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We study the multiple scattering effects on inclusive particle production in pþ A and �þ A collisions.

Specifically, we concentrate on the region where the parton momentum fraction in the nucleus x�Oð1Þ
and incoherent multiple interactions are relevant. By taking into account both initial-state and final-state

double scattering, we derive the nuclear size-enhanced power corrections to the differential cross section

for single inclusive hadron production in pþ A and �þ A reactions, and for prompt photon production in

pþ A reactions. We find that the final result can be written in a simple compact form in terms of four-

parton correlation functions, in which the second-derivative, first-derivative and nonderivative terms of the

correlation distributions share the same hard-scattering functions. We expect our result to be especially

relevant for understanding the nuclear modification of particle production in the backward rapidity regions

in pþ A and eþ A collisions.
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I. INTRODUCTION

Medium-induced modification of moderate and high
transverse momentum particle production in both proton-
nucleus (pþ A) and nucleus-nucleus (Aþ A) collisions
relative to the naive binary collision-scaled proton-proton
(pþ p) baseline expectation is an excellent tool to diagnose
the properties of dense QCD matter [1,2]. Multiple parton
scattering has played an important role in understanding
novel effects that contribute to the observed nuclear depen-
dence, such as dynamical shadowing, Cronin effect, parton
energy loss and jet quenching [3]. To better extract the QCD
matter properties from experimental measurements, it is
critical to elucidate the differences between the elastic,
inelastic, coherent, and incoherent scattering regimes.

Different theoretical approaches are possible in studying
the same physics effect in high energy nuclear collisions.
An illustrative example is the calculation of medium-
induced parton splitting and radiative energy loss that leads
to the ‘‘jet quenching’’ phenomena in Aþ A reactions
[4–10]. In pþ A collisions, most attention has been de-
voted to the nontrivial QCD dynamics in the small-x
regime and the existence of very dense gluonic systems.
In this regime, the probe can cover several nucleons inside
the nucleus and interact with all of them coherently. Two
approaches on the market treat this coherent kinematic
limit. One of them is the color glass condensate approach
[11–15], which focuses on the nonlinear corrections to
QCD evolution equations. It is only applicable at very
small x and for transverse momenta & Qs, the saturation
scale, where all the multiple scatterings are equally

important. The other approach is the high-twist expansion
approach, which treats the multiple scatterings as power-
suppressed corrections to the cross sections. It follows a
generalized QCD factorization formalism [16–19] and
computes the corrections order by order in a power series,
where any additional correlated scattering is suppressed by
an extra power of the momentum transfer. Within this
approach, in the forward rapidity limit, i.e. the proton
direction, all nuclear size-enhanced power corrections
[20,21] to the differential cross sections for both single
hadron and dihadron production in pþ A collisions have
been resummed. When combined with cold nuclear matter
energy loss [22], successful description of the single had-
ron suppression and dihadron correlation in the forward
rapidity region has been demonstrated [23].
In this paper, we will focus on a different regime, the

region where the parton momentum fraction in the nucleus
x�Oð1Þ (outside small x). Incoherent multiple interac-
tions, relevant to the Cronin effect, have been resummed
before for uniform nuclear matter described by mean
squared momentum transfer and parton scattering length
[24]. Here, we follow the same generalized factorization
theorem, discussed above, and attribute the first nontrivial
multiple scattering (double scattering) contributions to the
twist-4 power-suppressed corrections to the differential
cross section. We demonstrate explicitly that in the x�
Oð1Þ regime only the incoherent multiple interactions are
relevant. We take into account both initial-state and final-
state double scattering effects and find that the final result
can be written in terms of the well-defined twist-4 four-
parton correlation functions. It depends on a universal
combination of second-derivative, first-derivative and non-
derivative terms of these correlation functions that shares
the same hard-scattering function.
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The rest of our paper is organized as follows. In Sec. II,
we introduce our notation and study the double scattering
contribution to the single inclusive hadron production in
pþ A collisions. Take one particular partonic subprocess
qq0 ! qq0 as an example to explain in detail how we derive
the result and what are the approximations we have used. In
Sec. III, we extend our method to the physical processes
involving a photon. In particular, we study the double
scattering contribution to the prompt photon production in
pþ A collisions, and to single hadron production in �þ A
collisions. Both results depend on our findings from Sec. II.
We summarize our paper in Sec. IV.We defer the phenome-
nological study, based on our result, to future publications.

II. MULTIPLE SCATTERING EFFECTS FOR
SINGLE INCLUSIVE HADRON PRODUCTION

IN pþA COLLISIONS

A. Single scattering contribution

In this section we study single inclusive hadron produc-
tion in pþ A collisions,

pðP0Þ þ AðPÞ ! hðPhÞ þ X; (1)

where P0 is the momentum for the incoming proton, and P
is defined as the average momentum per nucleon in the
nucleus. In general, the differential cross section for the
above process can be expressed as a sum of contributions
from single scattering, double scattering, and even higher
multiple scattering [25]:

d�pA!hX ¼ d�ðSÞ
pA!hX þ d�ðDÞ

pA!hX þ � � � ; (2)

where the superscript ‘‘(S)’’ indicates the single scattering
contribution, and ‘‘(D)’’ represents the double scattering
contribution. As illustrated in Fig. 1, in the single scatter-
ing contribution one parton a from the proton interacts
with one single parton b inside the nucleus to produce a
parton c, which will then fragment into the final observed
hadron h. On the other hand, in the double scattering
contribution the same parton a from the proton will interact

with two partons b, b0 from the nucleus simultaneously to
produce the final parton c.
The single scattering contribution follows the usual

leading-twist perturbative QCD factorization [26], and
the differential cross section per nucleon at leading order
in the strong coupling �s is given by

Eh

d�ðSÞ

d3Ph

¼�2
s

S

X
a;b;c

Z dz

z2
Dc!hðzÞ

Z dx0

x0
fa=pðx0Þ

�
Z dx

x
fb=AðxÞHU

ab!cdðŝ; t̂; ûÞ�ðŝþ t̂þ ûÞ; (3)

where
P

a;b;c runs over all parton flavors, S ¼ ðP0 þ PÞ2,
fa=pðx0Þ and fb=AðxÞ are the parton distribution func-

tions inside the proton and the nucleus, respectively, and
Dc!hðzÞ is the fragmentation function for parton c trans-
forming into hadron h. The scale dependencies are
suppressed for brevity. The hard-scattering functions
HU

ab!cdðŝ; t̂; ûÞ are the squared averaged matrix elements

for the subprocess aðpaÞ þ bðpbÞ ! cðpcÞ þ dðpdÞ with
pa ¼ x0P0, pb ¼ xP, pc ¼ Ph=z and the usual partonic
Mandelstam variables:

ŝ¼ðx0P0 þxPÞ2; t̂¼ðx0P0 �pcÞ2; û¼ðxP�pcÞ2:
(4)

These hard-scattering functions HU
ab!cdðŝ; t̂; ûÞ are well

known [23,27,28] and we reproduce them here for later
convenience:

HU
qq0!qq0 ¼

N2
c � 1

2N2
c

�
ŝ2 þ û2

t̂2

�
; (5)

HU
qq!qq ¼N2

c �1

2N2
c

�
ŝ2þ û2

t̂2
þ ŝ2þ t̂2

û2

�
�N2

c �1

N3
c

�
ŝ2

t̂ û

�
; (6)

HU
q �q!q0 �q0 ¼

N2
c � 1

2N2
c

�
t̂2 þ û2

ŝ2

�
; (7)

HU
q �q!q �q ¼

N2
c � 1

2N2
c

�
t̂2 þ û2

ŝ2
þ ŝ2 þ û2

t̂2

�
� N2

c � 1

N3
c

�
û2

ŝ t̂

�
;

(8)

HU
qg!qg ¼HU

gq!gq ¼�N2
c �1

2N2
c

�
ŝ

û
þ û

ŝ

�
þ
�
ŝ2þ û2

t̂2

�
; (9)

HU
gq!qg ¼HU

qg!gq ¼�N2
c �1

2N2
c

�
ŝ

t̂
þ t̂

ŝ

�
þ
�
ŝ2þ t̂2

ŝ2

�
; (10)

HU
q �q!gg ¼

ðN2
c � 1Þ2
2N3

c

�
t̂

û
þ û

t̂

�
� N2

c � 1

Nc

�
t̂2 þ û2

ŝ2

�
; (11)

(a) (b)

FIG. 1. Generic diagrams for (a) single scattering amplitude,
where the parton a from the proton interacts with one single
parton b inside the nucleus. (b) Double scattering amplitude,
where the parton a from the proton interacts with two partons
b, b0 from the nucleus simultaneously. Eventually, the hard
scattering produces a parton c, which then fragments into the
final observed hadron h.
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HU
gg!q �q ¼

1

2Nc

�
t̂

û
þ û

t̂

�
� Nc

N2
c � 1

�
t̂2 þ û2

ŝ2

�
; (12)

HU
gg!gg ¼ 4N2

c

N2
c � 1

�
3� t̂ û

ŝ2
� ŝ û

t̂2
� ŝ t̂

û2

�
: (13)

B. Double scattering contribution:
qq0 ! qq0 as an example

Let us now concentrate on the double scattering contri-
bution to the differential cross section. Since there aremany
partonic channels which contribute to the single inclusive
hadron production, including qq0 ! qq0, qq ! qq, q �q !
q0 �q0, q �q ! q �q, qg ! qg, gq ! gq, gq ! qg, qg ! gq,
q �q ! gg, gg ! q �q, and gg ! gg, we will take a simple
partonic channel qq0 ! qq0 as an example to demonstrate
our method. The derivation for all other channels is similar.

The double scattering diagrams can have both initial-
state contributions, as shown in Fig. 2, and final-state
contributions, as shown in Fig. 3. The chosen process
qq0 ! qq0 is rather simple as only one Feynman diagram
(the t-channel diagram which has one gluon exchange be-
tween the different quark flavors q and q0) is relevant for the
single scattering contribution. The Feynman diagrams
shown in Figs. 2 and 3 are the complete set for double
scattering contributions. However, other partonic processes
typically involve many more diagrams, which are all taken
into account carefully in our calculation. Let us start with
initial-state double scattering, for which there are three

Feynman diagrams: in the first diagram Fig. 2(L), both
gluons are on the left side of the cut line; in the second
diagramFig. 2(R), both gluons are on the right side of the cut
line; in the third diagram Fig. 2(M), the cut line is in the
middle of the two gluons. Physically, Fig. 2(M) is the real
diagram representing the classical double scattering picture,
while both Figs. 2(L) and2(R) are the interference diagrams.
These double scatterings manifest themselves as twist-4

contributions to the differential cross section. To derive
these contributions, a generalized factorization theorem,
the so-called high-twist power expansion approach, was
developed in [16–19] some time ago. Since then, this
approach has been used to study cold nuclear matter effects
in either eþ A or pþ A collisions, such as energy loss,
broadening effects, and dynamical nuclear shadowing. For
examples beyond the ones mentioned in the Introduction,
see [29–33].
Following this generalized factorization theorem, the

double scattering contribution in Fig. 2 can be expressed
in terms of a twist-4 four-parton correlation function as
follows:

Eh

d�ðDÞ

d3Ph

/
Z dz

z2
Dc!hðzÞ

Z dx0

x0
fa=pðx0Þ

�
Z

dx1dx2dx3Tðx1; x2; x3Þ
�
� 1

2
g��

�

�
�
1

2

@2

@k
�
?@k

�
?
Hðx1; x2; x3; k?Þ

�
k?!0

; (14)

(L) (R) (M)

FIG. 2 (color online). Initial-state double scattering contributions to the partonic subprocess qq0 ! qq0. Here gluon momenta kg ¼
x2Pþ k? and k0g ¼ ðx2 � x3ÞPþ k?.

(L) (R) (M)

FIG. 3 (color online). Final-state double scattering contributions to the partonic subprocess qq0 ! qq0. Here, the gluon momenta
kg ¼ x2Pþ k? and k0g ¼ ðx2 � x3ÞPþ k?.
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where k? is a small transverse momentum kick due to the
multiple scattering and Tðx1; x2; x3Þ is a twist-4 two-quark-
two-gluon correlation function defined by

Tðx1; x2; x3Þ
¼

Z dy�

2�

dy�1
2�

dy�2
2�

eix1P
þy�eix2P

þðy�
1
�y�

2
Þeix3Pþy�

2

� 1

2
hPjF�

þðy�2 Þ �c qð0Þ�þc qðy�ÞFþ�ðy�1 ÞjPi: (15)

Hðx1; x2; x3; k?Þ are the corresponding partonic hard-
scattering functions, and the x1, x2, x3 are the independent
collinear momentum fractions carried by the partons from
the nucleus, as shown in Fig. 2.

Here, the expansion around k? ¼ 0 to second order will
extract the twist-4 contributions. This so-called collinear
expansion is usually rather complicated and/or tedious in
practice. In this paper, we will use a slightly improved
technique for performing the collinear expansion and, thus,
will be able to use it for single inclusive hadron production,
which contains many partonic subprocesses. Such an im-
proved technique was first developed for twist-3 expansion
in studying transverse spin-dependent observables [34,35].
It involves first integrating out the parton momentum
fractions x1, x2, and x3 with the help of either a kinematic
� function or contour integrals, then performing the
k? expansion directly. Though a small improvement, it
enables us to perform the k? expansion with the help of
the Mathematica package, instead of doing it by hand, as in
the past.

We will now explain in detail how this works for our
chosen example process, qq0 ! qq0. We start with the first
diagram Fig. 2(L). In this diagram, we have an on-shell
condition for the unobserved quark d:

�ðp2
dÞ ¼ �½ððx1 þ x3ÞPþ x0P0 � pcÞ2�

¼ � x

t̂
�ðx1 þ x3 � xÞ; (16)

which can be used to integrate out x1 in Eq. (14), fixing
x1 ¼ x� x3. At the same time, there are propagators
marked by a short bar in the diagram. These propagators
are the so-called ‘‘pole’’ propagators, which will be used to
perform contour integrals to eliminate the remaining two
momentum fractions. They are given by the following
expressions:

1

ðx0P0 þx2Pþk?Þ2þ i�
¼x

ŝ

1

x2þx
k2?
ŝ þ i�

; (17)

1

ðx0P0 þ x3PÞ2 þ i�
¼ x

ŝ

1

x3 þ i�
: (18)

Now, the first propagator can be used to integrate out x2,

Z
dx2e

ix2P
þðy�

1
�y�

2
Þ 1

x2 þ x
k2?
ŝ þ i�

¼ �2�i�ðy�2 � y�1 Þe�i
k2?
ŝ xP

þðy�
1
�y�

2
Þ; (19)

which fixes x2 ¼ �x
k2?
ŝ . On the other hand, the second

propagator will be used to integrate out x3,

Z
dx3e

ix3P
þðy�

2
�y�Þ 1

x3 þ i�
¼ �2�i�ðy� � y�2 Þ; (20)

thus fixing x3 ¼ 0. Eventually, for both gluons on the
left side of the cut line, we have the contribution propor-
tional to

TLðx1; x2; x3ÞHLðx1; x2; x3; k?Þ; (21)

with all the momentum fractions given by

x1 ¼ x; x2 ¼ �x
k2?
ŝ
; x3 ¼ 0; (22)

and the relevant twist-4 correlation function

TL

�
x1 ¼ x; x2 ¼ �x

k2?
ŝ
; x3 ¼ 0

�

¼
Z dy�

2�

dy�1 dy
�
2

2�
eixP

þy�e�i
k2?
ŝ xP

þðy�1 �y�2 Þ�ðy�2 � y�1 Þ�ðy� � y�2 Þ
1

2
hPjFþ

� ðy�2 Þ �c qð0Þ�þc qðy�ÞFþ�ðy�1 ÞjPi: (23)

For the double scattering diagram shown in Fig. 2(R),
performing similar analysis, we have the contribution pro-
portional to

TRðx1; x2; x3ÞHRðx1; x2; x3; k?Þ; (24)

where the parton momentum fractions x1, x2, x3 are
the same as those in Fig. 2(L) and are given by
Eq. (22). The relevant twist-4 correlation function is
slightly different:

TR

�
x1¼x;x2¼�x

k2?
ŝ
;x3¼0

�

¼
Z dy�

2�

dy�1 dy�2
2�

eixP
þy�e�i

k2?
ŝ xP

þðy�
1
�y�

2
Þ�ðy�1 �y�2 Þ�ð�y�1 Þ

�1

2
hPjFþ

� ðy�2 Þ �c qð0Þ�þc qðy�ÞFþ�ðy�1 ÞjPi: (25)

Finally let us study the double scattering contribution in
Fig. 2(M). In this case, the on-shell condition for the
unobserved parton d gives
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�ðp2
dÞ ¼ �½ððx1 þ x2ÞPþ x0P0 þ k? � pcÞ2�

¼ � x

t̂
�

�
x1 þ x2 � x� x

k2? � 2pc � k?
t̂

�
; (26)

which fixes x1 ¼ xþ x
k2?�2pc�k?

t̂
� x2. The two pole

propagators marked with short bars are given by the fol-
lowing expressions:

1

ðx0P0 þ x2Pþ k?Þ2 þ i�
¼ x

ŝ

1

x2 þ x
k2?
ŝ þ i�

; (27)

1

ðx0P0 þ ðx2�x3ÞPþk?Þ2� i�
¼�x

ŝ

1

x3�x2�x
k2?
ŝ þ i�

;

(28)

which can be used to integrate over x2 and x3. Finally,
we have

x1 ¼ xþx
ðk2?�2k? �pcÞ

t̂
þx

k2?
ŝ
; x2 ¼�x

k2?
ŝ
;

x3 ¼ 0: (29)

Thus for this diagram, the contribution can be written as

�TMðx1; x2; x3ÞHMðx1; x2; x3; k?Þ; (30)

with momentum fractions x1, x2, x3 given by Eq. (29). The
minus sign in front of the expression emphasizes the
relative sign difference between Fig. 2(M) and Figs. 2
(L),(R) in the contour integration process. The relevant
correlation function TMðx1; x2; x3Þ has different � functions
given by the following expression:

TM

�
x1 ¼ xþx

ðk2?�2k? �pcÞ
t̂

þx
k2?
ŝ
;x2 ¼�x

k2?
ŝ
;x3 ¼ 0

�

¼
Z dy�

2�

dy�1 dy�2
2�

eið1þ
ðk2?�2k?�pcÞ

t̂
þk2?

ŝ ÞxPþy�e�i
k2?
ŝ xP

þðy�
1
�y�

2
Þ�ðy��y�1 Þ�ð�y�2 Þ

1

2
hPjFþ

� ðy�2 Þ �c qð0Þ�þc qðy�ÞFþ�ðy�1 ÞjPi:
(31)

The next critical step is to combine these three contributions, Eqs. (21), (24), and (30), and to perform the k? expansion:

@2

@k
�
?@k

�
?
½TLðx1; x2; x3ÞHLðx1; x2; x3; k?Þ þ TRðx1; x2; x3ÞHRðx1; x2; x3; k?Þ � TMðx1; x2; x3ÞHMðx1; x2; x3; k?Þ�: (32)

Here, we use the following useful identity:

@2

@k�?@k
�
?
½Tðx1; x2; x3ÞHðx1; x2; x3; k?Þ� ¼ @2T

@xi@xj

�
@xi
@k�?

@xj
@k�?

H

�
þ @T

@xi

�
@2xi

@k�?@k
�
?
Hþ @xi

@k�?

@H

@k�?
þ @xi
@k�?

@H

@k�?

�
þT

@2H

@k�?@k
�
?
;

(33)

where repeated indices imply summation. With this identity in hand, we substitute the relevant parton momentum fractions
x1, x2, x3, given in Eqs. (22) and (29), and then use Mathematica to perform the k? expansion automatically. For example,
for the double-derivative term @2Tðx1;x2;0Þ

@x2
2

, we obtain an expression proportional to

/
Z dy�

2�
eixP

þy�
Z dy�1 dy�2

2�
ðy�1 � y�2 Þ2hPjFþ

� ðy�2 Þ �c qð0Þ�þc qðy�ÞFþ�ðy�1 ÞjPiHðx; 0; 0; 0Þ½�ðy�2 � y�1 Þ�ðy� � y�2 Þ
þ �ðy�1 � y�2 Þ�ð�y�1 Þ � �ðy� � y�1 Þ�ð�y�2 Þ�; (34)

where we have used the fact

HLðx1; x2; x3; k?Þ ¼HRðx1; x2; x3; k?Þ¼HMðx1; x2; x3; k?Þ
�Hðx;0;0;0Þ (35)

for x1 ¼ x, x2 ¼ 0, x3 ¼ 0, and k? ¼ 0. It is important to
observe that in Eq. (34) the factor

½�ðy�2 � y�1 Þ�ðy� � y�2 Þ þ �ðy�1 � y�2 Þ�ð�y�1 Þ
� �ðy� � y�1 Þ�ð�y�2 Þ� (36)

is equivalent to the restrictions [17–19]

jy�j> jy�1 j> jy�2 j; (37)

i.e., the integration
R
dy�1 dy�2 becomes an ordered integral

limited by the value of y�. In the region where the parton
momentum fraction in the nucleus x�Oð1Þ, the rapidly
oscillating exponential phase eixP

þy� will effectively re-
strict y� � 1=ðxPþÞ ! 0, and thus also restricts y�1;2 ! 0
through Eq. (37). Physically, this means that all the y�
integrations in such a term are localized, and therefore, will
not have nuclear size enhancement for the double scatter-
ing contribution. For this reason, such a term that is
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proportional to Eq. (36) is sometimes referred to as ‘‘con-
tact’’ term [8].

It is instructive and important to point out that in the
small-x region, where x ! 0, the above argument does not
hold any more: in this case, even though one still has y�
restricted to y� � 1=ðxPþÞ, y� integration is not localized
at y� � 0 when x ! 0. Physically, this means that in the
small-x case, the probe (incoming parton from the proton)
can cover the whole nucleus. Thus, it will interact coher-
ently with the partons from different nucleons at the same
impact parameter inside the nucleus. In the small-x region
one cannot drop such contact term contributions as in
Eq. (36). In this regime the multiple scattering contribu-
tions to single hadron and dihadron production in pþ A
collisions were studied in the forward rapidity limit in
[20,21]. It has been shown that they lead to the so-called
‘‘dynamical shadowing’’ effect, which has been used to
successfully describe both single hadron suppression and
dihadron correlation in the forward rapidity region at the
relativistic heavy ion collider (RHIC) energies [21,23].

In this paper, we will concentrate on the region where
the parton momentum fraction in the nucleus x�Oð1Þ, i.e.
outside the small-x regime. We, thus, follow the original
study [18,19] and neglect all these contact terms that are
proportional to Eq. (36). Finally, from Eqs. (32) and (33),
we have the initial-state double scattering contribution to
the qq0 ! qq0 process as

/
�
x2
@2TðIÞ

q0=AðxÞ
@x2

�x
@TðIÞ

q0=AðxÞ
@x

þTðIÞ
q0=AðxÞ

�
cIHI

qq0!qq0 ðŝ; t̂; ûÞ;
(38)

where the prefactor cI ¼ � 1
t̂
� 1

ŝ , the associated hard-

scattering function HI
qq0!qq0 ¼ CFH

U
qq0!qq0 , and the rele-

vant two-quark-two-gluon correlation function TðIÞ
q=AðxÞ is

given by [23,30,31]

TðIÞ
q=AðxÞ ¼

Z dy�

2�
eixP

þy�
Z dy�1 dy

�
2

2�
�ðy� � y�1 Þ�ð�y�2 Þ

� 1

2
hPjFþ

� ðy�2 Þ �c qð0Þ�þc qðy�ÞFþ�ðy�1 ÞjPi:
(39)

The integration over dy�1 dy�2 leads to the nuclear size

enhancement / A1=3, as demonstrated in [19]. There are
several comments in order. First, in the intermediate steps
we have three independent two-quark-two-gluon correla-
tion functions, which can be seen clearly from the different
� functions in Eqs. (23), (25), and (31). They are associated
with the three different cuts, as shown in Fig. 2. However,

only one correlation function TðIÞ
q=AðxÞ remains in the final

result and it is associated with the diagram Fig. 2(M). Those
associated with Figs. 2(L) and 2(R) eventually lead to the
contact combination, as in Eq. (36). In other words, in the
x�Oð1Þ (outside the small-x) region, where all the contact
terms are suppressed, the final result only depends on the

real diagram shown in Fig. 2(M). The classical double
scattering picture is preserved. It is because of this reason
that the coherent nature in the multiple scattering disap-
pears. Thus, we should not expect to see the dynamical
shadowing effect shown in [20,21].
Second, the simple and compact form in Eq. (38) is quite

remarkable, i.e. the final results for the combined second-
derivative, first-derivative and nonderivative terms have a
common hard-scattering function for this process, even
though there could have been three separate hard-scattering

functions multiplying
@2TðIÞ

q=A
ðxÞ

@x2
,
@TðIÞ

q=A
ðxÞ

@x , and TðIÞ
q=AðxÞ, as in

Eq. (33). Similar simple structure was first observed in
studying the transverse spin asymmetry at the twist-3 level
[34,35], where one has only first-derivative and nonderiva-
tive terms and they share a single hard-scattering function.
A more fundamental reason why this is the case deserves
further investigation [36].
Let us now turn to the final-state double scattering

contributions to qq0 ! qq0. The relevant Feynman dia-
grams are shown in Fig. 3, where the observed outgoing
parton c undergoes double scattering (absorb soft gluons)
directly. Following the same approach as above, the final
result can again be written in a compact form:

/
�
x2

@2TðFÞ
q0=AðxÞ
@x2

� x
@TðFÞ

q0=AðxÞ
@x

þ TðFÞ
q0=AðxÞ

�

� cFHF
qq0!qq0 ðŝ; t̂; ûÞ; (40)

where we have a different prefactor cF ¼ � 1
t̂
� 1

û , and the

final-state hard-scattering function is the same as the
initial-state hard-scattering function as above HF

qq0!qq0 ¼
CFH

U
qq0!qq0 . The relevant final-state two-quark-two-gluon

correlation function TðFÞ
q=AðxÞ is the same as TðIÞ

q=AðxÞ,
except for the � functions that are replaced as follows
[20,23,30,31]:

�ðy� � y�1 Þ�ð�y�2 Þ ! �ðy�1 � y�Þ�ðy�2 Þ: (41)

Here, the final result again depends only on the real dia-
gram Fig. 3(M), which preserves the classical double
scattering picture. In principle, there are also Feynman
diagrams in which the unobserved outgoing parton d
undergoes multiple scattering. The sum over different
cuts for these diagrams will always lead to the contact
term as in Eq. (36), as demonstrated already in semi-
inclusive deep inelastic scattering [19,20]. Thus, in the
kinematic region x�Oð1Þ, we neglect such contributions.

C. Final result: A compact form

Likewise, we have computed both initial-state and final-
state double scattering contributions to all other partonic
channels: qq!qq, q �q!q0 �q0, q �q!q �q, qg!qg, gq!gq,
gq ! qg, qg ! gq, q �q ! gg, gg ! q �q, and gg ! gg.
For these processes, besides the two-quark-two-gluon
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correlation functions TðI;FÞ
q=A ðxÞ defined above, four-gluon

correlation functions TðI;FÞ
g=A ðxÞ also contribute and they

have the following definitions [23,30,31]:

TðIÞ
g=AðxÞ ¼

Z dy�

2�
eixP

þy�
Z dy�1 dy�2

2�
�ðy� � y�1 Þ�ð�y�2 Þ

� 1

xPþ hPjFþ
� ðy�2 ÞF�þð0ÞFþ

� ðy�ÞFþ�ðy�1 ÞjPi:
(42)

TðFÞ
g=AðxÞ is given by the same expression with the

�-functions replacement specified in Eq. (41). We find
that the double scattering contributions for all these par-
tonic processes follow the same compact form as in
Eqs. (38) and (40), with the following expression to the
single hadron differential cross section:

Eh

d�ðDÞ

d3Ph

¼
�
8�2�s

N2
c�1

�
�2
s

S

X
a;b;c

Z dz

z2
Dc!hðzÞ

Z dx0

x0
fa=pðx0Þ

�
Z dx

x
�ðŝþ t̂þ ûÞ X

i¼I;F

�
x2
@2TðiÞ

b=AðxÞ
@x2

�x
@TðiÞ

b=AðxÞ
@x

þTðiÞ
b=AðxÞ

�
ciHi

ab!cdðŝ; t̂; ûÞ; (43)

where
P

i¼I;F denotes the summation over initial-state and

final-state double scattering, ci are given by

cI ¼ � 1

t̂
� 1

ŝ
; (44)

cF ¼ � 1

t̂
� 1

û
: (45)

The hard-scattering functions Hi
ab!cdðŝ; t̂; ûÞ receive con-

tributions from both initial-state and final-state double
scattering and are always proportional to the unpolarized
hard-part functions HU

ab!cdðŝ; t̂; ûÞ as follows:

HI
ab!cd ¼

�CFH
U
ab!cd a ¼ quark

CAH
U
ab!cd a ¼ gluon;

(46)

HF
ab!cd ¼

�CFH
U
ab!cd c ¼ quark

CAH
U
ab!cd c ¼ gluon:

(47)

In other words, they only depend on the color of the
incoming and outgoing partons which undergo the multiple
scattering. It is important to emphasize again that the final
result depends only on the diagrams in which the two
gluons are on different sides of the t ¼ 1 cut and preserve
the classical double scattering picture. All the interference
diagrams drop out in the final result because they all show
up in the contact terms and thus don’t lead to the nuclear
size enhancement in the x�Oð1Þ (outside small-x) region,
which we are interested in. Finally, if one replaces the
hadron fragmentation function Dc!hðzÞ by �ð1� zÞ, we
immediately obtain the double scattering contribution to

the single jet production in pþ A collisions (to lowest
order in the jet structure).

III. MULTIPLE SCATTERING EFFECTS IN
PHYSICAL PROCESSES INVOLVING A PHOTON

In this section we study the multiple scattering contri-
butions to the physical processes which involve a photon in
either the initial or the final state. In particular, we study the
prompt photon production in pþ A collisions, and single
inclusive hadron production in �þ A collisions. For both
processes, our results derived in last section will be directly
relevant, as we will show below.

A. Multiple scattering in prompt photon production
in pþA collisions

The prompt photon production can receive two contribu-
tions: the so-called ‘‘direct’’ photons and ‘‘fragmentation’’
photons [37–39]. Thus, the single scattering contribution to
the prompt photon production can be written as

E�

d�ðSÞ

d3P�

¼ E�

d�ðSÞ

d3P�

��������direct
þE�

d�ðSÞ

d3P�

��������frag
: (48)

The direct photon contribution at the leading order has the
following form:

E�

d�ðSÞ

d3P�

��������direct
¼�em�s

S

X
a;b

Z dx0

x0
fa=pðx0Þ

�
Z dx

x
fb=AðxÞHU

ab!�dðŝ; t̂; ûÞ�ðŝþ t̂þ ûÞ;
(49)

with the hard-scattering functions given by [27,40]

HU
qg!�q ¼ e2q

1

Nc

�
� ŝ

t̂
� t̂

ŝ

�
; (50)

HU
gq!�q ¼ e2q

1

Nc

�
� ŝ

û
� û

ŝ

�
; (51)

HU
q �q!�g ¼ e2q

N2
c � 1

N2
c

�
t̂

û
þ û

t̂

�
: (52)

On the other hand, the single scattering contribution to the
fragmentation photon production can be written as

E�

d�ðSÞ

d3P�

��������frag
¼�2

s

S

X
a;b;c

Z dz

z2
Dc!�ðzÞ

Z dx0

x0
fa=pðx0Þ

�
Z dx

x
fb=AðxÞHU

ab!cdðŝ; t̂; ûÞ�ðŝþ t̂þ ûÞ;
(53)

i.e., one replaces parton-to-hadron fragmentation function
Dc!hðzÞ in Eq. (3) by parton-to-photon fragmentation func-
tion Dc!�ðzÞ.
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Let us now study the double scattering contributions to the prompt photon production. For the direct photon
component, in which the photon is produced in the hard scattering, we only have initial-state double scattering. The
calculation follows the same method as the last section and we have the result:

E�

d�ðDÞ

d3P�

��������direct
¼

�
8�2�s

N2
c � 1

�
�em�s

S

X
a;b

Z dx0

x0
fa=pðx0Þ

Z dx

x
�ðŝþ t̂þ ûÞ

�
�
x2

@2TðIÞ
b=AðxÞ
@x2

� x
@TðIÞ

b=AðxÞ
@x

þ TðIÞ
b=AðxÞ

�
cIHI

ab!�dðŝ; t̂; ûÞ; (54)

where cI is given in Eq. (44), and the associated hard-
scattering functions HI

ab!�d are given by

HI
qg!�q ¼ CFH

U
qg!�q; (55)

HI
gq!�q ¼ CAH

U
gq!�q; (56)

HI
q �q!�g ¼ CFH

U
q �q!�g: (57)

This initial-state double scattering contribution to direct
photon production was first derived in [41]. Our approach
allows for the result to be written in a compact form, as in
our Eq. (54).

In the fragmentation photon contribution Eq. (53) one
first produces a parton c through the hard partonic process
ab ! cd. This parton then fragments into the final ob-
served photon. In this case, both the incoming parton a
and the outgoing parton c can interact with the partons in
the nucleus, resulting in both initial-state and final-state
multiple scattering effects. These interactions are exactly
the same as the ones in single inclusive hadron production,
as shown in the previous section. We, thus, obtain the
double scattering contribution to fragmentation photons
as the following:

E�

d�ðDÞ

d3P�

��������frag
¼

�
8�2�s

N2
c � 1

�
�2
s

S

X
a;b;c

Z dz

z2
Dc!�ðzÞ

�
Z dx0

x0
fa=pðx0Þ

Z dx

x
�ðŝþ t̂þ ûÞ

� X
i¼I;F

�
x2

@2TðiÞ
b=AðxÞ
@x2

� x
@TðiÞ

b=AðxÞ
@x

þ TðiÞ
b=AðxÞ

�
ciHi

ab!cdðŝ; t̂; ûÞ; (58)

i.e., the final result is the same as Eq. (43) with the replace-
ment of the parton-to-hadron fragmentation function with
the parton-to-photon fragmentation function.

B. Single inclusive hadron production in
photonþ nucleus collisions

Let us now study the single hadron photo-production
�þA!hþX, which can also receive two contributions:
the so-called ‘‘direct’’ and ‘‘resolved’’ components [42–47].

The ‘‘direct’’ component corresponds to the case where the
photon interacts directly with a parton in the nucleus. On the
other hand, in the resolved contribution, the photon acts as a
source of partons which collide with the partons in the
nucleus. One can write the single scattering contribution to
hadron photo-production as follows:

Eh

d�ðSÞ

d3Ph

¼ Eh

d�ðSÞ

d3Ph

��������direct
þEh

d�ðSÞ

d3Ph

��������resolved
: (59)

The direct component can be written as

Eh

d�ðSÞ

d3Ph

��������direct
¼�em�s

S

X
b;c

Z dz

z2
Dc!hðzÞ

�
Z dx

x
fb=AðxÞHU

�b!cdðŝ; t̂;ûÞ�ðŝþ t̂þ ûÞ;
(60)

where S ¼ ðP� þ PÞ2 is the center-of-mass energy squared,

and the hard-scattering functions are given by [31]

HU
�q!qg ¼ e2q

N2
c � 1

Nc

�
� ŝ

t̂
� t̂

ŝ

�
; (61)

HU
�q!gq ¼ e2q

N2
c � 1

Nc

�
� ŝ

û
� û

ŝ

�
; (62)

HU
�g!q �q ¼ e2q

�
t̂

û
þ û

t̂

�
: (63)

On the other hand, the resolved component can be
written as

Eh

d�ðSÞ

d3Ph

��������resolved

¼ �2
s

S

X
a;b;c

Z dz

z2
Dc!hðzÞ

Z dx0

x0
fa=�ðx0Þ

�
Z dx

x
fb=AðxÞHU

ab!cdðŝ; t̂; ûÞ�ðŝþ t̂þ ûÞ; (64)

where fa=�ðx0Þ is the parton distribution function in a pho-

ton, e.g. seeRef. [43] for a parametrized functional form.All
the partonic subprocesses ab ! cd are exactly the same as
those in the single hadron production in pþ A collisions,
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with the same hard-scattering functions HU
ab!cdðŝ; t̂; ûÞ as

given in the last section.
Now, we turn our attention to the double scattering

contribution to single hadron production in �þ A colli-
sions, which can be studied experimentally in a future
electron ion collider [48]. For the direct component, we
have only a final-state double scattering contributions. The
final result is

Eh

d�ðDÞ

d3Ph

��������direct

¼
�
8�2�s

N2
c � 1

�
�em�s

S

X
b;c

Z dz

z2
Dc!hðzÞ

Z dx

x
�ðŝþ t̂þ ûÞ

�
�
x2

@2TðFÞ
b=AðxÞ
@x2

� x
@TðFÞ

b=AðxÞ
@x

þ TðFÞ
b=AðxÞ

�

� cFHF
�b!cdðŝ; t̂; ûÞ; (65)

where cF is given in Eq. (45), and the hard-scattering
function HF

�b!cd is related to the unpolarized hard-part

function HU
�b!cd just like in Eq. (47):

HF
�q!qg ¼ CFH

U
�q!qg; (66)

HF
�q!gq ¼ CAH

U
�q!gq; (67)

HF
�g!q �q ¼ CFH

U
�g!q �q: (68)

On the other hand, in the resolved component, the
incoming particle is a parton resolved inside the photon
and it can interact with the nucleus via strong interaction.
In this case, we have both initial-state and final-state
multiple scattering effects. Again, the double scattering
contributions will have the same form as in Eq. (43), except
that fa=pðx0Þ is replaced by fa=�ðx0Þ. Finally, if one replaces
the fragmentation function Dc!hðzÞ by �ð1� zÞ, one im-
mediately obtains the double scattering contributions to
single jet production in �þ A collisions at lowest order
in the jet substructure. The double scattering contribution
to the direct component for jet photo-production was first
derived in [17]. Our approach allows us to write it in a
simple compact form, Eq. (65).

IV. SUMMARYAND DISCUSSION

In this paper we studied the double scattering contribu-
tion to the differential cross section for single inclusive
hadron production in pþ A collisions within the high-twist
factorization approach to parton interactions in cold nuclear
matter. Unlike most recent studies, we concentrated on
the region where the parton momentum fraction in the
nucleus x�Oð1Þ. This regime, outside small x, represents
the incoherent double scattering contribution that is most

relevant at backward rapidities, i.e. in the direction of the
nucleus. Including both initial-state and final-state double
scattering contributions, we found that the final result is
proportional to a simple combination of second-derivative,
first-derivative, and nonderivative terms of well-defined
four-parton correlation functions that share the same hard-
scattering functions. We further extended our method to
study the double scattering contribution to prompt photon
production in pþ A collisions and to the single inclusive
hadron production in �þ A collisions. All final results
follow the same simple compact form, which is the main
finding of this work.
We leave phenomenological studies for the future, since

they require detailed modeling of the four-parton correla-
tion functions. Nevertheless, by direct inspection of our
analytic results, we see that in the incoherent regime the
double scattering gives a positive contribution to the dif-
ferential cross section for all processes considered here.
Qualitatively, such Cronin-like enhancement [49] is di-
rectly comparable to the findings of alternative approaches
to independent multiple parton scattering [24]. Owing to its
power-suppressed nature, the nuclear effect is expected to
disappear at large transverse momenta. At the same time,
since even higher-order multiple scattering will result in
additional power suppression in this approach, we expect
that double scattering contributions will be the most rele-
vant ones for phenomenology [50]. At backward rapidities
(i.e. in the direction of the nucleus) and transverse mo-
menta up to a few GeV, pþ A reaction always show
enhancement of particle production relative to the
naive binary collision-scaled pþ p result [51–53]. At
midrapidity, the sign and magnitude of the nuclear en-
hancement depends on the center-of-mass energy. In the
center-of-mass energy range up to 5 TeV [54], where
measurements in pþ A reactions exist, Cronin effect is
present but its magnitude is significantly reduced in going
from the fixed target experiments to RHIC and, finally, to
the LHC. We expect that our work will shed light on the
origin of cold nuclear matter effects in the unexplored
backward rapidity region in both pþ A and eþ A reac-
tions. It will also help understand the transition from
incoherent to coherent multiple scattering effects [3] at
forward rapidity.
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