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Neutral flavor-changing transitions are hugely suppressed in the Standard Model and therefore they are

very sensitive to new physics. We consider the decay rate of t ! uih where ui ¼ u, c using an effective field

theory approach. We perform the calculation at next-to-leading order (NLO) in QCD including the relevant

dimension-six operators. We find that at NLO the contribution from the flavor-changing chromomagnetic

operator is as important as the standard QCD correction to the flavor-changing Yukawa coupling. In addition

to improving the accuracy of the theoretical predictions, the NLO calculation provides information on the

operator mixing under the renormalization group.
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I. INTRODUCTION

The discovery of a particle of about 125 GeV mass [1,2]
that resembles the Higgs boson of the Standard Model
(SM) [3–5] has opened a new era in particle physics. A
new realm of possibilities for exploring the electroweak
breaking sector and new exciting opportunities to search
for new physics in general have appeared. From the exis-
tence of new symmetries to new space-time dimensions,
from new matter to a richer scalar sector, many are still
viable options. For instance, extra scalar states could exist
mostly (or exclusively) coupling to the Higgs boson or new
particles could decay into final states involving the SM
scalar boson. In addition to direct searches, the accurate
measurement of the coupling strengths and structures to
the SM particles could point to the scale of new physics.

In this perspective, the study of neutral flavor-changing
(NFC) couplings involving the top quark and the Higgs
boson is of special interest. In the Standard Model, NFC
interactions are absent at tree level and hugely suppressed
by the Glashow-Iliopoulos-Maiani mechanism at one loop.
Finding evidence for such processes taking place at mea-
surable rates would basically always imply new physics
not too far from the TeV scales. The recently observed

excess of B ! Dð�Þ�� [6] could hint to NFC mediated by
the Higgs boson [7].

In this work we consider the decay of a top quark into a
light ui (up or charm) quark and the Higgs boson, assuming
new physics residing at a scale �>mt. The SM contribu-
tion to the branching ratio is extremely small, at order
10�13–10�15 [8–10]. Indirect bounds on BRðt ! chÞ
have been set, for example, in Refs. [11,12], and are found
to be at �10�3 level. Collider searches for these interac-
tions have been discussed in [10,13–16]. The first limit at
LHC, BRðt ! chÞ< 2:7%, was given in [17].

In this Letter we present the calculation at next-to-
leading order (NLO) in QCD of the inclusive top-quark
decay into a Higgs boson via NFC interactions in an

effective field theory (EFT) [18] approach. We consider
all lowest dimensional operators Oi compatible with the
symmetries of the SM,

LEFT ¼ LSM þX
i

CiOi

�2
þ H:c:; (1)

where � represents the scale of new physics. Our calcu-
lation completes the set of NLO results available for two-
body top decays, such as t ! bW and t ! cV with V ¼ �,
g, Z [19–22], which we have independently checked.

II. SETUP

A complete and minimal list of dimension-six operators
that can be written with SM fields and are compatible with
the symmetries of the SM can be found in Ref. [23]. We use
the same operator basis, employing the following notation
for quark fields:

Q: third-generation left-handed quark doublet;

q: first- or second-generation left-handed quark doublet;

t: right-handed top quark;

u; c: right-handed up and charm quark;

’: Higgs boson doublet;

and ~’ ¼ i�2’. There are two main Lorentz structures that
contribute to the t ! uih decay, the dimension-six Yukawa
interaction Ou’, and the chromomagnetic operator OuG.

The latter contributes only at NLO. Considering the pos-
sible flavor assignments, they read

Oð1;3Þ
uG ¼ ytgsð �q���TAtÞ~’GA

��; (2)

Oð1;3Þ
u’ ¼ �y3t ð’y’Þð �qtÞ~’; (3)

Oð3;1Þ
uG ¼ ytgsð �Q���TAuÞ~’GA

��; (4)*cen.zhang@uclouvain.be
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Oð3;1Þ
u’ ¼ �y3t ð’y’Þð �QuÞ~’; (5)

where superscript (1, 3) and (3, 1) denote the flavor struc-
ture. The Hermitian conjugates of the (3, 1) operators
contribute to t ! uih with the opposite chirality of the
corresponding (1, 3) operators. In addition, replacing the
up-quark field with the charm-quark field gives the same
set of operators with (2, 3) and (3, 2) flavor structures.

Note that the operators have been normalized by attach-
ing appropriate factors of the top-quark Yukawa coupling
yt and the strong coupling gs. The powers of these factors
are determined by requiring that, whenever these operators
give rise to a SM-like vertex, the coupling strength relative
to the SM coupling is always one of the following factor:

Ci

m2
t

�2
; Ci

mtE

�2
; Ci

E2

�2
; (6)

where E is the typical energy of the particles entering the
vertex. This helps to determine the order of the mixing
between these operators. With this convention, the operator
mixing induced by a gluon exchange is always of order �s,
even if the gluon vertex comes from an effective operator.
In fact the normalization coefficient of these operators
depends on the details of the full theory beyond�. In short
our convention states that for any bilinear quark operators,
we attach a yt to each Higgs field, and a gs for each gluon
field. We remark that in this work we choose yt to be
defined in terms of the on-shell top-quark mass mt

yt ¼
ffiffiffi
2

p
mt

v
: (7)

This is just for simplicity. As a result, it does not contribute
to the anomalous dimension of the operators at order �s.

In the following we focus on operators with (1, 3) and
(3, 1) flavor structure. The extension of the results from
t ! uh to t ! ch is trivial. In addition, since there is no
mixing between operators of type (1, 3) and (3, 1) we can
omit the superscripts (1, 3) and (3, 1), and only consider the
(1, 3) case. Results for (3, 1) can be obtained by flipping the
chirality of the quarks.

At the tree level, only Ou’ contributes. The effective

Lagrangian describing the interaction of a top quark, a light
quark, and the Higgs boson h reads

Ltuh ¼ �Cu’

m2
t

�2

3ytffiffiffi
2

p ð �uPRtÞhþ H:c: (8)

In addition, the terms in Ou’ involving the vacuum expec-

tation value v of the Higgs field give rise to uL � tR mixing.
The standard way to deal with this effect is to perform a set
of transformations that diagonalize the mass matrix:

uL ! uL þ Cu’

m2
t

�2
tL; (9)

tL ! tL � C�
u’

m2
t

�2
uL; (10)

and similarly for Oð3;1Þ
u’ . As a result Eq. (8) is modified and

the tuh interaction reads

L0
tuh ¼ �Cu’

m2
t

�2

2ytffiffiffi
2

p ð �uPRtÞhþ H:c: (11)

Equivalently, one can add a dimension-four counterterm
such that the operator Ou’ becomes

Ou’ !Ou’þm2
t ytð �qtÞ~’¼�y3t

�
’y’�v2

2

�
ð �qtÞ~’; (12)

and the mixing term disappears.
Another possibility is to keep the quark fields not diago-

nal, and simply include the external leg corrections to the
diagrams, as shown in Fig. 1. This gives the same result for
t ! uh. At the one-loop level, we choose this point of
view to take into account the loop-induced tu mixing.
The decay rate up to next-to-leading corrections in the

strong coupling can be written as

�ðt ! uihÞ ¼ �ð0Þ þ �s�
ð1Þ; (13)

with LO result [24]

�ð0Þ ¼ jCu’j2
�4

ffiffiffi
2

p
GFm

7
t

8�

�
1�m2

h

m2
t

�
2
; (14)

where the light quark mass is neglected.

III. NLO CALCULATION STRATEGY

We briefly describe our strategy for the computation of
NLO corrections in QCD to the decay rate.
First, we aim at NLO accuracy in QCD but only LO in

C=�2 EFTexpansion. Calculation of higher orders of C=�2

requires complete knowledge of dimension-eight operators,
and it is beyond the scope of this paper. As there are no SM
FCNC decays t ! uih at LO, the first nonzero contribution
to the decay width from new physics is order ðC=�2Þ2.
To regulate both ultraviolet (UV) and infrared (IR)

divergences, we employ dimensional regularization [25]
and work in D ¼ 4� 2� dimensions. Whenever �5 is
present in our computation, we use the following prescrip-
tion based on the ’t Hooft-Veltman scheme [26,27]:

�5 ! ð1� 8asÞ i

4!
��1�2�3�4�

�1��2��3��4 ; (15)

���
5 ! ð1� 4asÞ i

3!
���1�2�3

��1��2��3 ; (16)

����
5 ! � i

2
����	�

�	; (17)

where as ¼ CF�s=ð4�Þ.

FIG. 1. Feynman diagrams for t ! uþ h at tree level. Squares
represent an insertion of Ou’.
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IR divergences cancel between virtual and real diagrams
when sufficiently inclusive observables are considered.
The rest of the calculation involves the following:

(1) a UV-divergent part, which gives rise to operator
mixing and renormalization group equations,

(2) UV-finite part, which gives the actual corrections to
the matrix elements.

In the first step, we calculate the UV-divergent part arising
from the loop diagrams, and identify the UV counterterms

by applying the MS scheme and requiring that the
UV-divergent terms cancel. The outcome of this procedure
is a set of counterterms for dimension-six operators.We then
proceed to work out the anomalous dimension and the
renormalization group equations of these operators. These
equations can be used to evolve the coefficients of these
operators from a higher scale down to the scale of top-quark
mass.

In the second step, we calculate the UV-finite part. The
final result is given in terms of the coefficients of these
operators defined at the scale of top-quark mass.

Throughout this paper we ignore the light quark masses,
and assume Vtb ¼ 1.

IV. OPERATOR RENORMALIZATION

The following counterterms for the SM part are used.
For the external fields:


ZðtÞ
2 ¼ � �s

3�
D�

�
1

�UV
þ 2

�IR
þ 4

�
; (18)


ZðqÞ
2 ¼ � �s

3�
D�

�
1

�UV
� 1

�IR

�
; (19)


Zð’Þ
2 ¼ 0; (20)


mt=mt ¼ � �s

3�
D�

�
3

�UV
þ 4

�
; (21)

while for the couplings:


Zgs ¼
�s

4�
�ð1þ �Þð4�Þ�

�
Nf

3
� 11

2

�
1

�UV
þ �s

12�
D�

1

�UV
;

(22)


Zyt ¼ � �s

3�
D�

�
3

�UV
þ 4

�
; (23)

where D� � �ð1þ �Þð4��2

m2
t
Þ�. This set of counterterms

corresponds to renormalizing the external fields and the
top Yukawa coupling on shell, and the strong coupling in

the MS scheme. We consider five light flavors in the

running of �s. We then apply the MS scheme to the
dimension-six operators and require that dimension-six
operators only mix with dimension-six operators. The
counterterms are given by

C0
i ! Zi;jCj ¼ ð1þ 
ZÞi;jCj: (24)

We first consider Ou’. Including counterterms, the

Lagrangian can be written as

LEff ¼ Ltu þLtuh; (25)

Ltu ¼ �Cu’m
3
t

�2
ð �uLtRÞð1þ 
Zu’Þ; (26)

Ltuh ¼ �Cu’m
2
t

�2

3ytffiffiffi
2

p ð �uLtRhÞð1þ 
Zu’Þ; (27)

where the counterterm 
Zu’ is


Zu’ ¼ 
Zu’;u’ þ 1

2
ZðtÞ
2 þ 1

2

ZðqÞ

2

¼ 
Zu’;u’ � �s

3�

1

�
þ � � � ; (28)

where the dots stand for additional finite terms. The renor-
malization mirrors that of the SM Yukawa terms. 
Zu’;u’

is determined by the 1=� part of the two-point (ut) and
three-point (uth) functions. We find


Zu’;u’ ¼ ��s

�

1

�
: (29)

Now we consider OuG. The utg vertex is given by

LEff ¼ �CuG

�2
2mtgsð �uL���TAtRÞ@�GA

�: (30)

This gives rise to a u� t mixing at one loop. We find

�utðp2Þ ¼ �CuGmt

�2

�
m2

t

�

Zu’;uG þ 2�s

�

1

�

�
PR

� PRð2p2 �mt 6pÞ as�
1

�

�
þ � � � : (31)

The first term in the bracket implies


Zu’;uG ¼ � 2�s

�

1

�
: (32)

One could also determine this counterterm by calculating
the three-point (uth) function. The pole in the second term
can be dealt with through the following dimension-six
counterterms:

Oð1Þ ¼ �ytð �q 6DQ 6DtÞ~’; (33)

Oð2Þ ¼ � i

2
y2t ð �Q ~’Þð~’y 6DqÞ: (34)

However, these operators vanish when the equations of
motions are considered (on-shell or off-shell quark does
not matter). Therefore one can simply ignore these opera-
tors as the 1=� poles always cancel out when combining
with the vertex contributions in a physical amplitude.
Finally, the renormalization of OuG requires computa-

tion of utg at one loop. We find


ZuG;uG ¼ �s

6�

1

�
; (35)

while ZuG;u’ is zero because there is no contribution from

Ou’ to utg at one loop at order �s.
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In summary, we have the following anomalous dimen-
sion matrix for OuG and Ou’:

� ¼ 2�s

�

1
6 0

�2 �1

 !
: (36)

The operator OuG can also renormalize other operators.
The complete operator mixing can be extracted from the
calculation of t ! uiV. However, at order �s no other
operator can renormalize Ou’ and OuG, so for the process

t ! uih the anomalous dimensions given in Eq. (36) are
sufficient.

V. FINITE CORRECTIONS

We proceed to carry out the UV-finite part of the calcu-
lation. At NLO, the loop corrections and real corrections
are shown in Fig.. 2. To simplify the calculation, we rotate
the u and t quark fields to remove the mixing due to
Ou’. More specifically, given the following effective

Lagrangian,

LEff ¼
Cu’

�2
ð�y3t Þð’y’Þð �qt ~’Þ

�
1þ 
Zu’;u’ þ 1

2

Zt

2

þ 1

2

Zq

2

�
þ CuG

�2
½ytgsð �q���TAtÞGA

��

þ 
Zu’;uGð�y3t Þð’y’Þð �qt ~’Þ�; (37)

we perform the following rotation:

uL ! uL þ Cu’

m2
t

�2

�
1þ 
Zu’;u’ þ 1

2

Zt

2 þ
1

2

Zq

2

�
tL;

(38)

tL ! tL � C�
u’

m2
t

�2

�
1þ 
Zu’;u’ þ 1

2

Zt

2 þ
1

2

Zq

2

�
uL:

(39)

As a result the u� tmixing due to the first term in Eq. (37)
is removed; therefore, only the vertex correction needs to
be considered for Ou’. On the other hand, for OuG, the

second terms in Eq. (37) contains a u� t mixing counter-
term that is not rotated away. This term cancels the
UV-divergent terms from OuG at one loop in u� t mixing.
The remaining finite part is included in the leg correction
diagrams in Fig. 2. Because the rotation of fields is of order
C=�2, and the LO contribution to t ! uh is already of
order C=�2, the rotation does not affect our results. As a
check, we have computed the loop corrections without
redefining the fields. In this case there are four more
diagrams, as shown in Fig. 3.
Including both virtual and real corrections, the total

NLO correction to the decay rate is (x ¼ mh=mt):

8��ð1Þffiffiffi
2

p
GFm

7
t

¼ jCuGj2
�4

1

36�

�
x8 � 8x6 � 342x4 þ 620x2 � 271

þ 6x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4� x2

p
ð26� 5x2Þ

�
�� 6sin�1 x

2

�
þ 12ð9x4 þ 76x2 � 8Þ log x

�

� ReðCuGC
�
u’Þ

�4

2

9�

8><
>:6

2
646ð1� x2Þ2 logmt

�
þ ð5x4 þ 2x2 þ 4 log ð1� x2Þ � 2 log xÞ log x

þ
0
B@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4

x2
� 1

s
ðx4 � 6x2 þ 8Þ þ 2�

1
CA arcsin

x

2
þ 6arcsin 2 x

2

3
75

þ 12

2
64Li2ðx2Þ � 2ReLi2

0
B@
0
B@x� 1

x

1
CA
0
B@x
2
� i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

4

s 1
CA
1
CA
3
75

þ
�
3�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4� x2

p
ðx2 � 2Þx� 3ðx4 þ 8x2 � 9Þx2 � 5�2

�9>=
>;

� jCu’j2
�4

ð1� x2Þ2
9�

��
36 log

mt

�
þ 4�2 � 51

�
þ 24Li2x

2 þ 24 log x log ð1� x2Þ

þ 24
x2

1� x2
log xþ 6

�
5� 2

x2

�
log ð1� x2Þ

�
: (40)
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The jCuGj2 term does not have a log mt

� dependence. This is
because the tree-level amplitude does not have a contribu-
tion from OuG. As a result, the jCuGj2 term entirely comes
from real corrections (virtual corrections are interferences
between tree- and one-loop level amplitudes), and it is
independent of �.

In addition, the C2
uG term contains log x which is diver-

gent in the limit mh ! 0. This corresponds to a soft Higgs
emission which in the mh ! 0 limit is divergent when
Eh ¼ 0. In this limit, we have

�s�
ð1Þ ¼ � �sGF

144
ffiffiffi
2

p
�2

jCuGj2
�4

m7
t ð96 log xþ 271Þ þOðxÞ:

(41)

As this term is purely from the real corrections, it can be
thought of as the real Higgs emission correction to the
decay mode t ! uþ g. The soft divergence is expected to
be canceled by the wave function renormalization of the
top quark in the process t ! uþ g, coming from a virtual
Higgs bubble diagram. As a check, we have computed this
diagram and find


ZðtÞ
2;h ¼ � m2

t GF

16
ffiffiffi
2

p
�2

D�

�
1

�UV
� 8 log x� 3

�
þOðxÞ: (42)

The corresponding contribution to the virtual correction to
the decay width of t ! uþ g is

�ðvirtÞ
t!uþg ¼ �ð0Þ

t!uþg � 
ZðtÞ
2;h ¼

�
4�s

3

jCuGj2
�4

m5
t

�
� 
ZðtÞ

2;h

¼ � �sGF

12
ffiffiffi
2

p
�2

m7
t D�

�
1

�UV
� 8 log x� 3

�
þOðxÞ;

(43)

which exactly cancels the log x term in Eq. (41).

The other two terms in �ð1Þ, jC2
u’j and ReðCuGC

�
u’Þ do

not have this divergence. In particular, the interference
term [which is proportional to ReðCuGC

�
u’Þ] is finite in

the x ! 0 limit, even though it contains log x terms and Li2
functions. This is because the two real correction diagrams
from Ou’ cancel each other when ph ¼ 0.

VI. NUMERICAL ANALYSIS

For the numerical analysis we assume � ¼ 1 TeV. For
the input parameters, we use [28]

mt ¼ 173:5 GeV; (44)

mh ¼ 125:3 GeV; (45)

GF ¼ 1:1664� 10�5 GeV�2: (46)

With these parameters we find

�ð0Þ ¼ 7:11jCu’ð�Þj2 � 10�4 GeV; (47)

FIG. 2. Virtual and real corrections for t ! uh. The squares represent the contribution from Ou’, while the black dots represent the
contribution from OuG.

FIG. 3. Additional corrections for t ! uh.
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�ð1Þ ¼
��
1:19� 9:05 log

�
mt

�

��
jCu’ð�Þj2

�
�
3:26þ 18:1 log

�
mt

�

��
ReCuGð�ÞC�

u’ð�Þ

þ 9:33� 10�5jCuGð�Þj2
�
� 10�4 GeV: (48)

The C2
uG term is 4 orders of magnitude smaller than the

other two terms, and thus it is interesting to understand such
a suppression. As we have mentioned, this term only re-
ceives contributions from real emission. We find that, due to
the ���pg� structure of the coupling fromOuG, the squared

amplitude for t ! uþ hþ g depends on pg � pu. We find

jMj2 ¼ 128�2��s

jCuGj2
�4

m6
t

m2
Ws

2
W

t̂2

ð1� t̂Þ2
� ðt̂2 þ t̂ ŝþð2� x2Þt̂� ŝþ 1Þ; (49)

where ŝ ¼ ðpt � puÞ2=m2
t and t̂ ¼ ðpg � puÞ=m2

t .

As a result, this term is dominated by the phase space
region where t̂ is large. However, the maximum value of t̂
is ð1� xÞ2=2 and is therefore suppressed for a large Higgs
mass. In fact, for mh ¼ 125 GeV this suppression factor
for jMj2 already reaches the 10�3 level. The phase space
itself accounts for one additional order of magnitude, so
the total decay width from jOuGj2 is small for mh ¼
125 GeV. On the other hand, the other two terms [jC2

u’j
and ReðCuGC

�
u’Þ] are not affected by this factor as their

main contribution comes from virtual 1 ! 2 topologies.
We now consider the impact of the NLO corrections

to phenomenological applications. In the following we
assume both Cu’ and CuG to be real. At order �s the

contribution from CuG is even more important than that
from Cu’. Neglecting the jCuGj2 term, the ratio between

the NLO and LO result is

�s�
ð1Þ

�ð0Þ
¼ 0:018� 0:049

CuG

Cu’

(50)

at� ¼ mt. Here we have used �sðmtÞ ¼ 0:1079, which we
obtain with the program RunDec [29] from the value
�sðmZÞ ¼ 0:1184 [28]. Without OuG the QCD correction
is about 2%, while if OuG and Ou’ are similar in size, the

QCD correction can reach the 10% level.
The residual theoretical uncertainties can be estimated by

checking the scale dependence of the decay width. Using the
anomalous dimension matrix given in Eq. (36), we solve the
scale dependence of the coefficients Cu’ and CuG:

Cu’ð�Þ ¼ Cu’ðmtÞ
�
�sð�Þ
�sðmtÞ

� 4
	0 þ 12

7
CuGðmtÞ

��
�sð�Þ
�sðmtÞ

� 4
	0

�
�
�sð�Þ
�sðmtÞ

�� 2
3	0

�
; (51)

CuGð�Þ ¼ CuGðmtÞ
�
�sð�Þ
�sðmtÞ

�� 2
3	0 ; (52)

t
/mµ
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t
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t
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t

(muGC )=2,NLO
t
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FIG. 4 (color online). Renormalization scale dependence of
the width �ðt ! uhÞ, assuming Cu’ðmtÞ ¼ 1 and � ¼ 1 TeV.
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FIG. 5 (color online). Limits on CuG and Cu’ plane. Left: the blue region corresponds to current bound on branching ratio
BRðt ! chÞ from the LHC, the black region is the projected sensitivity for t ! ch, and the red region comes from bounds on t ! cg.
Right: y axis is zoomed in to show the effects of CuG.
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where 	0 ¼ 11� 2Nf=3. The running of Cu’ is affected

by the operator OuG. In Fig. 4, we show the � dependence
of both LO and NLO results for the width, with different
values of CuG. We can see that the renormalization scale
dependence at LO can be quite large depending on the
value of CuG, and that it is greatly reduced at NLO in QCD.

Finally, for the sake of illustration, in Fig. 5 we plot
the limits on the CuG and Cu’ plane. The region in the

parameter space corresponding to the current bound
BRðt ! chÞ< 2:7% from CMS [17] is shown, as well
as the 95% upper limit for t ! ch as estimated in
Ref. [10], i.e. BRðt ! qhÞ< 4:1� 10�5 for an integrated
luminosity of 100 fb�1. In our results, the jCuGj2 term has
been neglected and the next-to-next-to-leading-order top
quark width result �ðt ! bWÞ ¼ 1:39 GeV [30] is
used. The constraints on CuG coming from BRðt ! cgÞ<
2:7� 10�4 [31] are also shown.

VII. CONCLUSION

We have presented a calculation for the decay
width of t ! uih in the EFT approach at NLO in QCD.
Two operators contribute at LO, while at NLO two
additional operators (and their mixing) need to be included.
We find that QCD correction can reach the 10% level,
depending on the relative size of these operators. The
possibly large scale dependence of the LO results is tamed
at NLO.
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