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The Higgs-boson mass used to be the only unknown input parameter of the electroweak contributions to

ðg� 2Þ� in the Standard Model. It enters at the two-loop level in diagrams with, e.g., top loops, W, or Z

exchange. We reevaluate these contributions, providing analytic expressions and exact numerical results

for the Higgs-boson mass recently measured at the LHC. Our final result for the full Standard Model

electroweak contributions is ð153:6� 1:0Þ � 10�11, where the remaining theory error comes from

unknown three-loop contributions and hadronic uncertainties.
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The anomalous magnetic moment a� ¼ ðg� 2Þ�=2 of

the muon has been measured very precisely at Brookhaven
National Laboratory, with the final value [1]1:

a
exp
� ¼ ð116 592 089� 63Þ � 10�11: (1)

This measurement has already reached a sensitivity to
details of the weak interactions, which contribute at the
order 10�9. Future experiments planned at Fermilab [2]
and J-PARC [3] aim to further reduce the uncertainty by
a factor of 4.

The Standard Model theory prediction has also been
continuously improving, see Refs. [4,5] for recent reviews
and references. The five-loop QED contribution has been
completely calculated [6]. The hadronic vacuum polariza-
tion contributions make use of the most recent experimen-
tal data on the (eþe� ! hadrons) cross section [7–9],
and an earlier discrepancy to analyses based on � decays
has been resolved [9,10]. The latest results of various
groups for the hadronic light-by-light contributions agree
within the quoted errors [4,11], and new nonperturbative
approaches promise further progress [12,13].

Here we focus on the electroweak contributions to
ðg� 2Þ� in the Standard Model. They include contribu-

tions from the Higgs boson and are the only ones which
depend on the Higgs-boson massMH. This quantity used to
be the only unknown input parameter of the Standard
Model, resulting in the dominant remaining theory uncer-
tainty of the electroweak contributions. As a reference, the
seminal evaluation of Ref. [14] obtained the result

aEW� ¼ ð154� 1� 2Þ � 10�11; (2)

where the first error was due to hadronic uncertainties, but
the second was due to the unknown Higgs-boson mass.

Now, the Higgs-boson mass has been measured at
the LHC to be MH ¼ 125:5� 0:2ðstatÞþ0:5

�0:6ðsystÞ GeV by

ATLAS [15] andMH ¼ 125:7� 0:3ðstatÞ � 0:3ðsystÞ GeV

by CMS [16]. In the following, we take the average central
value and a conservative error band covering the 2� range
of both measurements:

MH ¼ 125:6� 1:5 GeV: (3)

Given this progress on all fronts regarding ðg� 2Þ� and

the Higgs boson, it is appropriate to update the prediction
of the electroweak contributions to ðg� 2Þ�.
In the present paper, we therefore reevaluate the

electroweak Standard Model contributions at the two-
loop level, making use of the LHC result. We provide the
full MH-dependent part in numerical and, where not read-
ily available, in analytical form. This allows us to obtain
the exact ðg� 2Þ� prediction for the measured value of

MH and to compare with previously published results and
error estimates. We combine this with the most advanced
computations of all other electroweak contributions up to
leading three-loop order and provide the final result and a
complete discussion of the remaining theory error.
In the following, our input parameters besides Eq. (3)

are [17]

m� ¼ 105:6583715� 0:0000035 MeV; (4a)

MZ ¼ 91:1876� 0:0021 GeV; (4b)

mt ¼ 173:5� 0:6� 0:8 GeV (4c)

for the masses of muon, Z boson, and top quark, and

GF ¼ ð1:166 378 7� 0:000 000 6Þ � 10�5 GeV�2; (5a)

� ¼ 1=137:035 999 (5b)

for the muon decay constant and the fine-structure
constant. Given these parameters, the W-boson mass is
predicted by the Standard Model theory [18]. We obtain2

MW ¼ 80:363� 0:013 GeV: (6)

The Standard Model electroweak contributions are split
up into one-loop, two-loop, and higher orders as

1The change in the number compared to Ref. [1] is due to a
new PDG value for the magnetic moment ratio of the muon to
proton, see, e.g., Ref. [2].

2In Ref. [19], another top-quark mass has been used: mt ¼
173:2� 0:9 GeV. There, MW equals 80:361� 0:010 GeV.
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aEW� ¼ aEWð1Þ
� þ aEWð2Þ

�;bos þ aEWð2Þ
�;ferm þ aEWð�3Þ

� ; (7)

where the two-loop contributions are further split into
bosonic and fermionic contributions, as discussed below.

The one-loop contribution is given by [4,5]3

aEWð1Þ
� ¼ GFffiffiffi

2
p m2

�

8�2

�
5

3
þ 1

3
ð1� 4s2WÞ2

�

¼ ð194:80� 0:01Þ � 10�11; (8)

where s2W ¼ 1�M2
W=M

2
Z is the square of the weak mixing

angle in the on-shell renormalization scheme. One-loop
contributions suppressed by m2

�=M
2
Z or m2

�=M
2
H are

smaller than 10�13 and hence neglected here. The parame-
trization in terms of GF already absorbs important higher-
order contributions. The error in Eq. (8) is due to the
uncertainty of the input parameters, in particular, of the
W-boson mass.

Before discussing higher-order contributions, we briefly
explain possible parametrizations in terms of GF and �.
The one-loop contribution in Eq. (8) has been parametrized
in terms of GF. Generally, n-loop contributions are pro-

portional to GF�
ðn�1Þ, and it is possible to reparametrize �

in terms of other quantities. Possibilities are to replace �
by a running � at the scale of the muon mass or the

Z-boson mass, or to replace � ! �ðGFÞ, where �ðGFÞ �ffiffiffi
2

p
GFs

2
WM

2
W=� ¼ �� ð1þ �rÞ. The quantity �r sum-

marizes radiative corrections to muon decay. Different
choices amount to differences which are formally of the
order nþ 1. We will always choose � in the Thomson
limit, i.e., given by Eq. (5b).

We now turn to the first set of contributions with notice-
able dependence on the Higgs-boson mass: the bosonic

two-loop contributions aEWð2Þ
�;bos . They are defined by two-

loop and associated counterterm diagrams without a closed
fermion loop, see Fig. 1(a) for a sample diagram. They are
conceptually straightforward but involve many diagrams.
Their first full computation in Ref. [20] was a milestone—
the first full computation of a Standard Model observable
at the two-loop level. Actually, Ref. [20] employed an
approximation assuming MH � MW . Reference [21]

confirmed the result but provided the fullMH dependence;
Ref. [22] then published the result in semianalytical form.
Here we reevaluate the bosonic two-loop contributions

using the parametrization discussed above, in terms of
GF�. Figure 2 shows the result for a range of Higgs-boson
masses. The numerical result differs by around 3% from
the one given in Ref. [21], where the GF�ðGFÞ parametri-
zation was chosen. The measured value of MH now fixes
the value of these contributions and we obtain

aEWð2Þ
�;bos ¼ ð�19:97� 0:03Þ � 10�11: (9)

Here the remaining parametric uncertainty results from
the experimental uncertainties of the input parameters
MH and to a smaller extent of MW , see the right plot in
Fig. 2. The result lies within the intervals given in the
original Refs. [21,22] and the recent reviews [4,5], which
all differ slightly because of the different Higgs-boson
mass ranges and central values used for the evaluations.

The fermionic two-loop contributions aEWð2Þ
�;ferm are defined

by Feynman diagrams with a closed fermion loop. The
Higgs boson enters through diagrams of the type in
Fig. 1(b), where a fermion loop generates a H�� or
H�Z interaction. The fermionic contributions involve
also light quark loops, e.g., in the diagrams of Fig. 1(c),
for which perturbation theory is questionable. Hence, we
split up these contributions further, slightly extending the
notation of Ref. [5]:

aEWð2Þ
�;ferm ¼ aEWð2Þ

� ðe;�; u; c; d; sÞ þ aEWð2Þ
� ð�; t; bÞ

þ aEWð2Þ
�;f-rest;H þ aEWð2Þ

�;f-rest;no H: (10)

Here the first two terms on the rhs denote contributions
from the diagrams of Fig. 1(c) with a ��Z subdiagram and
the indicated fermions in the loop. The third term denotes
the Higgs-dependent diagrams of Fig. 1(b); the fourth
collects all remaining fermionic contributions, e.g., from
W-boson exchange or from diagram Fig. 1(d).
We first focus on the Higgs-dependent part, for which

we write

aEWð2Þ
�;f-rest;H ¼ X

f

�
aEWð2Þ
�;f-rest;H�ðfÞ þ aEWð2Þ

�;f-rest;HZðfÞ
�
; (11)

where the two terms in the sum denote the Higgs-
dependent diagrams of Fig. 1(b) with either a photon or a
Z boson in the outer loop, and the sum extends over the

FIG. 1. Sample two-loop diagrams: Higgs-dependent bosonic (a) and fermionic (b) diagram, diagram with ��Z-fermion triangle (c),
and �� Z mixing (d).

3In the literature, sometimes the experimental value for MW

instead of the theory value is used. If we would use the current
value of MW ¼ 80:385� 0:015 GeV [17] instead of Eq. (6), the
result would be shifted to aEWð1Þ

� ¼ ð194:81� 0:01Þ � 10�11.
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Standard Model fermions; the relevant ones are f ¼ t, b, c,
�. Contributions from the remaining Standard Model
fermions are below 10�14 and thus negligible.

The first full computation of the fermionic contributions
including the Higgs dependence was carried out in
Ref. [23]. There, the dependence on the Higgs-boson
mass was provided in three limiting cases, MH � mt,
MH ¼ mt,MH � mt. Furthermore, since s2W � 1=4, terms
suppressed by a factor of (1� 4s2W), in particular, the
entire Higgs-Z diagrams of Fig. 1(b) were neglected.
Diagrams similar to Fig. 1(b) have also been evaluated
in the more complicated case of extended models, e.g.,
in the two-Higgs-doublet model and the supersymmetric
Standard Model [24,25].

We computed the Higgs-dependent diagrams without
approximations in two ways: with the technique developed
for Refs. [21,26] using asymptotic expansion and integral
reduction techniques, and with the method of Barr and Zee,
where the inner loop was computed first and then inserted
into the outer loop [27]. The result from this is

aEWð2Þ
�;f-rest;H�ðfÞ ¼

GFffiffiffi
2

p m2
�

8�2

�

�
NCQ

2
f2fH�ðxfHÞ; (12)

aEWð2Þ
�;f-rest;HZðfÞ ¼

GFffiffiffi
2

p m2
�

8�2

�

�
NCQf

I3f � 2s2WQf

4c2Ws
2
W

� ð1� 4s2WÞfHZðxfH; xfZÞ; (13)

with xfH ¼ m2
f=M

2
H and xfZ ¼ m2

f=M
2
Z. The loop

functions can be written in terms of one-dimensional
integral representations or in terms of dilogarithms:

fH�ðxÞ ¼
Z 1

0
dwx

2w2 � 2wþ 1

w2 � wþ x
log

wð1� wÞ
x

(14)

¼ x½fHðxÞ � 4	; (15)

fHZðx;zÞ¼
Z 1

0
dwxz

2w2�2wþ1

w2�wþ z

�
logwð1�wÞ

x

w2�wþx
þ logx

z

x� z

�

(16)

¼ xz

x� z
½fHðzÞ � fHðxÞ	: (17)

The dilogarithms are contained in the function fHðxÞ
defined as4

fHðxÞ ¼ 4x� 2

y

�
Li2

�
1� 1� y

2x

�

� Li2

�
1� 1þ y

2x

��
� 2 log x; (18)

with y ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4x

p
. Further, the weak isospin I3f is defined

as � 1
2 for up (down) fermions, and the electric charge Qf

equalsþ 2
3 ,� 1

3 ,�1 for up-type quarks, down-type quarks,

and charged leptons, respectively. The color factor NC is 1
for leptons and 3 for quarks.
Figure 3(a) shows the numerical result as a function of

the Higgs-boson mass and compares with the numerical
values obtained in Ref. [23] using their approximations.
We find that the approximation for largeMH is surprisingly
poor. As a check of this case, we have explicitly computed
the higher orders in the expansion in m2

t =M
2
H and verified

that the terms neglected in Ref. [23] are important.
Inserting the measured value of the Higgs-boson mass,

and taking into account all contributions including top,
bottom, charm, and � loops and diagrams with Higgs and
Z-boson exchange, we obtain

aEWð2Þ
�;f-rest;H ¼ ð�1:50� 0:01Þ � 10�11; (19)
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FIG. 2 (color online). Numerical result for aEWð2Þ
�;bos as a function of the Higgs-boson mass. The vertical band indicates the measured

value of MH. The dashed line in the left plot corresponds to the leading logarithmic approximation as defined in Ref. [21]. In the right
plot, the dotted, solid, and dashed lines correspond to a variation of MW by ð�15; 0;þ15Þ MeV, respectively.

4In Ref. [28] Eq. (70), a similar function fSðxÞ is defined,
where fSðxÞ ¼ xfHðxÞ � 4x. Additionally, Eqs. (15) and (17) are
connected by fH�ðxÞ ¼ lim z!1fHZðx; zÞ.
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where the indicated error arises essentially from the uncer-
tainty of the input parametersmt andMH. Again, the result
is in agreement with the intervals given in Refs. [4,5,23],
which differ because of the different allowed Higgs-boson
mass ranges.

Equations (9) and (12)–(19), and Figs. 2 and 3 constitute
our main new results. In the following, we briefly review the
remaining electroweak contributions, with slight updates.

The non-Higgs-dependent contributions aEWð2Þ
�;f-rest;no H are

given by

aEWð2Þ
�;f-rest;noH¼�GFffiffiffi

2
p m2

�

8�2

�

�

�
1

2s2W

�
5

8

m2
t

M2
W

þ log
m2

t

M2
W

þ7

3

��

�GFffiffiffi
2

p m2
�

8�2

�

�

�
c2W
2s2W

m2
t

M2
W

ð1�4s2WÞ
�

�GFffiffiffi
2

p m2
�

8�2

�

�

��
8

9
log

MZ

m�

þ4

9
log

MZ

m�

�
ð1�4s2WÞ2

þ4

3
�6:88ð1�4s2WÞ

�
: (20)

The first line has been computed in Ref. [23] and was
rewritten in this form, e.g., in Refs. [4,29]; the other two
terms correspond to additional terms added in Ref. [14],
where, however, no explicit formula was provided. These
terms are suppressed by (1� 4s2W) but enhanced by
either m2

t =M
2
W or by large logarithms. The factor m2

t =M
2
W

enters via the quantity ��, which arises by applying
the renormalization s2W ! s2W þ �s2W in the ð1� 4s2WÞ2
term of the one-loop result (8). The other term originates
from diagrams with �� Z mixing as shown in Fig. 1(d)
with light fermions running in the loop. It can be computed
using renormalization-group techniques [14,30]. The
number 6.88 in the last line has been obtained in
Ref. [14] as a nonperturbative replacement of the pertur-
bative expression 2=3

P
q¼u;d;s;c;bNcðI3qQq � 2Q2

qs
2
WÞ�

logMZ=mq. Numerically, we obtain �4:12, �0:23,

�0:29 in units of 10�11 for the three contributions, in total

aEWð2Þ
�;f-rest;no H ¼ ð�4:64� 0:10Þ � 10�11: (21)

The error due to the uncertainty of the input parameters
is negligible; the given error is our estimate of the
still neglected terms which are suppressed by a factor of
(1� 4s2W) or M

2
Z=m

2
t and not enhanced by anything. The

estimate is obtained by comparison with the computed
terms in the second and third lines of Eq. (20) and the
respective enhancement factors.
For the third-generation contributions to Fig. 1(c),

perturbation theory can be applied, and these contributions
have been evaluated in Refs. [14,23,31]. The result and the
error estimate from Ref. [14], including subleading terms
in m2

t =M
2
Z, read

aEWð2Þ
� ð�; t; bÞ ¼ �ð8:21� 0:10Þ � 10�11: (22)

We have reevaluated these contributions for various
definitions of quark masses which differ by higher orders in
the strong interaction, similarly to the error estimation by
Ref. [14]. The result is shown in Fig. 4, and it confirms that
Eq. (22) is still compatible with present values of quark
masses.
The contribution of the first two generations to Fig. 1(c)

has first been fully computed in Ref. [23], approximating
the light quark contributions by a naive perturbative cal-
culation with constituentlike quark masses. The treatment
of the light quark contributions has been successively
improved in later references by taking into account non-
perturbative information on the longitudinal part [31,32],
then on both the longitudinal and transverse parts of
the ��Z three-point function [14]. The final result of
Ref. [14] is5
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FIG. 3 (color online). Numerical result for aEWð2Þ
�;f-rest;H as a function of the Higgs-boson mass. The vertical band indicates the measured

value of MH . The fat dots in the left plot correspond to the approximations for MH ¼ 60 GeV, mt, 300 GeV given in Ref. [23]. In the
right plot, the dotted, solid, and dashed lines correspond to a variation of mt by ð�1:4; 0;þ1:4Þ GeV, respectively.

5The result is taken from the erratum of Ref. [14]. It is
perfectly compatible with the one provided in Ref. [4]. The
result quoted in Ref. [5] was taken from the original Ref. [14];
it differs slightly but is also compatible within the errors.
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aEWð2Þ
� ðe;�; u; c; d; sÞ ¼ �ð6:91� 0:20� 0:30Þ � 10�11;

(23)

where the uncertainties for the first and second generations
have been given separately.

Contributions from beyond the two-loop level have
been considered in Refs. [14,30]. There, the leading
logarithms at the three-loop level have been obtained
from renormalization-group methods. It was found that
these logarithms amount to 0:4� 10�11 if the two-loop
result is parametrized in terms of GF�ðm�Þ, where �ðm�Þ
is the running fine-structure constant at the scale of the
muon mass. If the two-loop result is parametrized in terms
of GF�, however, the shift of the coupling accidentally
cancels the three-loop logarithms. Hence, since this is the
parametrization we have used, we take

aEWð�3Þ
� ¼ ð0� 0:20Þ � 10�11; (24)

where the error estimate is from Ref. [14]. It corresponds
zto estimating the nonleading logarithmic three-loop con-
tributions to be below a percent of the two-loop
contributions.

In summary, we have reevaluated the electroweak
contributions to a� using the measured Higgs-boson mass

and employing consistently theGF� parametrization at the
two-loop level. We provided exact numerical results for the
full bosonic and the Higgs-dependent fermionic two-loop
contributions, and for the latter we also provided analytical
results. These results are supplemented by updates of the
most advanced available results on all other electroweak
contributions. Our final result obtained from Eqs. (8), (9),
(19), and (21)–(24), reads

aEW� ¼ ð153:6� 1:0Þ � 10�11 (25)

and is illustrated in Fig. 5. We assess the final theory
error of these contributions to be �1:0� 10�11. This is
the same value as the one given in Ref. [14] for the overall
hadronic uncertainty from the diagrams of Fig. 1(c), which
is now by far the dominant source of error of the electro-
weak contributions. The error from unknown three-loop
contributions and neglected two-loop terms suppressed
by M2

Z=m
2
t and (1� 4s2W) is significantly smaller and the

error due to the experimental uncertainty of the Higgs-
boson, W-boson, and top-quark mass is well below 10�12

and thus negligible.
Our result is consistent with the previous evaluations

of the electroweak contributions in Refs. [4,5,14], whose
central values range between ð153 . . . 154Þ � 10�11, but
the large uncertainty due to the unknown Higgs boson
mass has been reduced. In comparison, the recent five-
loop calculation [6] has shifted the QED result by þ0:8�
10�11. We can now combine Eq. (25) and the result of
Ref. [6] with the hadronic contributions. We take
the recent leading order evaluations of Refs. [7,8] and the
higher-order results of Refs. [8,11]. The resulting differ-
ence between the experimental result Eq. (1) and the full
Standard Model prediction is

aexp� � aSM� ¼
8<
:
ð287� 80Þ � 10�11 ½7	;
ð261� 80Þ � 10�11 ½8	: (26)

The Standard Model theory error remains dominated
by the nonelectroweak hadronic contributions. The QED
and electroweak contributions can now be regarded as
sufficiently accurate for the precision of next-generation
experiments.

Communications with A. Czarnecki, E. de Rafael, and
B. Lee Roberts are acknowledged. This work has been
supported by the German Research Foundation DFG
through Grant No. STO876/1-1.
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FIG. 5 (color online). Numerical result for aEW� as a function
of the Higgs-boson mass. The vertical band indicates the
measured value of MH. The dashed lines correspond to the
uncertainty of the final result quoted in Eq. (25).
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[21] S. Heinemeyer, D. Stöckinger, and G. Weiglein, Nucl.
Phys. B699, 103 (2004).

[22] T. Gribouk and A. Czarnecki, Phys. Rev. D 72, 053016
(2005).

[23] A. Czarnecki, B. Krause, and W. J. Marciano, Phys. Rev.
D 52, R2619 (1995).

[24] K.-m. Cheung, C.-H. Chou, and O. C.W. Kong, Phys. Rev.
D 64, 111301 (2001).

[25] Y.-L. Wu and Y.-F. Zhou, Phys. Rev. D 64, 115018 (2001).
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