!;kÞ�2 þ ½Im�R

b ð!;kÞ�2 :

(37)

The real and imaginary parts of the retarded self-energy
�R

b ð!;kÞ are related by the dispersion relation

Re�R
b ð!;kÞ ¼ P

Z þ1

�1
d!0

�

Im�R
b ð!0;kÞ

!0 �!
: (38)

The imaginary part is explicitly given by

Im�R
b ð!;kÞ
¼ 2

X
q

fu2q�kImD5R
11 ð!þ Eq�k;qÞ½fðEq�kÞ

þ bð!þ Eq�kÞ� þ �2
q�kImD5R

11 ð!� Eq�k;qÞ
� ½fð�Eq�kÞ þ bð!� Eq�kÞ�g; (39)

where bðEÞ ¼ 1=ðeE=T � 1Þ is the Bose-Einstein distribu-
tion. The imaginary part of D5R

11 ð!;qÞ is given by

ImD5R
11 ð!;qÞ ¼ � Im	5R

11 ð!;qÞ
½Re	5R

11 ð!;qÞ�2 þ ½Im	5R
11 ð!;qÞ�2 ;

(40)

where the pair susceptibility 	5
11ð!;qÞ reads
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	5
11ð!;qÞ ¼ � m

4�as
�X

k

�
1� fðEkÞ � fð�q�kÞ

Ek þ �q�k �!
u2k

� fðEkÞ � fð�q�kÞ
Ek � �q�k þ!

�2
k � 1

2�k

�
: (41)

Now we turn to the numerical results for the spectral
density Abð!; kÞ. The system is characterized by a single
dimensionless coupling parameter 1=ðkFasÞ where kF is
defined via the total density as n ¼ k3F=ð2�2Þ. To achieve
strong coupling, we consider the resonant interaction with
as ! 1 (1=as ¼ 0). In this case, all quantities can be
expressed via two parameters: the chemical potential �
and the effective Fermi momentum k� ¼ ffiffiffiffiffiffiffiffiffiffiffi

2m�
p

. This also

simplifies the numerical procedures. In this case, we do not
need to solve the number equation (8) to obtain the chemi-
cal potential� in units of the Fermi energy EF ¼ k2F=ð2mÞ.
The order parameter� in units of� as a function of T=� is
solved from the BCS gap equation (12). Then we can
calculate the spectral density Abð!; kÞ in units of 1=�
through Eqs. (37)–(39).

The numerical results of the spectral densityAbð!Þ for
fermion momentum k ¼ k� are shown in Fig. 3. At very

low temperature T ! 0, we find that there exists a very

sharp Fermi-liquid peak around ! ¼ 0. The spectral
weight of the continuum part is very small. Therefore,
the Fermi-liquid picture of the unpaired color remains
valid even though the pairing fluctuation effects are taken
into account. This can be understood by the behavior of the
imaginary part of the self-energy �R

b ð!Þ shown in Fig. 4.

Because of the formation of a large pairing gap � for the
paired colors, the imaginary part vanishes in a wide regime
around ! ¼ 0, which can be seen from the properties of
the Fermi-Dirac and Bose-Einstein distribution functions
in Eq. (39). The real part of the self-energy �R

b ð!Þ shown
in Fig. 5 leads to a correction to the effective Fermi surface,
which is shown by the fact that the Fermi-liquid peak is no
longer located precisely at ! ¼ 0.
However, as the temperature is increased, the pairing

gap � is reduced and the contribution from the imaginary
part of the self-energy �R

b ð!Þ becomes more and more

important. When the temperature is high enough but below
the critical one Tc, the imaginary part Im�R

b ð!Þ has two
main effects: (i) It becomes finite in the regime around
! ¼ 0 and hence the Fermi-liquid peak broadens; (ii) it has
two sharp minima which breach the Fermi-liquid peak and
the other two gaplike peaks. Physically, the imaginary part
of the self-energy�b corresponds to the decay processes of
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FIG. 3. The spectral density Abð!; kÞ of the unpaired blue color for k ¼ k� ¼ ffiffiffiffiffiffiffiffiffiffiffi
2m�

p
at various temperatures.
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the fermions of the blue color [13]. According to the
Feynman diagram for the T-matrix approximation shown
in Fig. 2, the decay process of the blue fermion can be
described as b ! hþ ðfbÞ where b denotes the blue fer-
mion, f denotes the quasifermion which is a mixture of red
and green colors, h is the hole excitation corresponding to
the quasifermion, and (fb) is the collective mode with

propagator D5;7
11 . Since the quasifermion f is fully gapped,

at zero temperature the decay process is strictly suppressed
around! ¼ 0. As the temperature increases, the imaginary
part of the self-energy becomes nonzero but is still sup-
pressed by the pairing gap around ! ¼ 0. On the other
hand, the imaginary part of the self-energy should vanish
for! ! 	1. Therefore, for T < Tc, there arises two sharp
peaks for the imaginary part of the self-energy at finite
frequency. The decay process of the blue fermion is most
enhanced at these peak frequencies.

As the temperature increases, the spectral weight of the
Fermi-liquid peak becomes smaller and smaller and two
gaplike peaks appear around the Fermi-liquid peak. These
two gaplike peaks can be referred to as the ‘‘pseudogap
peaks,’’ since they are induced by the pairing fluctuation
effects rather than the pairing gap or superfluid order
parameter �. When the temperature reaches Tc, the

imaginary part Im�R
b ð!Þ undergoes a characteristic

change: The two sharp minima combine to a smooth
minimum at ! ¼ 0. Therefore, the Fermi-liquid peak dis-
appears completely at T ¼ Tc and only the two pseudogap
peaks remain. Note that at T ¼ Tc the SU(3) symmetry is
restored and therefore the spectral density shown in Fig. 3
is also true for the red and green colors. This indicates that
there exists a pseudogap phase at T > Tc, similar to that
observed in two-component systems [18–20].
The above discussions show clearly how the Fermi-

liquid behavior of the unpaired color at low temperature
evolves to the pseudogap behavior at and above Tc due to
the pairing fluctuation effects. In a wide temperature re-
gime below Tc, we find that the Fermi-liquid peak and the
pseudogap peaks coexist. It is intuitive to understand this
coexistence through a naive approximation for the fermion
self-energy employed in the pseudogap theory of the BCS-
BEC crossover [12,36]. Since the pair propagator D5

11ðQÞ
is peaked around Q ¼ 0, we can approximate the fermion
self-energy �bðKÞ as

�bðKÞ ’ ��2
pgG�ð�KÞ; (42)

where the pseudogap energy �pg is defined as
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FIG. 4. The imaginary part of the retarded self-energy �R
b ð!; kÞ of the unpaired blue color for k ¼ k� ¼ ffiffiffiffiffiffiffiffiffiffiffi

2m�
p

at various
temperatures.
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�2
pg ¼ 2

X
Q

D5
11ðQÞ: (43)

Under this approximation, the propagator GbðKÞ can be
analytically evaluated as

GbðKÞ ¼ ði!nÞ2 ��2

ði!n � �kÞ½ði!nÞ2 � �2
k ��2 ��2

pg�
: (44)

Therefore, for k ¼ k�, the spectral density Abð!Þ reads

Abð!Þ ¼ �2

�2 þ �2
pg


ð!Þ

þ 1

2

�2
pg

�2 þ�2
pg

�



�
!�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ �2

pg

q �

þ 


�
!þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ �2

pg

q ��
: (45)

While the broadening effects of the peaks are neglected in
this naive approximation, this analytical expression clearly
shows a three-peak structure. The spectral weights of the
Fermi-liquid peak and the pseudogap peaks are given by

Zfl ¼ �2

�2 þ �2
pg

; Zpg ¼ 1

2

�2
pg

�2 þ�2
pg

: (46)

Further, the pseudogap energy can be expressed as

�2
pg ¼ 2

X
q

Z 1

�1
d!

�
bð!ÞImD5R

11 ð!;qÞ: (47)

As a result of the Bose-Einstein distribution function bð!Þ,
we find that �pg ! 0 for T ! 0. In general, the pseudogap

energy increases with the increased temperature. Therefore,
from Eq. (46), we see clearly that the spectral weight of the
pseudogap peak can be neglected at low temperature and the
Fermi-liquid peak disappears at T ¼ Tc where � vanishes.
So far we have only studied the spectral properties of the

blue fermion at the ‘‘Fermi surface’’ k ¼ k�. It is instruc-

tive to show the spectral density for momenta k away from
k ¼ k�. The results for the spectral density Abð!; kÞ at
different momenta k � k� are shown in Fig. 6. For this

resonantly interacting Fermi system, we find that the quali-
tative feature discussed above remains for momenta k
around k ¼ k�. The change is that the pseudogap peaks

become more asymmetric as the momenta goes away
from k ¼ k�.
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Finally, we present a brief discussion about the case that
the SU(3) symmetry is explicitly broken. Let us consider
the case that the attractions among the three colors are not
equal, i.e., g13 ¼ g23 ¼ g0 < g12 ¼ g. In this case, the
pairing of red and green color is favored. Since the pair
excitations corresponding to the particle-particle ladders
D5ðQÞ and D7ðQÞ (they are still degenerate since g13 ¼
g23) are no longer gapless, the pairing fluctuation effects
become weaker and weaker as the coupling strength g0
decreases. For g0 ! 0, the particle-particle ladders D5ðQÞ
and D7ðQÞ vanish and hence the pairing fluctuation in-
duced self-energy �bðQÞ vanishes. In this case, the Fermi-
liquid behavior persists at any temperature, as we expect.

III. COLOR SUPERCONDUCTIVITY IN
TWO-FLAVOR QUARK MATTER

In this section we study quark color superconductors.
The perturbative-QCD calculation for color superconduc-
tivity [4,5] is applicable for quark chemical potentials
� � �QCD. However, here we are interested in the mod-

erate density regime of quark matter where the quark
chemical potential �� 400 MeV, and the perturbative
approach is not applicable. Therefore, we adopt a phe-
nomenological four-fermion interaction model of QCD
[2,3]. Moreover, since the strange quark degree of freedom

is not activated at�� 400 MeV, we consider only the two
light quark flavors (u and d). The Lagrangian density of our
four-fermion interaction model is given by

L ¼ �qði6@þ�0ÞqþLint; (48)

where the interaction part is modeled by a QCD-motivated
contact current-current interaction

L int ¼ �Gc

X8
a¼1

ð �q��aqÞð �q��aqÞ: (49)

Here q denotes the quark field containing two flavors and
three colors, and Gc is a phenomenological coupling con-
stant which should be, in principle, determined by the
vacuum phenomenology of QCD. In real QCD, the ultra-
violet modes decouple because of asymptotic freedom, but
in the present four-fermion interaction model we have to
add this feature by hand, through a UV momentum cutoff
� in the quark momentum integrals. The model therefore
has two parameters: the coupling constant Gc and the three
momentum cutoff �.

A. BCS mean-field theory

The contact current-current interaction (49) includes all
mesonlike and diquarklike interaction channels, which can
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FIG. 6. The spectral density Abð!; kÞ of the unpaired blue color for different momenta k at various temperatures.
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be obtained via the Fierz transformation. Since we are
interested in the temperature regime T �Oð10 MeVÞ, it
is sufficient to consider only the JP ¼ 0þ diquark pairing
channel. The pairing gap and critical temperature of other
diquark pairing channels are much smaller than that of the
JP ¼ 0þ pairing channel [37]. Therefore, we have

Lint ¼ G

4

X
a¼2;5;7

ð �qi5�2�aC �qTÞðqTCi5�2�aqÞ þ 
 
 
 ;

(50)

where C ¼ i02 is the charge conjugate matrix and
�iði ¼ 1; 2; 3Þ are the Pauli matrices in the flavor space.
The new coupling constant G> 0 denotes the attraction in
the JP ¼ 0þ diquark pairing channel.

Because of the attraction among the unlike colors, at low
temperature the quark matter is a color superconductor.
This is due to the fact that some gluons obtain Meissner
masses (color Meissner effect) through the Anderson-
Higgs mechanism [38]. The color superconductivity in
the two-flavor quark matter is also characterized by a
three-component order parameter � ¼ ð�1;�2;�3Þ,
where

�1 ¼ G

2
hqTCi5�2�2qi; �2 ¼ G

2
hqTCi5�2�5qi;

�3 ¼ G

2
hqTCi5�2�7qi: (51)

Because of the color SU(3) symmetry of the QCD
Lagrangian (and hence the QCD-motivated model), the
effective potentialV ð�Þ depends only on the combination
��y ¼ j�1j2 þ j�2j2 þ j�3j2. Therefore, like the atomic
color superfluidity, we can choose a specific gauge �1 ¼
� � 0, �2 ¼ �3 ¼ 0 without loss of generality. In this
gauge, only the red and green quarks participate in the
pairing and the red-green diquark pairs condense, leaving
the blue quarks unpaired. In the following calculations we
will adopt this gauge.

The Nambu-Gor’kov basis for the present case can be
defined as � ¼ ðq; C �qTÞT. In the Nambu-Gor’kov repre-
sentation, the quark self-energy �ðKÞ and the dressed
quark propagator satisfy Dyson’s equation

S11ðKÞ S12ðKÞ
S21ðKÞ S22ðKÞ

 !�1

¼ 6K þ�0 0

0 6K ��0

 !
� �11ðKÞ �12ðKÞ

�21ðKÞ �22ðKÞ

 !
:

(52)

Again, from the Green’s function relation we obtain the
gap equation

� ¼ G

2

X
K

Tr½i5�2�2S12ðKÞ� (53)

and the baryon number density

nB ¼ 1

3

X
K

Tr½0S11ðKÞ�: (54)

In the BCS mean-field theory, the quark self-energy is
chosen as

�ðKÞ ¼ �BCSðKÞ ¼ 0 i5��2�2

i5��2�2 0

 !
: (55)

Again, we set � to be real without loss of generality. In the
BCS approximation, the dressed quark propagator can be
explicitly evaluated as

SBCS
11 ðKÞ ¼ G�ðKÞ�0�rg þ G0ðKÞ�0�b;

SBCS
12 ðKÞ ¼ F �ðKÞ�2�2;

SBCS
22 ðKÞ ¼ 5SBCS

11 ð�KÞ5;

SBCS
21 ðKÞ ¼ 5SBCS

12 ð�KÞ5;

(56)

where �0 is the identity matrix in the flavor space. Here the
Green’s functions G�ðKÞ, F �ðKÞ, and G0ðKÞ are given by

G�ðKÞ ¼ i!n þ ��
k

ði!nÞ2 � ðE�
k Þ2

��
k0 þ i!n � �þ

k

ði!nÞ2 � ðEþ
k Þ2

�þ
k0;

F �ðKÞ ¼ i�

ði!nÞ2 � ðE�
k Þ2

��
k5 þ i�

ði!nÞ2 � ðEþ
k Þ2

�þ
k5;

G0ðKÞ ¼ 1

i!n � ��
k

��
k0 þ 1

i!n þ �þ
k

�þ
k0; (57)

where E	
k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�	

k Þ2 þ �2
q

are quasiparticle dispersions,

�	
k ¼ jkj 	�, and ��

k ¼ ð1	 0� 
 k̂Þ=2ðk̂ � k=jkjÞ
are the energy projection operators for massless Dirac
fermions. The physical value of the pairing gap � is
determined by the BCS gap equation

1

G
¼ 4

X
k

�
1� 2fðE�

k Þ
2E�

k

þ 1� 2fðEþ
k Þ

2Eþ
k

�
: (58)

The new feature here is the presence of antiquark ex-
citations in this relativistic quark system. They generally
have an excitation gap � �. At high density and low
temperature, they are therefore irrelevant degrees of free-
dom. Regardless of these antiparticle excitations, we find
similar conclusion in comparison with the atomic color
superfluidity: The paired quarks obtain an excitation gap
�, while the unpaired blue quarks are gapless and possess
a free dispersion in the BCS mean-field description.
Therefore, the same problem we addressed in Sec. II also
appears in the present color superconductor.

B. Quark self-energy beyond BCS

The following considerations are highly parallel to the
studies in Sec. II. To establish the quark self-energy beyond
the BCS mean-field approximation, we first construct the
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particle-particle ladder or the ‘‘diquark propagator’’DðQÞ.
In the color superconducting phase, it takes the same form
as (13), i.e.,

Dab
11ðQÞ Dab

12ðQÞ
Dab

21ðQÞ Dab
22ðQÞ

 !
¼ 	ab

11ðQÞ 	ab
12ðQÞ

	ab
21ðQÞ 	ab

22ðQÞ

 !�1

: (59)

The diquark pair susceptibility 	ðQÞ here is given by

	ab
11ðQÞ ¼ 
ab

G
� 1

2

X
K

Tr½�2�aS11ðQ� KÞ�2�bS11ðKÞ�;

	ab
12ðQÞ ¼ � 1

2

X
K

Tr½�2�aS12ðQ� KÞ�2�bS12ðKÞ�;

	ab
22ðQÞ ¼ 	ab

11ð�QÞ; 	ab
21ðQÞ ¼ 	ab

12ðQÞ: (60)

Note that the trace here should be taken simultaneously in
the color, flavor, and the Dirac spin space. With the diquark
propagator DðQÞ, the full quark self-energy is given by

�ðKÞ ¼ �L
11ðKÞ �L

12ðKÞ
�L

21ðKÞ �L
22ðKÞ

 !
þ�BCSðKÞ; (61)

where the beyond-mean-field contribution �LðKÞ reads
�L

11ðKÞ ¼ �X
a;b

X
Q

Dab
11ðQÞ�2�aS11ðQ� KÞ�2�b;

�L
12ðKÞ ¼ �X

a;b

X
Q

Dab
12ðQÞ�2�aS12ðQ� KÞ�2�b;

�L
22ðKÞ ¼ 5�

L
11ð�KÞ5; �L

21ðKÞ ¼ 5�
L
12ð�KÞ5:

(62)

Because of the same reason we addressed in Sec. II, we use
the quark propagator of its BCS form SBCSðKÞ in evaluat-
ing the pair susceptibility 	ðQÞ and the self-energy �LðKÞ.
The pairing gap � is determined by the BCS gap equation
(58) and the Goldstone’s theorem holds.

Because of the same symmetry structure as the atomic
system in Sec. II, we find again that 	ðQÞ and DðQÞ
are diagonal in the adjoint space, i.e., 	ab

ij ¼ 	a
ij
ab and

Dab
ij ¼ Da

ij
ab. For the a ¼ 2 sector, we have

	2
11ðQÞ ¼ 1

G
� 2

X
K

Tr½G�ðKÞG�ðQ� KÞ�;

	2
12ðQÞ ¼ �2

X
K

Tr½F �ðKÞF �ðQ� KÞ�;
(63)

and

D2
11ðQÞ ¼ 	2

11ð�QÞ
	2
11ðQÞ	2

11ð�QÞ � ½	2
12ðQÞ�2 ;

D2
12ðQÞ ¼ 	2

12ðQÞ
	2
11ðQÞ	2

11ð�QÞ � ½	2
12ðQÞ�2 :

(64)

The a ¼ 5 and a ¼ 7 sectors are degenerate due to the
residue SU(2) symmetry group, and 	5

12ðQÞ ¼ 	7
12ðQÞ ¼ 0

since the blue quarks do not participate in pairing. We have

	a
11ðQÞ¼½Da

11ðQÞ��1

¼ 1

G
�X

K

Tr½G�ðKÞG0ðQ�KÞþG0ðKÞG�ðQ�KÞ�

(65)

for a ¼ 5, 7. Using the BCS gap equation (58), we find
that DaðQÞ diverges at Q ¼ 0 for a ¼ 2, 5, 7, correspond-
ing to the spontaneous breaking of the color SU(3)
symmetry [39].
Then the diagonal component of the self-energy �LðKÞ

can be evaluated as

�L
11ðKÞ ¼ �rgðKÞ�0�rg þ�bðKÞ�0�b; (66)

where �rgðKÞ and �bðKÞ correspond to the self-energies

for paired and unpaired colors, respectively. They take the
same form as Eq. (26), i.e.,

�rgðKÞ ¼�X
Q

½D2
11ðQÞG�ðQ�KÞþD5

11ðQÞG0ðQ�KÞ�;

�bðKÞ ¼�2
X
Q

D5
11ðQÞG�ðQ�KÞ: (67)

The off-diagonal component reads

�L
12ðKÞ ¼

X
Q

D2
12ðQÞF �ðQ� KÞ�2�2: (68)

Above the critical temperature, T � Tc, the off-diagonal
component �L

12ðKÞ vanishes and the self-energies for
paired and unpaired colors become degenerate, i.e.,
�rgðKÞ ¼ �bðKÞ. This reflects the fact that the color

SU(3) symmetry gets restored above the transition tem-
perature. We have �L

11ðKÞ ¼ �0ðKÞ�0�0, where �0 is the
identity matrix in the color space and

�0ðKÞ ¼ �2
X
Q

D0ðQÞG0ðQ� KÞ: (69)

Here D0ðQÞ ¼ D2;5;7
11 ðQÞ is the common diquark propa-

gator in the normal phase. The above choice of the quark
self-energy�0ðKÞ is identical to that adopted by Kitazawa,
Koide, Kunihiro, and Nemoto [13] in studying the precur-
sor and pseudogap phenomena of color superconductivity.
Therefore, our T-matrix approximation for the color super-
conducting phase is really a generalization of the T-matrix
approach for T > Tc used in [13].

C. Spectral density of blue quarks

The dressed quark propagator S11ðKÞ including the pair-
ing fluctuation effects can be expressed as

S11ðKÞ ¼ GrgðKÞ�0�rg þ GbðKÞ�0�b; (70)

whereGrgðKÞ andGbðKÞ are the propagators for paired and
unpaired colors, respectively. We focus on the excitation
spectrum of the blue quark. Its spectral density function
Abð!;kÞ is defined as
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Abð!;kÞ ¼ � 1

4�
ImTr½0GR

b ð!;kÞ�; (71)

where the retarded Green’s function GR
b ð!;kÞ is given by

GR
b ð!;kÞ ¼ 1

½GR
0 ð!;kÞ��1 � �R

b ð!;kÞ : (72)

To obtain the explicit form of Abð!;kÞ, we note that
the retarded self-energy �R

b ð!;kÞ has the following Dirac

matrix structure:

�R
b ð!;kÞ ¼ �0

bð!;kÞ0 ��v
bð!;kÞ� 
 k̂ (73)

due to the fact that the quarks are massless. The imaginary
part of the self-energy can be evaluated as

Im�0
bð!;kÞ ¼ X

q

½H�ðk;qÞ þHþðk;qÞ�;

Im�v
bð!;kÞ ¼ X

q

½H�ðk;qÞ �Hþðk;qÞ�ðq̂� k̂Þ 
 k̂;

(74)

where the functions H	ðk;qÞ are defined as

Hsðk;qÞ ¼ Es
q�k � s�s

q�k

2Es
q�k

ImD5R
11 ð!þ Es

q�k;qÞ½bð!þ Es
q�kÞ þ fðEs

q�kÞ�

þ Es
q�k þ s�s

q�k

2Es
q�k

ImD5R
11 ð!� Es

q�k;qÞ½bð!� Es
q�kÞ þ fð�Es

q�kÞ�: (75)
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FIG. 7. The spectral density of the unpaired blue quark for k ¼ � ¼ 400 MeV at various temperatures T � Tc. The zero
temperature pairing gap is set to be �0 ¼ 100 MeV, corresponding to G=4 ¼ 3:59 GeV�2.
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The imaginary part of D5R
11 ð!;qÞ is given by

ImD5R
11 ð!;qÞ ¼ � Im	5R

11 ð!;qÞ
½Re	5R

11 ð!;qÞ�2 þ ½Im	5R
11 ð!;qÞ�2 :

(76)

Here the explicit form of the pair susceptibility 	5
11ð!;qÞ

reads

	5
11ð!;qÞ¼ 1

G
�X

k

½J1ðk;qÞþJ1ðq�k;qÞ�½1�ðq̂�k̂Þ
k̂�

þX
k

½J2ðk;qÞþJ2ðq�k;qÞ�½1þðq̂�k̂Þ
k̂�;

(77)

where the functions J1ðk;qÞ and J2ðk;qÞ are defined as

J1ðk;qÞ ¼
X
s¼	

1� fðEs
kÞ � fð�s

q�kÞ
Es
k þ �s

q�k þ s!

Es
k þ �s

k

2Es
k

� X
s¼	

fðEs
kÞ � fð�s

q�kÞ
Es
k � �s

q�k � s!

Es
k � �s

k

2Es
k

(78)

and

J2ðk;qÞ ¼
X
s¼	

1� fðEs
kÞ � fð��s

q�kÞ
Es
k þ ��s

q�k � s!

Es
k � �s

k

2Es
k

� X
s¼	

fðEs
kÞ � fð��s

q�kÞ
Es
k � ��s

q�k þ s!

Es
k þ �s

k

2Es
k

: (79)

At the quark chemical potential �� 400 MeV, the
antiquark degree of freedom is much less important than
the quark degree of freedom. Therefore, we decompose the
self-energy �R

b ð!;kÞ as
�R

b ð!;kÞ ¼ ��
b ð!;kÞ��

k þ �þ
b ð!;kÞ�þ

k : (80)

Here the minus and plus signs correspond to quark and
antiquark degrees of freedom, respectively. The self-
energies �	

b ð!;kÞ read
�	

b ð!;kÞ ¼ �0
bð!;kÞ 	 �v

bð!;kÞ: (81)

Using these results, the total spectral densityAbð!;kÞ can
be expressed as a sum of the spectral densities for quark
and antiquark,
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FIG. 8. The spectral density of the unpaired blue quark for k ¼ � ¼ 400 MeV at various temperatures T � Tc. The zero
temperature pairing gap is set to be �0 ¼ 150 MeV, corresponding to G=4 ¼ 4:39 GeV�2.
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Abð!;kÞ ¼ A�
b ð!;kÞ þAþ

b ð!;kÞ; (82)

where

As
bð!;kÞ

¼ � 1

2�

Im�s
bð!;kÞ

½!� �s
k � Re�s

bð!;kÞ�2 þ ½Im�s
bð!;kÞ�2 :

(83)

In the following, we focus on the spectral density
A�

b ð!;kÞ for quark excitation.

In the numerical calculations, we fix the coupling con-
stant G by using the zero temperature pairing gap �0

through the BCS gap equation (58). The momentum cutoff
� is chosen as � ¼ 650 MeV. It is generally thought that
the pairing gap � at� ¼ 400 MeV is of order of 100 MeV
[2,3]. Therefore, the ratio �=� reaches the order Oð10�1Þ,
which is likely in the strong coupling regime.

In Figs. 7 and 8, we show the numerical results for the
spectral densityA�

b ð!;kÞ at quark momentum k ¼ � and

at quark chemical potential � ¼ 400 MeV. The zero
temperature gaps are set to be 100 MeV and 150 MeV in
Figs. 7 and 8, respectively. They corresponds to the values
of the coupling constant G=4 ¼ 3:59 GeV�2 and G=4 ¼
4:39 GeV�2, respectively. The qualitative behavior of the

self-energy and the spectral density are very similar to
those for atomic color superfluidity. At low temperature,
the Fermi-liquid behavior of the blue quark persists and
spectral weight of the continuum part induced the pairing
fluctuations is rather small. As the temperature becomes
high enough, this continuum part becomes two visible
gaplike peaks, or the so-called pseudogap peaks, which
coexist with the broadened Fermi-liquid peak. At and
above the critical temperature Tc, the Fermi-liquid peak
disappears completely and the spectral density shows
purely pseudogap behavior. The understanding of the de-
cay process of the unpaired blue fermion presented in
Sec. II remains valid for the unpaired blue quark. On the
other hand, for weak coupling or small �0, the pairing
fluctuation effects are rather weak and the Fermi-liquid
behavior persists for arbitrary temperature, as we expected.
The naive analytical argument by using the approximation

like Eq. (42) in Sec. II also applies to the present ultrarelativ-
istic quark system. Therefore, the coexistence of the Fermi-
liquid behavior and the pseudogap behavior is quite generic
for both the atomic color superfluid studied in Sec. II and
the quark color superconductor studied in this section.
The spectral density of the blue quark for momenta away

from the Fermi surface k ¼ � is shown in Figs. 9 and 10.
We find that the situation here is quite different from the
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FIG. 9. The spectral density of the unpaired blue quark for different momenta k at various temperatures T � Tc. The zero
temperature pairing gap is set to be �0 ¼ 100 MeV.
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case of atomic color superfluid with resonant interaction.
For quark momenta away from the Fermi surface, we find
that the spectral density generally shows a single-peak
structure. Only for stronger couplings it shows a two-peak
structure for some special momentum and temperature. The
observation here is similar to the result for T > Tc [13],
where it was found that the suppression of the spectral
weight of the Fermi-liquid peak is most pronounced at
the Fermi surface k ¼ �. This means the attractive
strength in this quark system is much weaker than the
coupling strength in resonant Fermi gases. Therefore, for
two-flavor color superconducting quark matter at moder-
ate density (�� 400 MeV), the pairing fluctuation ef-
fects are only pronounced near the Fermi surface.

In Fig. 11, we show the numerical results of the spectral
density A�

b ð!Þ at k ¼ � above the critical temperature

Tc. For T > Tc, the color SU(3) symmetry is restored and
hence the results valid for all three colors. We find that the
pseudogap behavior at the Fermi surface k ¼ � persists up
to the temperature T � ð2� 3ÞTc for �0 � 100 MeV and
� ¼ 400 MeV. Since we consider here only the spectral
density for quarks, the sum rule

R
d!A�

b ð!;kÞ ¼ 1 does

not hold. Instead, we have
R
d!Abð!;kÞ ¼ 1. As the

temperature increases, the two peaks become more asym-
metric and their spectral weights become smaller, that is,

the spectral density for antiquarks should be important at
high temperatures. For T � Tc, the double-peak structure
should disappear, as we expect. However, the validity of
the four-fermion interaction model becomes questionable
for T � Tc. Note that the quark spectral function and the
pesudogap behavior have been studied by Kitazawa,
Koide, Kunihiro, and Nemoto [13]. The two-peak structure
of the quark spectral function shown here agrees with
their results. The quantitative difference is due to the fact
that we have used a different scheme to evaluate the
quantities Im	5R

11 ð!;qÞ and Re	5R
11 ð!;qÞ. In [13], since

the case T > Tc was focused, the imaginary part
Im	5R

11 ð!;qÞ was analytically carried out and the real
part Re	5R

11 ð!;qÞ was obtained by the dispersion relation

with a cutoff associated with the frequency!. In this work,
we consider mainly the case T < Tc; the imaginary part
Im	5R

11 ð!;qÞ cannot be carried out analytically. Therefore,
we have to evaluate the imaginary and real parts of
	5R
11 ð!;qÞ numerically. The cutoff � is always associated

with the integration over the quark momentum k.
We have only studied the ideal case that the u and d

quarks have a common chemical potential. For dense quark
matter that may exists in the core of compact stars, the u and
d quarks possess different chemical potentials due to the
charge neutrality and beta equilibrium constraints. The
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FIG. 10. The spectral density of the unpaired blue quark for different momenta k at various temperatures T � Tc. The zero
temperature pairing gap is set to be �0 ¼ 150 MeV.
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presence of a chemical potential imbalance will generally
suppress the pairing fluctuation effects. Therefore, the pair-
ing fluctuation effects become less important if the charge
neutrality and beta equilibrium constraints are imposed.
Further, it is generally believed that the dense quark matter
under compact star constraints should be in some exotic
phases such as the Larkin-Ovhinnikov-Fulde-Ferrell phase
[40,41]. Since the temperature in compact stars is much
smaller than the critical temperature here, which is of order
50 MeV, our studies here are likely irrelevant to the dense
quark matter in compact stars. However, our study may be
relevant to the systems where the charge neutrality and beta
equilibrium constraints are not important, such as the hot
and densematter created in supernova explosions and heavy
ion collisions (such as GSI-FAIR). For T > Tc, it was found
that the dilepton production rate at low energy would be
enhanced due to the pairing fluctuation effects [42]. It will
be interesting to explore in the future the phenomenological
consequences of the pairing fluctuation effects, especially
for the color superconducting phase studied in this paper.

IV. SUMMARY

In summary, we have investigated the pairing fluctuation
effects in atomic color superfluids and two-flavor quark
superconductors. The common feature of these systems is
that the pairing occurs among three colors of fermions.
Because of the SU(3) symmetry of the Hamiltonian, one
color does not participate in pairing, which is unique in the
three-color systems. This branch of fermionic excitation is
gapless in the naive BCS mean-field description. In this
paper, we have generalized the pairing fluctuation theory
for color superfluidity/superconductivity to the low

temperature domain (below the critical temperature).
Especially, the theory has been used to study how the
pairing fluctuation effects influence the excitation spec-
trum of the unpaired color in these systems. The main
conclusions can be summarized as follows:
(i) At low temperature, the Fermi-liquid behavior of the

unpaired color persists even though the pairing fluc-
tuations are taken into account. The reason is that, at
low temperature, a large pairing gap for the paired
colors forms, which suppresses the pairing fluctua-
tion effects for the unpaired color.

(ii) As the temperature is increased, the continuum part
of the spectral density, of which the spectral weight
is rather small at low temperature, evolves to two
pseudogap peaks. Meanwhile, the Fermi liquid
broadens and its spectral weight gets suppressed.
At and above the critical temperature, the Fermi-
liquid peak disappears completely and the all three
colors exhibit pseudogaplike spectra.

(iii) The coexistence of Fermi-liquid behavior and
pseudogap behavior is generic for both atomic
color superfluids and quark color superconductors.
The reason is likely due to the same symmetry
structures of these systems.
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