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We propose a new algorithm based on the Metropolis sampling method to perform Monte Carlo

integration for path integrals in the recently proposed formulation of quantum field theories on the

Lefschetz thimble. The algorithm is based on a mapping between the curved manifold defined by the

Lefschetz thimble of the full action and the flat manifold associated with the corresponding quadratic

action. We discuss an explicit method to calculate the residual phase due to the curvature of the Lefschetz

thimble. Finally, we apply this new algorithm to a simple one-plaquette model where our results are in

perfect agreement with the analytic integration. We also show that for this system the residual phase does

not represent a sign problem.
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I. INTRODUCTION

In the path integral formulation of quantum field theory
(QFT), the expectation value of observables is written as
ratios of multidimensional functional integrals involving
the exponential of an (effective) action, S. When S is real,
e�S can be interpreted as a probability distribution and the
functional integral can be evaluated very efficiently and
accurately using stochastic methods, viz. Monte Carlo
sampling (see, e.g., [1]). For large systems at low tempera-
tures, quantum Monte Carlo is arguably the most accurate
method for calculating observables, at present.

Unfortunately, systems with real actions are special cases.
In general, S will be complex (although the full integral
is still real), and e�S cannot be interpreted as a prob-
ability distribution. In principle, one can use reweighting:
use the absolute value of e�S as the probability weight, and
include its phase in the redefinition of the value of the
observable for a given field configuration. However,
reweighting is effective only if the fraction of configura-
tions with negative weight is limited, rendering the method
of little use for large systems and/or at low temperatures.
This is a manifestation of the infamous ‘‘sign problem’’
which plagues the application of Monte Carlo methods to
quantum field theories.

Numerous methods have been proposed to deal with the
sign problem [2–4], and they have had important but partial
success in particular classes of models. However, a general
solution is missing, and the sign problem is a major hin-
drance to accurate calculation in many interesting physical
systems: lattice QCD at finite density [3] or with a �
vacuum [5], real-time field theories [6], electronic systems
[2,7,8], the repulsive Hubbard model [9], the nuclear shell

model [10], and polymer field theory [11], to name a few.
Any new method to evade or at least mollify the sign
problem in the generic situation represents an important
advance.
Recently we proposed that a way to alleviate the sign

problem is to use the formulation of the QFT on a
Lefschetz thimble [12,13] for the Monte Carlo integration
[14,15]. Lefschetz thimbles are many dimensional general-
izations of the paths of steepest descent. By construction
the imaginary part of the action remains constant on each
thimble. However, because the Lefschetz thimbles are in
general curved complex manifolds, we may pick up an
additional residual phase due to this curvature. We argued
that the sign problem due to this residual phase, if present
at all, should be much milder than the sign problem in the
original integration domain.
The Lefschetz thimble formulation of QFT is, in princi-

ple, independent from methods used to sample field con-
figurations on the thimble. The latter, in itself, presents a
nontrivial problem due to complexity of the measure on
the thimble. In previous work, we proposed an algorithm
based on discretized Langevin dynamics. While the testing
of the algorithm proposed in [14] is in progress, it is
also worth exploring alternative algorithms to achieve the
challenging goal of performing Monte Carlo simulations
on a Lefschetz thimble.
In this paper, we present a different method to sample

field configuration on the Lefschetz thimble, which is
based on the Metropolis algorithm and uses a mapping
between the Lefschetz thimble and a flat manifold associ-
ated with the corresponding quadratic action. We also
discuss an explicit procedure to calculate the residual
phase within this method.
We apply this method to the Uð1Þ one-plaquette model.

The integrals involved in this model are one variable
integrals and can be performed analytically. However, it
provides an interesting benchmark which can be seen as a
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limiting case of more realistic QFTs on a lattice. It is
nontrivial from the point of view of a Monte Carlo
integration. In fact, the complex Langevin method fails
for this particular system. It also provides a case where
different aspects of our methodology can be visualized
quite clearly.

II. QFT ON A LETSCHETZ THIMBLE

Consider a QFT on a lattice (or any other system with a
finite number of continuous degrees of freedom) defined by
the action Sð�Þ, where� is a vector field whose number of
components, n, is equal to the number of degrees of
freedom in the system. Suppose that the initial field theory
is defined for real fields, i.e, the expectation value of any
observable O is given by

hOi ¼
R
D d�Oð�Þe�Sð�ÞR

D d�e�Sð�Þ (1)

where D is the appropriate integration cycle for S in the
real domain Rn. Now, consider S in terms of the complexi-
fied fields, i.e, the field components �i are now allowed
to be complex. Suppose Sð�Þ is holomorphic in this
complexified space and its critical points �� given by

@S

@�� ¼ 0 (2)

are nondegenerate,

det

�
@2S

@��@��

�
� 0: (3)

Then, under suitable conditions on S and O (typically
fulfilled in physical systems) and for a sufficiently
generic choice of parameters, we have the following
crucial result [12,13,16]:

Z
D
d�Oð�Þe�Sð�Þ ¼ X

�

m�

Z
J �

d�Oð�Þe�Sð�Þ; (4)

where m� 2 Z (see below). That is, an integral over the
real domain D is equivalent to a sum of integrals over
the Lefschetz thimbles J �. This result can be seen as a
generalization of contour deformation in one dimension.
The Lefschetz thimbles J � associated with the critical
points are many dimensional generalizations of the
paths of steepest descent. The thimble J � is defined
as the union of all paths governed by

d�

d�
¼ �@S

@�
(5)

and which end at the critical point �� for � ! 1. They
are hypersurfaces of real dimension n embedded in the
complex manifold Cn. Here, and below, the overhead

bar represents complex conjugation. In this paper we
will assume that S is a Morse function; i.e., it has only
nondegenerate critical points.1

Then, the expectation value of an observable can be
written as

hOð�Þi ¼
P

� m�

R
J �

d�Oð�Þe�Sð�ÞP
� m�

R
J �

d�ð�Þe�Sð�Þ : (6)

From the point of view of stochastic integration, the main
benefit of the above formulation is that along a given
thimble J �, the imaginary part of the action =Sð�Þ
remains constant. The only fluctuation in the complex
phase comes from the residual phase due to the curvature
of the thimble itself. We expect this to be a significantly
milder sign problem than the original one.
The critical points of the action can be found by looking

at all the solutions of Eq. (2). The integer coefficients m�

are the intersection numbers between D and K�, where
K� is the unstable thimble; i.e, it is the union of all paths
which are governed by Eq. (5), but go to�� at � ! �1. It
is also a hypersurface of real dimension n. Then, m� is
simply the number of times the two hypersurfaces D and
K� intersect.
We are not aware of a general method to calculate the

m� for an arbitrary QFT. But we argued in [14] that only a
limited set of thimbles are expected to dominate and,
moreover, a single thimble is typically sufficient to regu-
larize a QFT.2 However, in order to test the algorithm
presented in this paper, it may be interesting to consider
also the case in which we want to study more thimbles at
the same time. Hence, in the rest of this paper we will keep
a general m�, but we will assume that the intersection
numbers m� are known, and comment when relevant.

III. MAPPING THE LEFSCHETZ THIMBLE
ON A FLAT MANIFOLD

In the neighborhoodof a nondegenerate critical point��,
the holomorphic action function Sð�Þ can be written as

Sð�Þ ¼ Sð��Þ þ SGð�Þ þOðj�j3Þ (7)

where the Gaussian action SG is given by

SG ¼ 1

2

X
k

�k�
2
k; (8)

and � is related to� by a (complex) linear transformation,

�i ¼ ��
i þX

k

wki�k: (9)

1Degenerate minima, as they typically occur in the presence of
symmetries, can be either lifted or treated as discussed in [14].

2See also [17] for a different point of view, that is comple-
mentary and consistent with the one of [14].

MUKHERJEE, CRISTOFORETTI, AND SCORZATO PHYSICAL REVIEW D 88, 051502(R) (2013)

RAPID COMMUNICATIONS

051502-2



The wki are components of the vectors wk. We call the flat
thimble associated with the Gaussian action SG the
Gaussian thimble G�.

The �k and wk can be found from the solutions of the
generalized eigenvalue equation,

Hwk ¼ �k �wk: (10)

The elements of the Hessian matrix H are given by

Hij ¼ @S

@�i@�j

: (11)

In practice, we find the �k and the wk from the positive
eigenvalues and the corresponding eigenvectors of the real
symmetric 2n� 2n matrix

~H ¼ HR HI

HI �HR

 !
(12)

where

HR
ij ¼

@<S

@<�i@<�j

(13)

HI
ij ¼ � @<S

@=�i@<�j

: (14)

The eigenvalues of ~H come in pairs f��kg with k ¼
1; . . . n, and the �k being real and positive. Let uk and vk
be real normalized n-dimensional vectors such that

ðu⊺
k; v

⊺
kÞ⊺ is an eigenvector of ~H with a positive eigenvalue

�k. Then, the pair �k and wk ¼ 1ffiffi
2

p ðuk þ ivkÞ satisfies

Eq. (10).
With this parametrization, the directions of steepest

descent/ascent of <S (and constant =S) correspond to
directions where the �k are real. Consider the equations
of steepest descent of the variables �k (assumed real)
for the Gaussian action SG in terms of the new parameter
r ¼ e��,

d�k

dr
¼ 1

r

@SG
@�k

¼ 1

r
�k�k (15)

which yields the solution,

�k / r�k : (16)

Now, we can define a mapping between the Gaussian
thimble, parametrized by the vectors �, and the Lefschetz
thimble, parametrized by the field �. First, we find the
corresponding configuration � at r ¼ �,

�k ¼ ��k�k: (17)

For a sufficiently small �, the Lefschetz thimble and the
Gaussian thimble will coincide at r ¼ �. Thus, the field
configuration on the Lefschetz thimble at r ¼ � is given by

�iðr ¼ �Þ ¼ ��
i þX

k

wki�k ¼ ��
i þX

k

��kwki�k: (18)

Using this as the boundary condition, we can now integrate
the equation of steepest descent of the full action S for the
fields �iðrÞ,

d�i

dr
¼ 1

r

@S

@�i

(19)

from r ¼ � to 1. The field configuration at r ¼ 1 is the
one we seek. For brevity, we will simply denote it by �.
For a constant �, we have the following relation between

the measures of integration:

Z
J �

d� ¼
Z
Rn

det ½J�� �d� ¼
Z
Rn

�Y
k

��k

�
det ½J�� �d�:

(20)

The matrix J�� ðJ�� Þ is the Jacobian of the transformation

between the �ð�Þ and � fields.

In general, det ½J�� � is not guaranteed to be positive
definite. However, as noted earlier, we expect the sign
problem due to this ‘‘residual phase’’ (if present at all) to
be milder than the sign problem in the original functional
integral in Eq. (1). In the next section we verify this
assertion for a simple model.

The matrix J�� can be calculated along the path of

steepest descent from the equation

d½J�� �ik
dr

¼ 1

r

@2S

@�i@�j

½J�� �jk (21)

along with the boundary condition,

½J�� �ikðr ¼ �Þ ¼ wki: (22)

In the limit � ! 0, the above procedure produces an
explicit mapping between the flat Gaussian thimble and the
Lefschetz thimble. In practice, it is necessary to perform
calculations at a few sufficiently small values of � in order
to perform the extrapolation to the limiting case. For later
reference, we note that setting � ¼ 1 corresponds to a
mapping from the Gaussian thimble to itself.
Note that Eq. (21) involves the evolution of an N � N

matrix whose determinant must also be computed. The
latter is expected to cost OðN3Þ. This may be still too
expensive for some models, but it is already a huge cost
reduction compared to the OðeNÞ scaling expected in gen-
eral and it should be sufficient to enable the Monte Carlo
simulation of some important models, which are currently
not feasible. Techniques of noise estimation of the trace
(see, e.g., [18,19]) may further reduce the cost of the
computation of the determinant, but we do not consider
them in this paper.
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IV. METROPOLIS SAMPLING ON
THE LEFSCHETZ THIMBLE

Given the mapping above, it is straightforward to
formulate a Metropolis algorithm on the Lefschetz
thimble. Below we give the simplest version.

Suppose we start from a set f�old;�old;�oldg. First,
we propose a thimble �0new from the distribution
m�0new=

P
m�. Note that, in view of the arguments

presented earlier, this step is typically not needed in simu-
lations of QFT. It is done here to compare with the exact
analytical result, which is available.

Next, we choose n independent standard normal
deviates f~�kg. The �0new is then obtained as

�0new
k ¼ 1ffiffiffiffiffiffi

�k

p ~�k: (23)

Subsequently, �0new is obtained from �0new using the
procedure outlined above.

The new field configuration is accepted according to the
probability,

Paccept ¼ min f1; e�<Sð�0newÞþ<Sð�oldÞþSGð�0newÞ�SGð�oldÞg:
(24)

Note that each new configuration proposed in this way
is completely independent from the previous ones. The
acceptance of such proposals may be good as long as the
quadratic approximation of the action (that constitutes
the basis for the proposal) approximates well the full action.
This may not be hopeless, thanks to the basic property of the
Lefschetz thimble. In fact, along the thimble, the dominant
part of the integral is optimally concentrated close to the
stationary point. Indeed, this fact was exploited also in [2].
In any case, the present approach does not rely essentially
on the proposal in Eq. (23): it is conceivable to devise a
proposal based on a Markov chain, by introducing small
random variations to a previous configuration. The key
idea of the present algorithm is rather the mapping be-
tween the Lefschetz thimble and the Gaussian thimble G�.

In either case, given a set of N un(de)correlated field
configurations labeled by 	 ¼ 1; . . .N, the expectation
values of observables are given by

hOi ¼
P

	 O	J	e
�=S	P

	 J	e
�=S	 (25)

where S	, O	 and J	 are, respectively, the values of the
action, the observable, the determinant of the Jacobian
defined in Eqs. (20)–(22) for the 	th field configuration.
Note that, although =S remains constant over each
thimble, it can vary from thimble to thimble.

This algorithm is inherently stable. As � ! 0, the field
configurations will be sampled with the correct measure on
the Lefschetz thimble. At finite �, the distance of sampled
field configurations from the Lefschetz thimble is not
accumulated over simulation time and there is no chance

of divergences. This is because successive �’s are calcu-
lated by first generating the �s.

V. ONE-PLAQUETTE MODELWITH
Uð1Þ SYMMETRY

We now discuss the application of the above algorithm
for a system with one degree of freedom, viz. the one-
plaquette model with Uð1Þ symmetry. The action is given
in terms of the gauge link U ¼ ei� as

S ¼ �i



2
ðUþU�1Þ ¼ �i
 cos�; (26)

where � in this case is a one component field. For real 

the action is complex, similar to real-time gauge theories.
For this simple model, all the integrals can be evaluated

analytically, which offers the chance to compare every
detail of our numerical results to exact results. In particular
the plaquette average of the phase ei� is given by

hei�i ¼ i
J1ð
Þ
J0ð
Þ (27)

with Jnð
Þ being Bessel functions of the first kind. This
analytic result offers the chance of a clear test of our
algorithm.
Obtaining this result using stochastic methods is quite

nontrivial. For example the complex Langevin method
without ad hoc optimizations gives the wrong result for
this model [20].
In order to apply our method, we treat the field � as

complex. The action S has two critical points at� ¼ 0 and
�. By explicitly constructing the Hessian, it is easy to show
that both the critical points are nondegenerate. In this
simple model we can also compute the intersection num-
bers (m�), which turn out to be equal to 1 for both thimbles.
The field configurations on the two thimbles are related by
the discrete symmetry transformation � ! �� ��, and
expectation values of observables can be written in terms
of integrals over one thimble only. However, in order
to illustrate the above algorithm, we perform stochastic
integration using the full Eq. (6).
For this model, one can explicitly derive the expression

for the thimbles attached to the two saddle points. This can
be obtained by requiring that the imaginary part of the
action be constant along the flow, which gives

cos<� cosh=� ¼ �1 (28)

as the equations for the Lefschetz thimbles attached to the
two saddle points. Such a simple characterization of the
thimble is not available for systems with more than one
degree of freedom. Of course, our algorithm does not make
use of Eq. (28), but in Fig. 1 we show that the fields
obtained using the method described above reproduce
well the exact thimble defined by Eq. (28).
We see systematic improvement in our results on in-

creasing N� ¼ ��1; with increasing N� the sampled field
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configurations uniformly converge on the true thimble. In
contrast, the flat Gaussian thimble (N� ¼ 1) approximates
the thimble quite well near the saddle point, but it notice-
ably different further away from the saddle point.

In Fig. 2 we show the results for the expectation value of
the observable ei� for different 
. Again, the results from
our method systematically approach the exact analytical
result with increasing N�. For N� ¼ 200, the results from
our method are identical (within statistical errors) to the
analytical results for the range of 
 considered. In contrast,
we notice that there is a large difference between the
analytical result and those from Monte Carlo if the field
configurations are sampled from the flat Gaussian thimble.

Finally, we discuss the residual phase in the context of
the Uð1Þ one-plaquette model. The question of the residual
phase is an important one. We expect it to produce a milder
sign problem (if at all), than the original sign problem.
Nevertheless, it should be included in any quantitative
estimate. In our formulation the full (complex) measure

of integration is given by det ½J�� �e�S. The full integrals on

the Lefschetz thimble are always real. This means that

sin ðarg fdet ½J�� �e�SgÞ does not contribute to the integral.

The statement that the sign problem in our method is mild

(or absent) means that cos ðarg fdet ½J�� �e�SgÞ (residual
phase) will vary very little (or not at all), in the region

where j det ½J�� �e�Sj (probability measure) is significant.
For the Uð1Þ one-plaquette model, the Jacobian of the

transformation on each thimble is a single number and is
simply given by

J�� ¼ �i
sin�

�
: (29)

In Fig. 3 we show the residual phase vs the positive proba-
bility measure for this model. We see that the residual phase
changes by very little for variations of the probability
measure spanning many orders of magnitude. Moreover,
the fluctuations of the residual phase grow milder as the
true thimble is approached starting from the Gaussian
thimble. Most importantly, the residual phase keeps the
same sign throughout the full domain of integration; i.e.,
there is no sign problem for our method for this particular
model. This is reassuring, although it is impossible to
extrapolate from this simple model any claim about the
residual phase on systems with many degrees of freedom.

VI. CONCLUSIONS

In this paper we have described a new stable algorithm to
sample field configurations on the Lefschetz thimble. We
applied this method to the one-plaquette model with Uð1Þ
symmetry. Our results are in perfect agreement with the
exact results from analytical integration. Also, the residual
phase remains quasiconstant over configurations with large
weight, indicating that our method does not suffer from a
sign problem for this system. Further optimization of the
algorithm in order to apply it to more challenging problems
with a large number of degrees of freedom is under way.
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FIG. 1 (color online). Sampled field configurations at 
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