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We present the first practical Monte Carlo calculations of the recently proposed Lefschetz thimble

formulation of quantum field theories. Our results provide strong evidence that the numerical sign

problem that afflicts Monte Carlo calculations of models with complex actions can be softened

significantly by changing the domain of integration to the Lefschetz thimble or approximations thereof.

We study the interacting complex scalar field theory (relativistic Bose gas) in lattices of size up to 84 using

a computationally inexpensive approximation of the Lefschetz thimble. Our results are in excellent

agreement with known results. We show that—at least in the case of the relativistic Bose gas—the thimble

can be systematically approached and the remaining residual phase leads to a much more tractable sign

problem (if at all) than the original formulation. This is especially encouraging in view of the wide

applicability—in principle—of our method to quantum field theories with a sign problem. We believe that

this opens up new possibilities for accurate Monte Carlo calculations in strongly interacting systems

of sizes much larger that previously possible.
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I. INTRODUCTION

Many important physical systems are characterized by
complex actions, when formulated in terms of a path integral.
But, if the action S is not real, then e�S is not positive
semidefinite and it cannot be interpreted as a probability
distribution. In these cases, Monte Carlo calculations are
not applicable directly. This is the so-called sign problem.
Many techniques have been proposed to overcome this prob-
lem, with important partial successes, but the sign problem
is still unsolved for a variety of important physical systems
and parameter values, such as lattice QCD at high baryonic
density [1], or with a � vacuum [2], real-time quantum field
theories [3], the electron structure calculations [4–6], the
repulsive Hubbard model [7], the nuclear shell model [8] or
polymer theory [9], tomention only some of themost famous
problems. In this context, any new idea that could improve
our chances to simulate any of thesemodels on larger lattices
than are feasible today would be extremely valuable.

In a previous work [10,11], we argued that it may be
possible to control the sign problem by reformulating the
associated quantum field theory on a Lefschetz thimble.
The Lefschetz thimble, associated with a saddle point�, is
defined as the hypersurface formed by the union of all
paths of steepest descent (SD) of the complex action
ending in that saddle point �. Both the Lefschetz thimble
and the saddle point are constructed in an enlarged space
obtained by complexifying each field component. We
showed that, in many cases of interest, this reformulation
has the same symmetries and perturbation theory as the
original theory [10]. Thereafter, appealing to universality
we argued that the reformulation has the same physical
content as the original theory.

The benefit of this reformulation is that the action on the
Lefschetz thimble has a constant imaginary part, which can

be set to zero without any loss of generality. Thus e�<fSg
can now be interpreted as a probability distribution in
Monte Carlo sampling. Since, the Lefschetz thimble
defines a curved integration domain, there can, in principle,
be an additional residual phase coming from the Jacobian
of the transformation. However, we will argue later that
this residual phase, if at all present, will result in a very
mild growth of stochastic noise.
In this work, we apply our method to the interacting

complex scalar field theory describing a relativistic Bose
gas at finite chemical potential. This model is one of the
simplest nontrivial examples whose sign problem shares
many features with the more complex systems mentioned
above. Also, in common with lattice QCD, it displays the
silver blaze phenomenon [12], i.e., the independence of
the physics on the chemical potential up to some (finite)
critical value. This feature is not accessible to standard
Monte Carlo treatments due to the sign problem. Quite
importantly, this model has been solved through alternative
methods [13–16] and as such provides the ideal test bed
for new methods, like ours, for studying the physics of
strongly interacting systems.
In the context of Monte Carlo methods, modifications

of the domain of integration had been proposed already in
[6,17,18]. But those deformations were limited to shifts of
the contour in the imaginary direction. For many relevant
theories, including those considered in [10], the shift is
zero, and more general transformations are necessary, to
reduce the sign problem. Morse theory [10,19,20] identi-
fies the Lefschetz thimbles as the appropriate contours of
integration in the more general cases.
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II. FORMULATION OF THE MODEL
ON A LEFSCHETZ THIMBLE

The model is defined by the following continuum action:

S ¼
Z

d4x½j@�j2 þ ðm2 ��2Þj�j2 þ�j0 þ �j�j4�; (1)

where �ðxÞ is a complex scalar field, j� :¼ ��@���
�@��

� and � is the chemical potential. In this model
(as in QCD) the density hni ¼ 1

V @ lnZ=@� is expected to

be zero up to a critical point. But, this phase transition is
hidden in the standard Monte Carlo method because of
the strong sign problem which appears as soon as � � 0.

To formulate and simulate the relativistic Bose gas on a
Lefschetz thimble [10], we need to discretize the system
defined by Eq. (1) and extend the action S holomorphically.
This is done by complexifying both the real and imaginary
parts of the original complex fields�x ¼ 1ffiffi

2
p ð�1;x þ i�2;xÞ,

as�a;x ¼ �ðRÞ
a;x þ i�ðIÞ

a;x, a ¼ 1, 2, which leads to the action
in d dimensions [21]:

S½f�a;xg� ¼
X
x

��
dþm2
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(" is the two-dimensional antisymmetric Levi-Civita
symbol). The observables are defined as

hOi0 ¼ 1

Z0

Z
J 0

Y
a;x

d�a;xe
�S½��O½��;

Z0 ¼
Z
J 0

Y
a;x

d�a;xe
�S½��;

(3)

where the integration domain J 0 is the Lefschetz thimble
[19,20] attached to �glob. The configuration �glob is the

global minimum of the real part of the action SR ¼ <fSg,
when restricted to the original domainR2V . More precisely,
J 0 is the manifold of real dimension N ¼ 2V, defined as
the union of all the curves of SD for SR, i.e., the curves that
are solutions of

d

d�
�ðRÞ

a;xð�Þ ¼ ��SR½�ð�Þ�
��ðRÞ

a;x

; 8 a; x;

d

d�
�ðIÞ

a;xð�Þ ¼ ��SR½�ð�Þ�
��ðIÞ

a;x

; 8 a; x;

(4)

and that end in �glob for � ! 1.

In presence of spontaneous symmetry breaking (SSB),
the global minimum �glob is degenerate. But, the whole

procedure can be defined by introducing an explicit term of
symmetry breaking: h

P
x;a�x;a, where h is a real constant

that selects a specific minimum [11] (that can be computed
also analytically). Since h is real, the global minimum
�glob of SR is also a stationary point of the imaginary

part of the action SI, and hence the thimble is well defined.
Physical results are obtained by extrapolating to h ! 0.
(In principle, one could define a thimble without introduc-
ing h and treat the symmetries as suggested in [20]. This is
well suited to local gauge symmetries, but it makes the
study of SSB less clean.)

III. AURORA MONTE CARLO ALGORITHM
FOR SAMPLING THE THIMBLE

It is possible to generate field configurations on the
Lefschetz thimble with weights given by e�SR with the
help of Langevin dynamics using an algorithm described in
[10,11], that we review here. First, let us assume to know a
starting configuration � 2 J 0, together with a set of
configurations �ðk��Þ 2 J 0, with k ¼ 1; . . . ; N�, that
represent the path of SD connecting � ¼ �ð0Þ with the
configuration �ð� ¼ ��N�Þ. Let us assume that �ð�Þ is
sufficiently close to �glob, so that the action S can be

approximated by its quadratic expansion around �glob.

Second, we generate a Gaussian noise �jð0Þ, where j ¼
1 . . . 2N is a multi-index that stands for (R=I, a, x); we
evolve it according to

d

ds
�jðsÞ ¼ �X

k

�kðsÞ@k@jSR½�ðsÞ�k;j; (5)

and we project the end point with

�?
j ¼ Pj;k�kð�Þ; (6)

where the 2N � 2N matrix P of rank N is defined in terms
of the Hessian matrix H as

P ¼ Hffiffiffiffiffiffiffi
H2

p � 1 and H ¼ @2SR½�glob�: (7)

Then we normalize the noise vector as

�0ð�Þ ¼ r
�?

k�?k ; (8)

where r is a random number distributed according to the
N-dimensional 	 distribution. This produces a Gaussian
noise on the tangent space to J 0 computed in �glob. We

call such linear vector space G0. Third, we transport the
noise from s ¼ � along the path of steepest ascent (SA) to
s ¼ 0 by integrating the ordinary differential equation
(ODE):

d

ds
�0
jðsÞ ¼

X
k

�0
kðsÞ@k@jSR½�ðsÞ�k;j: (9)
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This ensures that the noise remains tangent to J 0.
Fourth, we use the evolved noise �0ð0Þ to generate a new
configuration as

�0
j ¼ �j � �t

�SR½��
��j

þ
ffiffiffiffiffiffiffiffi
2�t

p
�0
j:

In the limit �t ! 0 this simulates Langevin dynamics on
the thimble. For �t > 0, �0ð0Þ will move away from the
thimble of order ð�tÞ2. To correct this, the fifth step con-
sists in following the path of SD from �0ð0Þ for a length �
leading to the configuration �0ð�Þ. Assuming that the
action at �0ð�Þ can be approximated with its quadratic
part (otherwise, we extend �), we ensure that�0ð�Þ belongs
to the thimble by projecting it as �ð�ÞðnewÞ ¼ P�0ð�Þ.
Finally, we follow the path of SA from �ð�ÞðnewÞ for a

length �. The resulting �ð0ÞðnewÞ is the new configuration.1

The computation of the projector P is done, once for all,
at the beginning of the simulation. However, it must be
applied at every iteration. This can be done most efficiently
in Fourier space, whereH and P are diagonal, although, for
this first exploratory study on small lattices, we did not take
advantage of this possibility.

The cost of the algorithm depends significantly on the
length �, that should be large enough to stretch out to the
region where the quadratic approximation of the action is
good. But how good is good enough? We certainly do not
need to constrain the system on the thimble exactly, but
only to the extent that the domain of integration preserves
the homology class of the thimble and the reweighting with
the phase eiSI is feasible.

It is then natural to askwhether� ¼ 0 is already sufficient.
This corresponds to integrating the system on the vector
space G0 defined above. In general, G0 does not belong to
the same homology class as J 0, because the directions of
steepest ascent for the quadratic part of the action may not,
in general, be directions of convergence for the full action.

However, in our simulations we observed that such
divergences, although they do occur as expected, are very
rare (see below). This suggests that the integration on G0,
regularized, say, with a mild cutoff, might already provide
a good approximation. Of course, such a regulator intro-
duces an unknown bias, and the procedure is meaningful
only if the regulator is eventually removed, by approaching
the true thimble further. Next, we present our results onG0,
following which we show how the true thimble can be
systematically approached.

IV. NUMERICAL RESULTS ON G0

As discussed above, the simulations onG0 are meaningful
only with a regulator. Instead of introducing an explicit cut

of the domain, we regularized by discarding those simula-
tions that divergedwithin the observedhistories (i.e.,4� 106

trajectories for V ¼ 44, 106 trajectories for V ¼ 64 and
8� 105 trajectories for V ¼ 84). This procedure introduces
an unknown bias, that can only be removed by approaching
the thimble further. However, the fact that the divergences
are very rare makes the regularization rather unambiguous.
If we consider a common span of the first 8� 105 trajecto-
ries, a divergence occurred with probability �1:8% on the
latticesV ¼ 44, with probability�0:8% onV ¼ 64, and less
than 0.7% on V ¼ 84 (h ¼ 5� 10�3). The results obtained
in this way agree perfectly (within the rather small errors)
with the results obtained with the algorithm of [14,15].2

In particular, they show the correct scaling with the volume.
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FIG. 1. Average density hni in the critical region for the
lattices V ¼ 44, 64, 84.
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FIG. 2. The same as in Fig. 1 for the observable hj�j2i.

1Note that this procedure is not inherently stable, as the one in
[10], but relies on the (verifiable) fact that the integration in �
always brings sufficiently close to the saddle point.

2We thank Gert Aarts, Christof Gattringer and Thomas Kloiber
for sharing their partially unpublished results with us.
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Note that, since G0 is a flat manifold, the residual phase
discussed in [10,11] is absent.

We report the results of simulations for the relativistic
Bose gas in 3þ 1 dimensions (d ¼ 4). The mass and
coupling were fixed at m ¼ 1 ¼ �, and � was varied
from 0 to 1.3. In Figs. 1 and 2, we plot our results for
the density hni and hj�j2i in the most interesting range
between � ¼ 0:9 and � ¼ 1:22. In these figures, we see a
clear signal of transition around �� 1:1. In all the simu-
lations shown here we used �t ¼ 10�4, but we

performed also some tests with �t¼10�3 and �t¼10�5

and we found no significant difference. The error bars
on each point are computed from the standard deviation
of 10–20 independent histories, in order to take the
autocorrelation effects into account. We used the sources
h ¼ 5� 10�3 and h ¼ 10�3 to extract the limit h ! 0.
In Fig. 3 we also compare our results for the average

density with those obtained with the algorithm in [15].
In Fig. 4 we plot the average phase for the same

simulations reported above. The phase is used to reweight
the observables. However, such reweighting brings correc-
tions to the observables that are unnoticeable, within the
statistical errors. As expected, the sign problem in G0

gradually increases on larger volumes and moving closer
to the thimble will be eventually necessary.

V. MOVING CLOSER TO THE THIMBLE

In general, there are two good reasons to move closer to
the thimble J 0: first, to remove the bias introduced by the
regulator onG0 and second, to keep the sign problem under
control on larger volumes. However, in the present situ-
ation, the divergences are already very rare and to observe
a further measurable reduction would require enormous
statistics. Moreover, the results obtained on G0 are already
in excellent agreement with the known results, and the
reweighting with the phase has no effect even in the most
critical case of the 84 lattice at � ¼ 1:2. Hence, the results
reported here with � � 0 do not intend to improve the
precision of the results obtained above with � ¼ 0, but
rather to present a first exploration of the feasibility of
moving closer to the thimble.
To integrate Eqs. (4) and (9), we employed the (classical)

4th order Runge-Kutta method (RK4). This is an explicit
method, that can be used to solve Eqs. (4) and (9) as initial
value problems (IVPs). We argued in [10] that, in order
to enable a stable integration in the most general case
for large �, without the need of too tiny ��, Eq. (4) should
be treated as a boundary value problem (BVP), by intro-
ducing explicit boundary conditions in the neighborhood
of the saddle point. However, it is interesting to see what
can be achieved even with the simpler procedure adopted
here.
To evaluate the closeness to the thimble, we monitored

the reduction of the fluctuations of the imaginary part of
the action (what really matters for the sign problem), when
� is increased. We found that � ¼ 4� 10�2 was sufficient
to suppress the fluctuations of the imaginary part of the
action SI by a factor �0:5 (for 44), a factor �0:6 (for 64),
and�0:7 (for 84). This test was performed for � ¼ 1:2, in
the critical region. However, a precise integration of the
IVP becomes more and more difficult on increasingly large
volumes (the correctness of the integrator can be assessed
via reversibility checks). This shows that the IVP formu-
lation of the ODE will need to be replaced by a BVP
formulation in more difficult situations.
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FIG. 3. Comparison of the average density hni obtained with
the worm algorithm (WA) [22] with the Aurora algorithm (AA)
presented here, for the lattice V ¼ 84. We thank C. Gattringer
and T. Kloiber for providing us their results.
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FIG. 4. The data on the top right show the average phase
obtained with the Aurora algorithm on lattices 44, 64 and 84.
It is interesting that the average phase is large precisely in the
most interesting region just above � ¼ 1. The dashed lines on the
bottom left display, for comparison, the average phase obtained
with a naive phase-quenched Monte Carlo algorithm on lattices 44

and 64. Even on a 44 lattice, the sign problem in the phase-
quenched algorithm completely hides the interesting region.
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Finally, note that in this test we neglected the computation
of the residual phase discussed in [10,11]. But the excellent
agreement with the known results, even without including
the residual phase, supports the idea that its effect is not
dramatic and maybe even negligible.

VI. SUMMARY

We have reported the first numerical application of the
Lefschetz formulation to a nontrivial model with a hard sign
problem. In particular, we have studied the relativistic Bose
gas model at finite chemical potential. Our study was
restricted to small lattices, but, given the severity of the
sign problem, this can be considered already a very chal-
lenging test. We found excellent agreement with the known
results already on the crudest approximation of the thimble,
i.e., the vector space G0, once the integral was regulated by
removing the few diverging trajectories. Moreover, we
showed that it is possible to improve the approximation of
the thimble, by following the equations of SD.

Of course, the sign problem is expected to becomeworse
on larger lattices: moving closer to the thimble will become
more crucial. Work in progress includes developing effi-
cient and stable integration algorithms to achieve a better
approximation of the thimble, study of the scaling for
larger system sizes, and application of our method to other
models.
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