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We study vacuum stability of B� L extension of the Standard Model (SM) and its supersymmetric

version. We show that the generation of nonvanishing neutrino masses through TeV inverse seesaw

mechanism leads to a cutoff scale of SM Higgs potential stability of order 105 GeV. However, in the

nonsupersymmetric B� L model, we find that the mixing between the SM-like Higgs boson and

the B� L Higgs boson plays a crucial role in alleviating the vacuum stability problem. We also provide

the constraints of stabilizing the Higgs potential in the supersymmetric B� L model.
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I. INTRODUCTION

Recent results announcedbyATLASandCMSexperimen-
tal collaborations at the Large Hadron Collider (LHC) [1,2]
confirmed the discovery of a Higgs boson with mass of order
125 GeV. Both ATLAS and CMS have performed searches
for the Higgs boson in the following five decay channels:

H ! ��,H ! ZZð�Þ ! 4l, andH ! WWð�Þ ! l�l�,H !
�þ�� andH ! b �b, at integrated luminosities of 5:1 fb�1 at
energy

ffiffiffi
s

p ¼ 7 TeV and 19:6 fb�1 at
ffiffiffi
s

p ¼ 8 TeV.
One important question is whether this scalar boson is

compatible with Standard Model (SM) predictions or is it a
SM-like Higgs boson of an extension of the SM. It is worth
mentioning that the signal strength of H ! �� seems not
to be consistent with the SM predictions [3,4]. It is found to
be of order 1.65 by ATLAS and about 0.78 by CMS, while
the corresponding SM signal strength should be exactly
one. In addition, it is well known that if the SMHiggs mass
is less than 130 GeV, then the quartic Higgs self-coupling
runs to negative values at high energy scales, leading to
vacuum instability at these scales [5–15]. In particular, for
Higgs mass of order 125 GeV, one finds that the cutoff
scale of stability for the SM Higgs potential is of the order
Oð109–10Þ GeV. A natural solution for this problem is to
consider a possible new physics beyond the SM that
changes the running of the quartic coupling and prevents
it from running into negative values [16–25]. One can also
study the issue of vacuum stability in a model independent
way in an effective Lagrangian framework [26]. The addi-
tion of a higher dimensional operator to the Higgs potential
changes the boundary condition for the quartic coupling at
the scale of vacuum stability. In this work the effect of the
higher dimensional operator will be neglected and only the
running of the couplings will be used to determine vacuum
stability.

Nonvanishing neutrino masses are now firm evidence for
an extension of the SM. One of the attractive scenarios for
accommodating the neutrino masses is the inverse seesaw

mechanism, which is based on the extension of the SM
with TeV scale right-handed neutrinos with unsuppressed
couplings to the SM leptons [27–49]. In this case, one can
show that the contribution of the right-handed neutrinos
has a large impact on the Higgs quartic coupling and,
similar to the top contribution, drives it to negative values.
Therefore, the SM Higgs potential is unstable at a scale of
order Oð105–6Þ GeV and the vacuum stability problem
becomes more severe. The investigation of vacuum stabil-
ity within different types of seesaw mechanisms have been
explored in Refs. [50–56].
In this article, we analyze the vacuum stability problem

in simple extensions of the SM. In particular, we focus on
the B� L extension of the SM with and without super-
symmetry. The B� L model is based on the gauge group
SUð3ÞC � SUð2ÞL �Uð1ÞY �Uð1ÞB�L [57–59]. It natu-
rally introduces three SM singlet fermions to cancel the
Uð1ÞB�L anomalies and account for the current experimen-
tal results of light neutrino masses and their large mixings
[60]. In addition, the extra-gauge boson and the extra-
Higgs boson, predicted in the B� Lmodel, have interesting
phenomenology that can be probed at the LHC [61–65].
Within a supersymmetric context, it was emphasized that
the three relevant physics scales related to the supersymme-
try, electroweak and B� L symmetry breaking are linked
together and occur at the TeV scale [66–69]. Finally, it is
worth mentioning that within the B� L supersymmetric
Standard Model (BLSSM) with an inverse seesaw, the
one-loop radiative corrections to the lightest SM-like
Higgs boson mass, due to the right-handed neutrinos and
sneutrinos, can be significant [70], and hence the Higgs
mass can be easily of order 125 GeV without pushing the
SUSY spectrum to TeV scale as in MSSM.
We show that, in a nonsupersymmetric B� Lmodel with

type-I seesaw or inverse seesaw mechanisms, the nonvan-
ishing mixing between the SM and B� L Higgs bosons
raises the initial value of the SM-like Higgs coupling. In
addition, in this case the running of the SM-like Higgs boson
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receives a positive contribution from the (B� L)-like heavy
Higgs boson. Therefore, the Higgs self-coupling remains
positive all the way up to the grand unified theory (GUT)
scale that ensures the vacuum stability. We also analyze
the vacuum stability of SM-like Higgs potential in a super-
symmetricB� Lmodel. The conditions securing the stabil-
ity of this potential in both flat and nonflat directions are
derived.

The paper is organized as follows. In Sec. II we reappraise
the Higgs vacuum stability in the SM extended by TeV scale
right-handed neutrinos with an inverse seesaw mechanism.
Section III is devoted to the Higgs vacuum stability in a
B� L extension of the SM. We show that the mixing
between the SM-like Higgs boson and the B� L Higgs
boson resolve the vacuum stability problem In Sec. IV we
analyze the vacuum stability in supersymmetric theories. In
particular, we consider the stability in MSSM and BLSSM.
Finally, we give our conclusions in Sec. V.

II. VACUUM STABILITY OF THE SM EXTENDED
WITH TEV SCALE RIGHT NEUTRINOS

In this section, we analyze the impact ofmassive neutrinos
on the SM vacuum stability by extending the SM by right-
handed neutrinos. As is well known, the nonvanishing small
neutrino masses can be generated through a type-I seesaw
mechanism or an inverse seesaw mechanism. With a type-I
seesaw, one assumes that the SM Lagrangian is extended as
follows:

L ¼ LSM þ Y�
�l ~��R þM ��c

R�R; (1)

where �R is a SM singlet fermion, called the right-handed
neutrino andM is Majorana mass which is not restricted by
the electroweak symmetry breaking scale, so it can take any
value up to any high scale. In this case, one finds that the

lightest neutrinos get the following masses: m� � ðY�vÞ2
M ,

where v ¼ h�i is the electroweak VEV. Therefore, if
M�Oð1Þ TeV, the light neutrino masses can be of order
electron volt, provided that Y� � 10�6. In this case the con-
tribution of the right-handed neutrinos to the renormalization
group equation (RGE) of the Higgs quartic coupling is
negligible, and one ends with the SM results for the Higgs
vacuum stability.

We now turn to the inverse seesaw mechanism. In this
case, three extra SM singlet neutral fermions Si are re-
quired in addition to the three right-handed neutrinos �Ri

and the Lagrangian in this case is given by

L ¼ Y�
�l ~��R þM ��c

RSþ�s
�ScSþ H:c: (2)

Thus, the neutrino mass matrix is given by

0 vY� 0

vYT
� 0 M

0 MT �s

0
BB@

1
CCA: (3)

Hence, the light neutrino masses are given by

m�l
¼ v2Y�M

�1�sðMTÞ�1YT
� ; (4)

which can be of order eV, as required by the oscillation
data, forM�Oð1Þ TeV if�s is sufficiently small, namely,
�s & 10�7 GeV. In this case, the Yukawa coupling Y�

can be of order one. Hence, the right-handed neutrino’s
contribution to the RGE of the Higgs quartic coupling �,
which is proportional to the neutrino Yukawa coupling Y�

[71], can be significant

d�

dt
¼ 1

16�2

�
24�2 þ 4�ð3Y2

t þ Y2
�Þ � 2ðY4

� þ 3Y4
t Þ

� 3�ð3g22 þ g21Þ þ
9

8
g42 þ

3

8
g41 þ

3

4
g22g

2
1

�
: (5)

In addition, the RGEs of top and neutrino Yukawa couplings
are given by

d

dt
Yt ¼ Yt

16�2

�
9

2
Y2
t þ Y2

� � 8g2s � 9

4
g2 � 17

12
g21

�
;

d

dt
Y� ¼ Y�

16�2

�
5

2
Y2
� þ 3Y2

t � 9

4
g2 � 3

4
g21

�
:

(6)

In Fig. 1 we display the running of the Higss self-
coupling � in the extended SMwith right-handed neutrinos
with an inverse seesaw for Higgs mass mh ¼ 125 GeV.
From this figure, it is clear that the scale of the Higgs
vacuum stability is reduced from 109–10 GeV in the SM
to 105–6 GeV. This can be easily understood from the
RGE (5), where the neutrino Yukawa coupling Y� contrib-
utes to the evolution of �, with fourth power and negative
sign, similar to the top Yukawa coupling contribution.
Therefore, one can conclude that solving the puzzle of
neutrino masses in the context of the SM gauge group
with inverse seesaw mechanism affects the Higgs vacuum
stability negatively.

III. VACUUM STABILITY IN Uð1ÞB�L

EXTENSION OF THE SM

TeV scale B� L extension of the SM, which is based on
the gauge group SUð3ÞC � SUð2ÞL �Uð1ÞY �Uð1ÞB�L is

2 3 4 5 6 7

0.00

0.05

0.10

FIG. 1 (color online). The running of the quartic Higgs coupling
for Higgs mass mh ¼ 125 GeV and Y� ¼ 0:7 in the extended
SM with right handed neutrinos and inverse seesaw mechanism.
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one of the most straightforward extensions of the SM.
It permits one to introduce naturally three right-handed
neutrinos, with B� L charge ¼ �1, due to the anomaly
cancellation condition. In the B� L model with a type-I
seesaw mechanism [58,67,72–96], the Uð1ÞB�L is sponta-
neously broken by a SM singlet scalar � with B� L
charge ¼ þ2 which acquires a VEV v0. Since the kinetic
mixing term between the field strength tensors of Uð1ÞY
and Uð1ÞB�L is allowed by gauge symmetry, the gauge-
invariant kinetic Lagrangian is given by

L ¼ � 1

4
F��F

�� � 1

4
F0
��F

0�� � 	

2
F��F

0��: (7)

This mixing can be absorbed by a suitable transformation
of the gauge fields that will modify the covariant deriva-
tives. This can be understood as follows: from Eq. (7) one
can write the covariant derivative as

D� ¼ @� � iQT
�GA�; (8)

where Q� is a vector containing the charges of the field �

with respect to the two Abelian gauge groups, G is the
gauge coupling matrix,

G ¼ gYY gYB

gBY gBB

 !
; (9)

and A� is given, in terms of the Uð1ÞY and Uð1ÞB�L gauge

bosons, as

A� ¼ AY
�

AB�L
�

 !
: (10)

One can perform an orthogonal rotationO of the gauge fields
A�, without reintroducing the kinetic mixing, such that

QT
�GA ¼ QT

�GðOTOÞA ¼ QT
�
~GB; (11)

where ~G ¼ GOT and B ¼ OA. If one chooses the orthogo-
nal matrix

O ¼ c
 s


�s
 c


 !

such that

c
 ¼ gBBffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2BB þ g2BY

q ; (12)

s
 ¼ gYBffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2BB þ g2BY

q ; (13)

then the transformed gauge coupling matrix ~G takes the
form

~G ¼ g1 0

~g g01

 !
; (14)

where

g1 ¼ gYYgBB � gYBgBYffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2BB þ g2BY

q ; (15)

~g ¼ gBBgYB þ gYYgBYffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2BB þ g2BY

q ; (16)

g01 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2BB þ g2BY

q
: (17)

Therefore, the covariant derivative takes the form

D� ¼ � � � � ig1YB� � ið~gY þ g01YB�LÞB0
�: (18)

The neutrino Yukawa interactions are given by

L�
Y ¼ Y�lL��R þ YN ��c

R��R þ H:c: (19)

As mentioned above, with v0 ’ Oð1Þ TeV, the neutrino
Yukawa coupling is constrained to be & 10�6 and hence
does not affect vacuum stability of the Higgs boson.
However, in the B� L extension of the SM with inverse
seesaw, theUð1ÞB�L symmetry is spontaneously broken by
a SM singlet scalar � with B� L charge ¼ �1. Also three
SM pairs of singlet fermions Si1;2 with B� L charge¼�2,

respectively, are introduced in addition to �Ri
to implement

the inverse seesaw mechanism. Note that the addition of
the extra singlet fermions S1;2 in pairs is necessary in order
to prevent the B� L triangle anomalies. In this case, the
neutrino Yukawa Lagrangian is given by

L�
Y ¼ Y�lL��R þ YN ��c

R�S2 þ�s
�Sc2S2; (20)

Therefore, after the B� L and the electroweak symmetry
breaking, one finds that the neutrino mass matrix can be
written as �c cM�c with c ¼ ð�c

L; �R; S2Þ andM� given by

M � ¼
0 mD 0
mT

D 0 MR

0 MT
R �s

0
@

1
A; (21)

where mD ¼ 1ffiffi
2

p Y�v and MR ¼ 1ffiffi
2

p YNv
0 and �s ¼ v04

4M3 &

10�7 GeV may be generated from nonrenormalizable
terms like �Sc2�

y4S2=M3. Thus, the light and heavy neutrino
masses are given by

m�l
¼ mDM

�1
R �sðMT

RÞ�1mT
D; (22)

m2
�H

¼ m2
�H0 ¼ M2

R þm2
D: (23)

Therefore, the light neutrino mass can be of order eV with
a TeV scale MR, provided that �s is very small. In this
case, the Yukawa coupling Y� is no longer restricted to a
very small value and it can be of order one.
In both scenarios of B� L extensions of the SM, with a

type-I seesaw or inverse seesaw mechanism, the Higgs
sector in this model consists of one complex SM scalar
doublet and one complex SM scalar singlet with the
following scalar potential Vð�;�Þ [60]:
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Vð�;�Þ ¼ m2
1j�j2 þm2

2j�j2 þ �1j�j4 þ �2j�j4
þ �3j�j2j�j2: (24)

As in the SM, in order to ensure nonvanishing vevs of the
Higgs fields �, �, the squared masses m2

1, m
2
2 are assumed

to be negative. In order for this potential to be stable, the
coefficient matrix of the quartic terms,

�1
�3

2
�3

2 �2

 !
; (25)

has to be co-positive [97]. The conditions of co-positivity
of such a matrix are given by

�1; �2 > 0; (26)

�3

2
þ ffiffiffiffiffiffiffiffiffiffiffi

�1�2

p
> 0: (27)

The Uð1ÞB�L and the electroweak gauge symmetry are

broken by the nonzero vevs: h�i ¼ v0=
ffiffiffi
2

p
and h�i ¼

v=
ffiffiffi
2

p
, where v and v0 satisfy the following minimization

conditions:

v2 ¼ ��2m
2
1 þ �3

2 m
2
2

�1�2 � �2
3

4

; v02 ¼ ��1m
2
2 þ �3

2 m
2
1

�1�2 � �2
3

4

: (28)

The mixing between the two neutral Higgs scalars leads
to the mass eigenstates fields h andH, which are defined in
terms of �0 and �. The physical mass eigenstates fields h
and H are given by

h

H

 !
¼ cos
 � sin 


sin 
 cos 


 !
�0

�

 !
; (29)

where the mixing angel 
 is given by

tan 2
 ¼ �3vv
0

�1v
2 � �2v

02 : (30)

The range of the mixing angle 
 can be � �
2 � 
 � �

2 .

Also, the masses of light and heavy Higgs particles are
given by

m2
h;H ¼ �1v

2 þ �2v
02 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�1v

2 � �2v
02Þ2 þ ð�3vv

0Þ2
q

:

(31)

From the above expressions, one can easily express the
scalar potential parameters: �1, �2, and �3 in terms of the
physical quantities: mh, mH, and sin 2
 as follows [98]:

�1 ¼ m2
h

4v2
ð1þ cos 2
Þ þ m2

H

4v2
ð1� cos 2
Þ;

�2 ¼ m2
h

4v02 ð1� cos 2
Þ þ m2
H

4v02 ð1þ cos 2
Þ;

�3 ¼ sin 2


�
m2

H �m2
h

2vv0

�
:

(32)

From these equations, one notices that the initial condition of
the SM-like Higgs quartic coupling, �1, at the electroweak

scale can be different from that in the SM. This, as we will
see, can have an important impact on the evolution of this
coupling and Higgs vacuum stability.
The RGEs of the scalar couplings, �1, �2, and �3 in the

context of B� L extension of the SM, are given by [98]

d�1

dt
¼ 1

16�2

�
24�2

1 þ �2
3 þ 4�1ð3Y2

t þ Y2
�Þ

� 2ðY4
� þ 3Y4

t Þ þ 9

8
g42 þ

3

8
g41 þ

3

4
g22g

2
1 þ

3

4
g22~g

2

þ 3

4
g21~g

2 þ 3

8
~g4 � 9�1g

2
2 � 3�1g

2
1 � 3�1~g

2

�
;

(33)

d�2

dt
¼ 1

8�2

�
10�2

2 þ �2
3 �

1

2
Tr½ðYNÞ4� þ 48g041

þ 4�2 Tr½ðYNÞ2� � 24�2g
02
1

�
; (34)

d�3

dt
¼ �3

8�2

�
6�1 þ 4�2 þ 2�3 þ 3Y2

t � 9

4
g22 �

3

4
g21

� 3

4
~g2 þ 2Tr½ðYNÞ2� � 12g021 þ 6

~g2g021
�3

�
; (35)

where ~g and g01 are the gauge couplings of theUð1Þ’s mixing
and Uð1ÞB�L as defined in Eq. (18). YN is the Yukawa
coupling defined in Eq. (19). The scalar couplings �1, �2,
and �3 are defined in Eq. (24). For completeness, we give
also the RGEs of g01 and ~g, which can be written as [98]

dg01
dt

¼ 1

16�2

�
12g031 þ 32

3
g021 ~gþ 41

6
g01~g2

�
; (36)

d~g

dt
¼ 1

16�2

�
41

6
~gð~g2 þ 2g21Þ þ

32

3
g01ð~g2 þ g21Þ þ 12g021 ~g

�
:

(37)

The RGEs of the gauge couplings, g3, g2, and g1 remain
intact. Finally, the RGEs of the Yukawa couplings Yt, Y�,
and YN are as follows [98]:

dYt

dt
¼ Yt

16�2

�
9

2
Y2
t � 8g23 �

9

4
g22 �

17

12
g21 �

17

12
~g2

� 2

3
g021 � 5

3
~gg01

�
; (38)

dY�

dt
¼ Y�

16�2

�
5

2
Y2
� þ 3Y2

t � 9

4
g22 �

3

4
g21 � 6g021

�
; (39)

dYNi

dt
¼ YNi

16�2
ð4ðYNi

Þ2 þ 2Tr½ðYNÞ2� � 6g021 Þ;
ði ¼ 1 . . . 3Þ; (40)

where we consider the basis of real and diagonal YN , i.e.
YN 	 diagðYN1

; YN2
; YN3

Þ. It is worth noting that within the
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inverse seesaw, the RGE of B� L couplings g01 and ~g are
slightly modified, due to the impact of the two fermions
S1;2, which are charged under B� L. They take the form

dg01
dt

¼ 1

16�2

�
27g031 þ 32

3
g021 ~gþ 41

6
g01~g2

�
; (41)

d~g

dt
¼ 1

16�2

�
41

6
~gð~g2 þ 2g21Þ þ

32

3
g01ð~g2 þ g21Þ þ 27g021 ~g

�
:

(42)

From Eq. (33) of the RGE of the coupling �1, we notice
that the mixing parameter �3 contributes positively to the
evolution of �1, unlike the top Yukawa and neutrino
Yukawa couplings. Note that the evolution of �3

(and also the running of �1) is enhanced by the positive
effect of the self-coupling of B� L heavy Higgs, �2.
Therefore, with non-negligible �3, the scale of the Higgs
vacuum stability can be pushed to higher values. In case of
an inverse seesaw, where Y� �Oð1Þ, a larger mixing
parameter is required to overcome the effects of both the
top and neutrino Yukawa couplings that pull the stability
scale down. Note, since the Higgs scalar is not charged
underUð1ÞB�L, the running of �1 has no dependence on g

0
1.

The only extra gauge contribution to d�1=dt is due to the
small gauge mixing ~g, which leads to a negligible effect.

As emphasized, the parameter that is responsible for the
scalar mixing �3 is expressible in terms of the physical
quantities mh, which is fixed by the detected Higgs mass
125 GeV and the heavy Higgs mass mH and the mixing
angel 
. In Fig. 2 we show the running, up to the GUT
scale, for the quartic couplings �1 and the condition of
bounded from below: �3 þ 2

ffiffiffiffiffiffiffiffiffiffiffi
�1�2

p
in the B� L extension

of the SM with type-I seesaw. It is worth noting that �2 is
unconditionally positive as can be seen from its RG equa-
tion (34). In these plots, we consider three values of the
Higgs mixing angle: 
 ¼ 0, 0.1, and 0.2. Also we fix the
SM-like Higgs mass with 125 GeV and the heavy Higgs
mass mH ¼ 500 GeV. As can be seen from this figure, at

 ¼ 0 where there is no mixing between the SM Higgs
boson and the B� L Higgs boson, the running of �1

coincides with that of the SM. Hence one again finds that
the Higgs potential becomes unstable at an energy scale
* 109–10 GeV. With nonvanishing 
 one finds that �1 gets
initial values at the electroweak scale larger than its value
in the SM and also its scale dependence becomes rather
different. Therefore in this case one finds that it is quite
plausible, with not very large mixing, to keep �1 and also
�3 þ 2

ffiffiffiffiffiffiffiffiffiffiffi
�1�2

p
positive up to the GUT scale, and hence the

Higgs vacuum stability is accomplished.
Similarly, in Fig. 3 we display the running of �1 and

�3 þ 2
ffiffiffiffiffiffiffiffiffiffiffi
�1�2

p
in the B� L extension of the SM with an

inverse seesaw, for 
 ¼ 0, 0.21, and 0.25, mh ¼ 125 GeV,

2 4 6 8 10 12 14 16

0.00

0.05

0.10

0.15

0.20

0.25

2 4 6 8 10 12 14 16
0.0

0.2

0.4

0.6

0.8

1.0

FIG. 2 (color online). Left: RG running of the quartic coupling �1 in the B� L extension of the SM with type-I seesaw, for three
values of the scalar mixing angle 
 for SM-like Higgs mass mh ¼ 125 GeV. Right: evolution of the second stability condition,
�3 þ 2

ffiffiffiffiffiffiffiffiffiffiffi
�1�2

p
, up to the GUT scale.
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0.2

0.0

0.2

0.4

0.6

0.8

2 4 6 8 10 12 14 16
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FIG. 3 (color online). Left: running of the quartic couplings �1 in the B� L extension of the SM with inverse seesaw, for three
values of scalar mixing angle 
 for SM-like Higgs mass mh ¼ 125 GeV. Right: evolution of the second stability condition,
�3 þ 2

ffiffiffiffiffiffiffiffiffiffiffi
�1�2

p
, up to the GUT scale.
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mH ¼ 500 GeV, and Y� ¼ 0:7. It is clear that with 
 ¼ 0,
we get the non-B� L limit for the instability of the Higgs
potential, where both �1 and �3 þ 2

ffiffiffiffiffiffiffiffiffiffiffi
�1�2

p
become nega-

tive at �105–6 GeV. Also, we find that for 
 * 0:21, the
Higgs vacuum stability is achieved up to the GUT scale.

IV. VACUUM STABILITY IN SUPERSYMMETRIC
EXTENSIONS OF THE SM

In this section we analyze the Higgs vacuum stability
in supersymmetric extensions of the SM. We start with
the MSSM, which is the most widely studied SUSY
model. The MSSM is based on the same gauge group of
the SM, i.e., SUð3ÞC � SUð2ÞL �Uð1ÞY , with the follow-
ing superpotential:

W ¼ YuQLU
c
LH2 þ YdQLD

c
LH1 þ YeLLE

c
LH1 þ�H1H2:

(43)

InMSSM, twoHiggs doublet superfields are required for the
Higgsino anomalies to cancel among themselves. From the
superpotential one can determine the scalar potential. Thus,
the potential for the neutral Higgs fields can be written

VðH1; H2Þ ¼ m2
1H

2
1 þm2

2H
2
2 � 2m2

3H1H2

þ g2 þ g02

8
ðH2

1 �H2
2Þ2; (44)

where the masses m2
i are given in terms of the soft SUSY

breaking terms: m2
Hi
, B, and the � parameter as follows:

m2
i ¼ m2

Hi
þ j�j2; m2

3 ¼ B�: (45)

This potential is the SUSY version of the Higgs potential
which induces SUð2ÞL �Uð1ÞY breaking in the SM, where
the usual self-coupling constant is replaced by the squared
gauge couplings.

In order to study the stability of the MSSM Higgs
potential, one should consider the following two cases:
(i) flat direction, where H1 ¼ H2 ¼: H; (ii) nonflat direc-
tions. In the flat direction, the quartic terms vanish and the
potential takes the simple form,

VðHÞ ¼ ðm2
1 þm2

2 � 2m2
3ÞH2; (46)

which is stable only if the coefficient (m2
1 þm2

2 � 2m2
3) is

non-negative. This is the well-known condition for avoid-
ing the unboundedness of the MSSM potential from below.

On the other hand, on nonflat directions the quartic terms
in Eq. (44) are nonvanishing and dominate the potential for a
large value of the scalar fields H1;2. Thus, the stability is

unconditionally guaranteed because the quartic coupling
ðg2 þ g02Þ=8 is always positive. Therefore, one concludes
that the MSSM Higgs potential is identically stable at any
direction except the flat one, which requires the following
condition:

m2
1 þm2

2 
 2m2
3: (47)

Now we turn to the supersymmetric B� L extension of
the SM (BLSSM). The minimal version of the BLSSM is
based on the gauge group SUð3ÞC � SUð2ÞL �Uð1ÞY �
Uð1ÞB�L, with particle content that includes the following
fields in addition to those of the MSSM: three chiral right-
handed superfields (Ni), the vector superfield necessary to
gauge theUð1ÞB�LðZB�LÞ, and two chiral SM-singlet Higgs
superfields (�1, �2 with B� L charges YB�L¼�2 and
YB�L ¼ þ2, respectively). As in the MSSM, the introduc-
tion of a second Higgs singlet (�2) is necessary in order to
cancel the Uð1ÞB�L anomalies produced by the fermionic
member of the first Higgs superfield (�1). The YB�L for
quark and lepton superfields are assigned in the usual way.
The interactions between the Higgs and matter super-

fields are described by the superpotential

W ¼ ðYUÞijQiH2U
c
j þ ðYDÞijQiH1D

c
j þ ðYLÞijLiH1E

c
j

þ ðY�ÞijLiH2N
c
j þ ðYNÞijNc

i N
c
j�1 þ�H1H2

þ�0�1�2: (48)

Therefore, the BLSSM Higgs potential is given by

VðH1; H2; �1; �2Þ
¼ m2

1H
2
1 þm2

2H
2
2 � 2m2

3H1H2 þ�2
1�

2
1 þ�2

2�
2
2

� 2�2
3�1�2 þ g2 þ g2YY þ g2YB

8
ðH2

1 �H2
2Þ2

þ g2BB þ g2BY
2

ð�2
1 � �2

2Þ2 þ
gBBgYB þ gBYgYY

2

� ðH2
1 �H2

2Þð�2
1 � �2

2Þ; (49)

where

m2
i ¼ m2

Hi
þ j�j2; �2

i ¼ m2
�i
þ j�0j2;

m2
3ð�2

3Þ ¼ B�ðB�0Þ: (50)

Similar to the MSSM, in order to study the stability of
this potential, one should consider the two cases of flat
direction, in which H1 ¼ H2 ¼: H & �1 ¼ �2 ¼: �, and
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FIG. 4 (color online). Running of the BLSSM condition R 	
g2ðg2BB þ g2BYÞ þ g2YYg

2
BB þ g2YBg

2
BY � 2gYYgBBgYBgBY for dif-

ferent initial values of gBB at the EW scale, fixing the initial
mixing parameters gYB and gBY to be zero at the EW scale.
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the other nonflat directions. In the flat direction, all the
quartic terms vanish, and the potential turns to the simple
form:

VðH;�Þ ¼ ðm2
1 þm2

2 � 2m2
3ÞH2 þ ð�2

1 þ�2
2 � 2�2

3Þ�2;

(51)

which is stable under the conditions

m2
1 þm2

2 
 2m2
3; (52)

�2
1 þ�2

2 
 2�2
3: (53)

On the other hand, the quartic terms are nonvanishing in
the other directions and they dominate the quadratic terms.
Thus, the stability is guaranteed only if the matrix of
quartic terms,

g2þg2YBþg2YY
8 � g2þg2YBþg2YY

8
gBBgYBþgBYgYY

4 � gBBgYBþgBYgYY
4

� g2þg2YBþg2YY
8

g2þg2YBþg2YY
8 � gBBgYBþgBYgYY

4
gBBgYBþgBYgYY

4

gBBgYBþgBYgYY
4 � gBBgYBþgBYgYY

4

g2BBþg2BY
2 � g2BBþg2BY

2

� gBBgYBþgBYgYY
4

gBBgYBþgBYgYY
4 � g2BBþg2BY

2

g2BBþg2BY
2

0
BBBBBBBB@

1
CCCCCCCCA
; (54)

is co-positive. Applying the co-positivity criteria of a
4� 4 matrix [99] (see the Appendix for brief review)
implies that the condition

g2ðg2BB þ g2BYÞ þ g2YYg
2
BB þ g2YBg

2
BY 
 2gYYgBBgYBgBY

(55)

should be satisfied in order for the potential in Eq. (49) to be
stable in the nonflat direction. It is worth noting that, in the
case of no gauge mixing (gYB ¼ 0 ¼ gBY), the condition
(55) is automatically satisfied. In this regard, the BLSSM
Higgs potential is stable if and only if the conditions in
Eqs. (52), (53), and (55) are satisfied.

In Fig. 4, we present the running of the BLSSM stabil-
ity indicator R 	 g2ðg2BB þ g2BYÞ þ g2YYg

2
BB þ g2YBg

2
BY �

2gYYgBBgYBgBY fixing the values of the MSSM gauge
coupling at the EW scale by its known values, and fixing
the mixing parameters gYB & gBY to be zero at the EW
scale and varying the values of the free gBB. It is clear that
the stability indicator R is always positive for any value
of gBB which means that no theoretical bounds can be put
on the gBB from the stability conditions. It is worth
mentioning that the situation does not change when we
relax the conditions on the mixing gauge couplings,
gYBðEWÞ ¼ 0 ¼ gBYðEWÞ, by allowing nonzero values
less than 10�3 [100].

V. CONCLUSIONS

In this paper we have analyzed the Higgs vacuum stability
problem in the B� L extension of the SM and also in the
MSSM.We have shown that within the context of the inverse
seesaw mechanism, which is an elegant TeV scale mecha-
nism for generating the neutrino masses, the Higgs vacuum
stability is affected negatively, and the cutoff scale for
vacuum instability is reduced from 1010 GeV in the SM to
105 GeV. We emphasized that the mixing between the SM-
like Higgs boson and the (B� L)-like Higgs boson resolves

this problem due to the following reasons: (i) possible
enhancement of the initial value of the SM-like Higgs
self-coupling, and (ii) the positive contribution of the
(B� L) Higgs coupling to the running of the SM-like
Higgs self-coupling.
We also studied the stability conditions in the

supersymmetric B� L model. We showed, similar to the
MSSM in Higgs flat directions, the requirement of vacuum
stability imposed constraints on the Higgs masses. In the
nonflat directions, the stability of the Higgs potential lead
to a constraint on the gauge couplings, which is automati-
cally satisfied if there is no kinetic mixing between Uð1ÞY
and Uð1ÞB�L.
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APPENDIX: CO-POSITIVITY OF ORDER
FOUR MATRICES

The co-positivity of a square matrix can be tested
through some conditions that depend only on the dimen-
sion of the matrix as well as the signs of its elements. Such
a subject is too lengthy to be presented here as a whole.
Thus, we shall present the co-positivity conditions of only
one class of 4� 4 matrices to which the matrix in Eq. (54)
belongs.
Consider a symmetric 4� 4 matrix

A ¼

a11 a12 a13 a14

a12 a22 a23 a24

a13 a23 a33 a34

a14 a24 a34 a44

0
BBBBB@

1
CCCCCA; (A1)
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such that a12, a14, a23, a34 � 0. Therefore, A is co-positive only if the following conditions are satisfied:
(i) aii 
 0, i ¼ 1; . . . ; 4,
(ii) a11a22 � a212 
 0, and
(iii) the symmetric matrices,

a33ða22a213 � 2a12a23a13 þ a11a
2
23Þ a33ða13a22 � a12a23Þ a33ða13a24 � a14a23Þ

� � � a22a33 � a223 a24a33 � a23a34

� � � � � � a33a44 � a234

0
BB@

1
CCA; (A2)

a44ða22a214 � 2a12a24a14 þ a11a
2
24Þ a44ða11a24 � a12a14Þ a44ða13a24 � a14a23Þ

� � � a11a44 � a214 a13a44 � a14a34

� � � � � � a33a44 � a234

0
BB@

1
CCA; (A3)

are co-positive.
Fortunately, there is no need to review the co-positivity conditions of a 3� 3 matrix here, because the associated 3� 3
matrices of the matrix (54) are diagonal, hence the only condition is the non-negativity of its diagonal elements.

For a complete review of the general co-positivity conditions of any squared symmetric matrix, we suggest
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