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Exploiting the recent lattice results for the infrared gluon propagator with light dynamical quarks, we solve

the gap equation for the quark propagator. We thus model the chiral symmetry-breaking mechanism with an

increasing number of flavors and study confinement (intimately tied with the analytic properties of QCD

Schwinger functions) order parameters. We obtain, with this approach, clear signals of chiral symmetry

restoration and deconfinement when the number of light quark flavors exceeds a critical value ofNc
f � 8� 1,

in agreement with the state-of-the-art direct lattice analysis of chiral symmetry restoration in QCD.
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I. INTRODUCTION

QCD with a large number of massless fermion flavors
has seen a resurgence of interest due to its connection with
technicolor models, originally proposed by Weinberg and
Susskind [1], which fall into the category of beyond
the Standard Model theories. They possess intrinsically
attractive features. They do not resort to fundamental
scalars to reconcile local gauge symmetries with massive
mediators of interactions and have a close resemblance
to well-studied fundamental strong interactions, i.e.,
QCD. However, their simple versions do not live up to the
experimental electroweak precision constraints, in particu-
lar the ones related to flavor-changing neutral currents.
Walking models containing a conformal window and an
infrared fixed point can possibly cure this defect and
become phenomenologically viable [2]. This scenario
motivates the investigation of QCD for similar character-
istics. One looks for such behavior of QCD for a large
number of light flavors, albeit less than the critical value
where asymptotic freedom sets in, i.e., Nc1

f ¼ 16:5, a

Nobel prize-winning result known since the advent of
QCD, [3]. Just as Nf dictates the peculiar behavior of

QCD in the ultraviolet, we expect it to determine the
onslaught of its emerging phenomena in the infrared, i.e.,
chiral symmetry breaking and confinement.

Whereas the self-interaction of gluons provides antiscre-
ening, the production of virtual quark-antiquark pairs
screens and debilitates the strength of this interaction of
non-Abelian origin. For real QCD, light flavors are small
in number and hence yield to the gluonic influence
which triggers confinement and chiral symmetry breaking.
One needs to establish if there is another critical value
Nc2

f < Nc1
f which can sufficiently dilute the gluon-gluon

interactions to restore chiral symmetry and deconfine color
degrees of freedom. Such a phase transition lies at the
nonperturbative boundary of the interactions under scru-
tiny and hence we cannot expect to extract sufficiently
reliable information from multiloop calculations of the

QCD � function. Purely nonperturbative techniques are
required to tackle the problem. Lattice studies in the infra-
red indicate that just below Nc1

f , chiral symmetry remains

unbroken and color degrees of freedom are unconfined [4].
Below this conformal window, for 8<Nc2

f < 12, the

evolution of the beta function in the infrared is such that
QCD enters the phase of dynamical mass generation as
well as confinement.
Modern lattice analyses appear to argue in favor of a

restoration of the chiral-symmetric phase taking place
somewhere between Nf � 8 and Nf � 10 [5,6]. In particu-

lar, the authors of Ref. [6], with their study of the meson
spectrum in lattice QCD with eight light flavors using
the highly improved staggered quark action, gathered
some striking evidences that Nf ¼ 8 QCD still lies in the

broken-chiral-symmetry phase but, at the same time,
suffers the effects from a remnant of the infrared confor-
mality (a large anomalous dimension for the quark-mass
renormalization constant), indicating that the unbroken
phase is recovered near above Nf � 8. In the present

work, we intend to combine the Schwinger-Dyson
machinery—which is well adjusted to account for QCD
phenomenology in the pion sector—with the latest lattice
data including twisted-mass dynamical light flavors in
order to provide a model for the chiral restoration mecha-
nism, in quantitative agreement with the above-mentioned
lattice studies.

II. CHIRAL-PHASE-TRANSITION PICTURE
FROM SCHWINGER-DYSON AND LATTICE

GLUON PROPAGATORS

In the continuum, Schwinger-Dyson equations (SDEs)
of QCD provide an ideal framework to study its infrared
properties [7]. These are the fundamental equations of any
quantum field theory, linking all its defining Green func-
tions to one another through intricately coupled nonlinear
integral equations. As their formal derivation through the
variational principle makes no appeal to the weakness of
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the interaction strength, they naturally connect the pertur-
bative ultraviolet physics with its emerging nonperturba-
tive properties in the infrared sector within the same
framework. The simplest two-point quark propagator
is a basic object to analyze dynamical chiral symmetry
breaking and confinement. Within the formalism of the
SDEs, the inverse quark propagator can be expressed as
S�1ðpÞ ¼ Z2ði� � pþmÞ þ �ðpÞ, where �ðpÞ is the
quark self-energy,

�ðpÞ ¼ Z1

Z d4q

ð2�Þ4 g
2���ðp� qÞ�

a

2
��SðqÞ�a

�ðq; pÞ;
(1)

where Z1 ¼ Z1ð�2;�2Þ and Z2 ¼ Z2ð�2;�2Þ are the
renormalization constants associated, respectively, with
the quark-gluon vertex and the quark propagator. � is the
ultraviolet regulator and � is the renormalization point.
The solution to this equation is

S�1ðpÞ ¼ i� � pþMðp2Þ
Zðp2; �2Þ ; (2)

where Zðp2; �2Þ is the quark wave-function renor-
malization and the quark-mass function Mðp2Þ is
renormalization-group invariant. This equation involves
the quark-gluon vertex �a

�ðq; pÞ and the gluon propagator
���ðp� qÞ.

A. Modeling the flavor behavior for the
gluon propagator

As a consequence of a patient effort spanning several
decades to unravel the gluon propagator ��� in the infra-

red, lattice as well as SDE studies have finally converged
on its massive or so-called decoupling solution; see for
example Ref. [8]. After the gluon-propagator solution in
the quenched approximation has been chiselled, we now
have the first quantitatively reliable glimpses of its
quark-flavor dependence by incorporating Nf ¼ 0; 2 light

dynamical quark flavors [9] and 2þ 1þ 1 (two light
degenerate quarks, with masses ranging from 20 to
50 MeV, and two nondegenerate flavors for the strange
and the charm quarks, with their respective masses set to
95 MeV and 1.51 GeV) [16]. As we will demonstrate
shortly, in this last 2þ 1þ 1 case the number of light
quarks corresponds effectively to 3. This is exactly the
result derived from the recently developed ‘‘partially
unquenched’’ approach to incorporate flavor effects in
the gluon SDE [17]. Their work is in agreement with that
of Ref. [16] when the charm flavor is assumed to decouple
from gluons. In any case, this two-point function serves as
a crucial input to study the quark propagator. The only
other ingredient is the three-point quark-gluon vertex
�a
�ðq; pÞ. Significant advances have been made in pinning

it down through its key attributes in the ultraviolet and
infrared domains [18]. More recently, the seeds of the most

general ansatz for the fermion-boson vertex appeared in
Ref. [19] and its full-blown extension was presented in
Ref. [20]. Significantly, this ansatz contains nontrivial
factors associated with those tensors whose appearance is
expressly driven by dynamical chiral symmetry breaking in
a perturbatively massless theory. This novel feature
enables a direct and positive comparison with the best
available symmetry-preserving solutions of the inhomoge-
neous Bethe-Salpeter equation for the vector vertex. This
encouraging outcome indicates that this model is likely to
provide a much-needed tool for use in Poincaré-covariant
symmetry-preserving studies of hadron electromagnetic
form factors. Furthermore, given the general nature of
constraints and the simplicity of the construction, a
straightforward extension of this approach is expected to
yield an ansatz adequate for the task of representing the
dressed-quark-gluon vertex. Before this is achieved, we
restrict ourselves to an efficacious approach. Following
the lead of Maris et. al. [21], we employ the following
suitable ansatz which has sufficient integrated strength in
the infrared to achieve dynamical mass generation,

Z1g
2���ðp� qÞ��ðp; qÞ ! g2effðq2Þ�N

��ðp� qÞ�
a

2
��;

(3)

where

�N
��ðqÞ ¼ Dðq2Þ

q2

�
��� �

q�q�

q2

�
: (4)

The effective coupling geff is chosen to correctly reproduce
the static as well as dynamic properties of mesons
below 1 GeV and reproduce perturbation theory in the
ultraviolet; see, for example, the review in Ref. [22] and
references therein. Moreover, our modern understanding of
the flavor dependence of the gluon propagator provides us
with the solid basis to use the following nonperturbative
model [23],

Dðq2Þ ¼ zð�2Þq2ðq2 þM2Þ
q4 þ q2ðM2 � 13g2hA2i=24Þ þM2m2

0

; (5)

to describe the gluon dressing renormalized in the
momentum-subtraction scheme at q2 ¼ �2. This model
is based on the tree-level gluon propagator obtained with
the renormalized Gribov-Zwanziger (RGZ) action [24]
which has been shown to properly describe the lattice
data in the infrared sector (see Refs. [23,25]). The overall
factor zð�2Þ is introduced to guarantee the multiplicative
renormalization prescription, namely, Dð�2Þ ¼ 1, and im-
plies no physical consequence as the effective coupling
geffðq2Þ is further adjusted to properly reproduce the meson
phenomenology. We obtain the mass parameters of Eq. (5)
by fitting it to the gluon-propagator lattice data analyzed in
Ref. [16]. M2 is related to the condensate of auxiliary
fields, emerging merely to preserve locality for the RGZ
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action. A free fit of the lattice data suggests that it
does not depend on the number of fermion flavors
(we find M2 ¼ 4:85 GeV2). The dimension-two gluon
condensate hA2i [26] and m2

0 ¼ zð�2Þlim q2!0q
2=Dðq2Þ

are flavor dependent and we look for their best fits.
In order to cover a wide range of possibilities within
reason, we assume their evolution with the flavor number
driven either by a simple linear scaling law,

m�1
0 ðNfÞ ¼ m�1

0 ð0Þð1� ANfÞ;
g2hA2iðNfÞ ¼ g2hA2ið0Þð1� BNfÞ;

(6)

as data appear to suggest, or by an exponential law,

m�1
0 ðNfÞ ¼ m�1

0 ð0Þe�ANf ;

g2hA2iðNfÞ ¼ g2hA2ið0Þe�BNf ;
(7)

which allows for the possibility that the gluon propagator
becomes infinitely massive only when the number of light
quark flavors tends to infinity. The best fit of the m0 and
g2hA2i from lattice data will require m0ð0Þ ¼ 0:333 GeV
and g2hA2ið0Þ ¼ 7:856 in both cases; A ¼ 0:083 and B ¼
0:080 for the linear case and A ¼ 0:095 and B ¼ 0:091 for
the exponential one. Equation (5) now provides a predic-
tion for the gluon propagator for arbitrarily largeNf, as can

be seen in Fig. 1, while Fig. 2 shows the corresponding
gluon propagator along with the lattice data superimposed
[16]. We also include some very recent gluon-propagator
data obtained from lattice simulations with four degenerate
light twisted-mass flavors [27]. These new data are rather
well described by Eq. (5) evaluated for the mass parame-
ters extrapolated to Nf ¼ 4 with Eq. (6) (see the zoomed

plot in Fig. 3). This observation strongly supports that
Nf ¼ 2þ 1þ 1 gluon data indeed correspond to three

light flavors.
Thus, we can efficaciously model the dilution of the

gluon-gluon interactions with increasing flavor number in
order to study the chiral restoration mechanism. We can

now employ the gap equation to provide quantitative
details of chiral symmetry breaking in terms of the quark-
mass function for an increasing number of light quarks.

B. Results

In the following, we mostly discuss the results obtained
by employing the linear law and state the effect of expo-
nential extrapolation afterwards. We take the effective cou-
pling geffðq2Þ to be independent of Nf, which is justified by

the results of Ref. [16] [see Eq. (5.2)] which suggest that an
effective coupling can be constructed such that there is an
absence of any flavor dependence in the infrared region,
more precisely starting from q2 & 1 GeV2. Note that we
have not considered the flavor dependence that would
arise from the quark-gluon vertex. No explicit handle on
this dependence is available at the moment. Within the
Abelian theory of QED, restrictions imposed by the
all-order multiplicative renormalizability of the photon
propagator may provide a handle on the transverse part of
the electron-photon vertex; see the last reference in
Ref. [18]. A consequent nonperturbative construction of
such a vertex with imprints of the massless charged fermion
flavors and its subsequent extension to QCD is still not
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FIG. 1 (color online). Parameters g2hA2i and 1=m2
0 in terms of

the numbers of flavors and the fits with Eqs. (6) and (7). The blue
squares stand for the extrapolated results at Nf ¼ 4 we used for

Fig. 3.
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FIG. 2 (color online). Lattice gluon-propagator data in terms
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Eq. (5) and the parameters of Eq. (6).

FIG. 3 (color online). The same as Fig. 2 but with the parame-
ters of set 2 and incorporating new small-volume lattice data for
four degenerate fermion flavors.
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available. Once the quark mass function is available for
varying light quark flavors (see Fig. 4 for the linear case),
one can investigate any of the interrelated order parameters,
namely, the Euclidean pole mass defined as m2

dyn þ
M2ðp2 ¼ m2

dynÞ ¼ 0, the quark-antiquark condensate which

is obtained from the trace of the quark propagator or the pion
leptonic decay constant f� defined through the Pagel-Stokar
equation [29], or through considering the residue at the pion
pole of the meson propagator. Each of these quantities
involves the quark wave-function renormalization, the
mass function and/or its derivatives and is hence calculable
from the solution for the full quark propagator. Moreover,
these order parameters can help locate the critical number of
flavors above which chiral symmetry is restored.

We investigate these three order parameters and
choose to present here the Euclidean pole mass of the
quark in Fig. 5 for the linear (exponential) case and show
that, at a critical value of about Nc

f � 7:1 (Nc
f � 9:4),

chiral symmetry appears restored. The phase transition
appears to be second order, described by the following
mean-field behavior (solid lines in Fig. 5):

mdyn �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nc2

f � Nf

q
: (8)

This behavior of QCD resembles that of the toy version of
QED with large electromagnetic coupling with or without
the inclusion of four-fermion operators to render the theory
closed [30].
It has been established that confinement is related to

the analytic properties of QCD Schwinger functions which
are the Euclidean-space Green functions, namely, propa-
gators and vertices. One deduces from the reconstruction
theorem [31] that the only Schwinger functions which can
be associated with expectation values in the Hilbert space
of observables—namely, the set of measurable expectation
values—are those that satisfy the axiom of reflection pos-
itivity. When that happens, the real-axis mass pole splits,
moving into pairs of complex conjugate singularities. No
mass-shell can be associated with a particle whose propa-
gator exhibits such a singularity structure. We define the
Schwinger function

�ðtÞ ¼
Z

d3x
Z d4p

ð2�Þ4 eiðp4tþp�xÞ�sðp2Þ (9)

to study the analytic properties of the quark propagator,
where �sðp2Þ is the scalar term for the quark propagator
in Eq. (2), which can be written in terms of the quark
wave-function renormalization and mass function as
Zðp2; �2ÞMðp2Þ=ðp2 þMðp2ÞÞ. One can show that if there
is a stable asymptotic state associated with this propagator,
with a mass m, then �ðtÞ � e�mt, whereas two complex
conjugate mass-like singularities with complex masses
� ¼ a� ib lead to an oscillating behavior of the sort
�ðtÞ � e�at cos ðbtþ �Þ for large t [32]. Figure 6 analyzes
this function for varying Nf in the linear extrapolation

case. The existence of oscillations clearly demonstrates
that the quarks correspond to a confined excitation for
small Nf. With increasing Nf, the onslaught of oscillations

moves towards higher values of t and eventually never
takes place above a critical Nf when quarks deconfine

and correspond to a stable asymptotic state. As an order
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FIG. 4 (color online). The quark-mass function diminishes in
height for increasing light quark flavors [here with Eq. (6)].
Above Nf � 7:07, only the chirally symmetric solution exists.
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FIG. 5 (color online). The quark pole mass in the Euclidean
space clearly demonstrates that chiral symmetry is restored above
a critical number of quark flavors. Blue (red) points with smaller
Nc

f (larger Nc
f)correspond to the linear (exponential) case. The

gold (green) solid line is the mean-field scaling, Eq. (8).
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the first minimum of these oscillations is pushed all the way to
infinity, thus ensuring the existence of a pole on the time-like
axis, a property of free-particle propagators.
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parameter of confinement, we therefore employ �ðNfÞ ¼
1=	1ðNfÞ, where 	1ðNfÞ is the location of the first singu-

larity [33]. The first oscillation is pushed to infinity when
confinement is lost. It is notable that when the dynamically
generated mass approaches zero, �ðNfÞ diminishes rapidly

(see Fig. 7). This highlights the intimate connection
between chiral symmetry restoration and deconfinement.
In fact, within our numerical accuracy, Nc

f is found to be

the same for both the transitions.
The results with the exponential and linear flavor

extrapolations are qualitatively the same, leading to iden-
tical conclusions. They only quantitatively differ by the
critical flavor numbers, although both are pretty much in
the same ballpark: Nc

f ’ 7:1 and Nc
f ’ 9:4. Note that both

the parametrizations—so far apart as to have an infinitely
massive gluon at Nf � 12 or Nf ) 1—restore chiral

symmetry and trigger deconfinement at so similar a value
of light quark flavors.

III. CONCLUSIONS

We have performed a Poincare-covariant SDE analysis
of the latest lattice results for the quark-flavor dependence
of the gluon propagator in the infrared, provided a model
for the dilution of the gluon-gluon interaction with an
increasing number of light quarks and finally provided a
picture for the chiral restoration mechanism. The quanti-
tative analysis, following this approach, hints at the resto-
ration of chiral symmetry and deconfinement in QCDwhen
the number of light quark flavors exceeds a critical value of
Nc2

f � 8:2� 1:2. This is in perfect agreement with the

state-of-the-art lattice investigations of chiral symmetry
restoration in QCD [5,6] and shows that the model
presented here for the chiral restoration mechanism is
properly capturing the relevant physics for the problem.
That being said, it will surely be illuminating to incorpo-
rate and study the effect of the flavor-dependent quark-
gluon vertex and, moreover, solve the coupled system of
the Green functions involved simultaneously. All of this is
for future work.
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C. D. Roberts, and P. C. Tandy, Commun. Theor. Phys. 58,
79 (2012).

[23] D. Dudal, O. Oliveira and J. Rodriguez-Quintero, Phys.
Rev. D 86, 105005 (2012).

[24] D. Dudal, J. A. Gracey, S. P. Sorella, N. Vandersickel, and
H. Verschelde, Phys. Rev. D 78, 065047 (2008).

[25] D. Dudal, O. Oliveira, and N. Vandersickel, Phys. Rev. D
81, 074505 (2010).

[26] P. Boucaud, A. Le Yaouanc, J. P. Leroy, J. Micheli,
O. Pene, and J. Rodrı́guez-Quintero, Phys. Lett. B
493, 315 (2000); F. V. Gubarev and V. I. Zakharov,
Phys. Lett. B 501, 28 (2001); K.-I. Kondo, Phys. Lett.
B 514, 335 (2001); H. Verschelde, K. Knecht, K. Van
Acoleyen, and M. Vanderkelen, Phys. Lett. B 516,
307 (2001); D. Dudal, H. Verschelde, and S. P. Sorella,
Phys. Lett. B 555, 126 (2003); E. Ruiz Arriola, P. O.
Bowman and W. Broniowski, Phys. Rev. D 70, 097505
(2004).

[27] The gluon propagator lattice data for four light flavors
have been taken from ETMC [28]. Simulated at small
volumes, they are only available for momenta above
1.25 GeV and hardly allow for a fit with Eq. (5).
Nevertheless, they can be used to check our modeling of
the flavor evolution.

[28] B. Blossier et al. (ETM Collaboration) (to be published).
[29] H. Pagels and S. Stokar, Phys. Rev. D 20, 2947 (1979).
[30] A. Bashir, C. Calcaneo-Roldan, L. X. Gutierrez-Guerrero,

and M. E. Tejeda-Yeomans, Phys. Rev. D 83, 033003
(2011); F. Akram, A. Bashir, L. X. Gutierrez-Guerrero,
B. Masud, J. Rodriguez-Quintero, C. Calcaneo-Roldan,
and M. E. Tejeda-Yeomans, Phys. Rev. D 87, 013011
(2013).

[31] R. F. Streater and A. S. Wightman, PCT, spin and statis-
tics, and all that (Princeton University Press, Princeton,
1989); J. Glimm and A. Jaffee, Quantum Physics. A
Functional Point of View (Springer-Verlag, New York,
1981).

[32] P. Maris, Phys. Rev. D 52, 6087 (1995).
[33] A. Bashir, A. Raya, S. Sánchez-Madrigal, and C.D.

Roberts, Few Body Syst. 46, 229 (2009).
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